organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,6-Di­methyl­benzo[d][1,3]oxatellurole

crossmark logo

aDepartment of Chemistry, Lafayette, LA 70403, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: thomas.junk@louisiana.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 13 December 2023; accepted 14 December 2023; online 5 January 2024)

The structure of the title compound, C9H10OTe, at 100 K has ortho­rhom­bic (P21212) symmetry with two independent mol­ecules in the asymmetric unit (Z′ = 2). The mol­ecules are folded along their Te⋯O axes, with their Te–C–O planes angled at an average of 25.1° with respect to the remaining non-H atoms, which are almost coplanar (average deviation from planarity = 0.04 Å). A Hirshfeld plot shows weak inter­molecular inter­actions between the two Te atoms located in each asymmetric mol­ecule, with a Te⋯Te distance of 3.7191 (4) Å. The structure is strongly pseudosymmetric to the space group Pccn with Z′ = 1. The crystal chosen for data collection was found to be was an inversion twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Tellurium/oxygen-containing heterocycles have received significant attention as potent enzyme inhibitors and anti­oxidants. Thus, organotelluroxetanes inhibit cysteine proteases (Persike et al., 2008[Persike, D. S., Cunha, R. L. O. R., Juliano, L., Silva, I. R., Rosim, F. E., Vignoli, T., Dona, F., Cavalheiro, E. A. & Fernandes, M. J. da S. (2008). Neurobiol. Dis. 31, 120-126.]) while derivatives of 1,3,2-dioxatellurolane inhibit IL-1 β converting enzyme (Brodsky et al., 2007[Brodsky, M., Yosef, S., Galit, R., Albeck, M., Longo, D. L., Albeck, A. & Sredni, B. (2007). J. Interferon Cytokine Res. 27, 453-462.]; Ba et al., 2010[Ba, L. A., Döring, M., Jamier, V. & Jacob, C. (2010). Org. Biomol. Chem. 8, 4203-4216.]) and proteases (Albeck et al., 1998[Albeck, A., Weitman, H., Sredni, B. & Albeck, M. (1998). Inorg. Chem. 37, 1704-1712.]). Deriv­atives of [1,2]oxatellurole act as gluta­thione peroxidase mimetics (Back et al., 2005[Back, T. G., Kuzma, D. & Parvez, M. (2005). J. Org. Chem. 70, 9230-9236.]) while octa-O-bis-(R,R)-tartarate ditellurane (`SAS') provides pro-apoptotic signaling in drug-resistant multiple myeloma (Zigman-Hoffman et al., 2021[Zigman-Hoffman, E., Sredni, B., Meilik, B., Naparstek, E. & Tartakovsky, B. (2021). Leuk. Lymphoma, 62, 1146-1156.]). [1,4]Oxatelluranes have been known for over seventy years (Farrar & Gulland, 1945[Farrar, W. V. & Gulland, J. M. (1945). J. Chem. Soc. pp. 11-14.]). In contrast, [1,3]oxatelluroles have remained unknown, making the title compound, 5,6-di­methyl­benzo[d][1,3]oxatellurole, C9H10OTe, the first member of this class: the two mol­ecules in the asymmetric unit are shown in Fig. 1[link].

[Figure 1]
Figure 1
The asymmetric unit of the title compound with 50% displacement ellipsoids.

Furthermore, a search of the Cambridge Structural Database (May 2021 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for [1,3]oxa­seleno­les and [1,3]oxa­thio­les indicates a paucity of such structures as well. One [1,3]oxa­selenole (Laitalainen et al., 1983[Laitalainen, T., Simonen, T., Kivekäs, R. & Klinga, M. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 333-340.]) and thirteen sulfur congeners are known, such as the structurally similar 6,6-dimethyl-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d][1,3]oxa­thiole-8-carbaldehyde (Wessig et al., 2021[Wessig, P., John, L., Sperlich, E. & Kelling, A. (2021). Eur. J. Org. Chem. pp. 499-511.]). Reported derivatives of selena­fulvalene and tetra­tellura­fulvalene (Kojima et al., 2004[Kojima, T., Tanaka, K., Ishida, T. & Nogami, T. (2004). J. Org. Chem. 69, 9319-9322.]; Carroll et al., 1982[Carroll, P. J., Lakshmikantham, M. V., Cave, M. P., Wudl, F., Aharon-Shalom, E. & Cox, S. D. (1982). J. Chem. Soc. Chem. Commun. pp. 1316-1318.]) bear only limited structural resemblance to the title compound, since these mol­ecules are almost planar due to the absence of an sp3-hybridized carbon atom in the heteroaromatic ring. The non-planarity in the title compound accommodates near-tetra­hedral angles at the bridging carbon atom [Te1—C7—O1 = 108.27 (19), Te2—C16—O2 = 108.16 (19)°] for the two independent mol­ecules; the C1—Te1—C7 and C10—Te2—C16 angles are 78.40 (11) and 78.24 (11)°, respectively.

The Hirshfeld surface enclosing each of the two independent mol­ecules was calculated with respect to de, di and dnorm using the Crystal Explorer program (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), where de and di represent the nearest distance of external or inter­nal nucleus from a point of inter­est on the iso-surface. The surfaces of both independent mol­ecules are nearly identical, indicating inter­actions as bright-red areas on the Hirshfeld surface as shown in Fig. 2[link]. The strongest of these corresponds to the Te1⋯Te2 close contact of 3.7191 (4) Å between the tellurium atoms in the two independent mol­ecules (Fig. 1[link]). This compares to 2.7072 (9) Å for the representative covalent Te—Te bond of diphenyl ditelluride (Fuller et al., 2010[Fuller, A. L., Scott-Hayward, L. A. S., Li, Y., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2010). J. Am. Chem. Soc. 132, 5799-5802.]), indicating a relatively weak inter­action. A two-dimensional fingerprint plot highlighting the reciprocal Te⋯Te contact is shown in Fig. 3[link]: it accounts for 8.8% of the surface area.

[Figure 2]
Figure 2
The Hirshfeld surface of the title compound mapped over dnorm.
[Figure 3]
Figure 3
Two-dimensional fingerprint plot showing the region corresponding to inter­molecular Te⋯Te contacts in red.

checkCIF (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) reports a 100% fit for an inversion center in the title structure and suggests space group Pccn. Indeed, the structure can be solved and refined in Pccn with Z′ = 1, but the R(F) value is 0.18, the ellipsoids are elongated, and there are numerous violations of all three glide-plane absence conditions. The P21212 refinement yields a local center at 0.740, 0.758, 0.749, offset from the position necessary for Pccn, so it is clear that this is a case of the `inverse Marsh' situation (Fronczek, 2018[Fronczek, F. R. (2018). Acta Cryst. A74, a60.]), where the structure can be approximately described in a space group of too high symmetry.

Synthesis and crystallization

The title compound was prepared in three steps, starting with 3,4-di­methyl­phenol and tellurium tetra­chloride as outlined in Fig. 4[link].

[Figure 4]
Figure 4
Synthesis of the title compound.

2-Hy­droxy-3,4-di­methyl­tellurium trichloride: A 100 ml round-bottom flask with magnetic stirring, reflux condenser and drying tube was charged with tellurium tetra­chloride (4.31 g, 16 mmol), 3,4-di­methyl­phenol (1.95 g, 16 mmol) and dry toluene (8 ml). The mixture was stirred and heated to reflux for 45 min. A color change to dark yellow was observed. The clear solution was deca­nted from solids (mostly tellurium) while still hot and allowed to cool. The resulting product was collected by filtration. Yellow crystals, 2.77 g (49%). The product was pure enough for further use. An analytical sample was obtained by recrystallization from aceto­nitrile, m.p. 174–175°C, 1H NMR (DMSO-d6, p.p.m.): 2.18 (s, 3H); 2.21 (s, 3H) 6.78 (s, 1H), 7.62 (s, 1H). 13C NMR (CDCl3, p.p.m.): 18.68, 19.53, 117.00, 128.44, 130.70, 141.85, 154.33.

Bis(2-hy­droxy-4,5-di­methyl­phen­yl) ditelluride: A 100 ml round-bottom flask with magnetic stirring was charged with 2-hy­droxy-3,4-di­methyl­tellurium trichloride (2.13 g, 6 mmol), sodium metabisulfite (3.42 g, 18 mmol), 95% ethanol (2 ml), water (10 ml) and di­chloro­methane (10 ml). The mixture was stirred for 5 min, during which time it turned dark red. It was subjected to centrifugation to achieve phase separation. The organic phase was collected with a pipette and the solvent evaporated as quickly as feasible under reduced pressure. Red solid, 0.72 g (48%), mp ∼310°C (decomposition). The product is stable in solid form but decomposes rapidly in solution with tellurium formation. Consequently, it was not characterized by NMR spectroscopy.

5,6-Di­methyl­benzo[d][1,3]oxatellurole: A 50 ml round-bottom flask with magnetic stirring, reflux condenser and nitro­gen purge line was charged with bis­(2-hy­droxy-4,5-di­methyl­phen­yl) ditelluride (0.24 g, 0.5 mmol) and 95% ethanol (5 ml). The mixture was purged with nitro­gen and excess sodium borohydride was added (80 mg, 2 mmol). The mixture was stirred for 5 min, then brought to reflux for 2 min to assure complete reduction. Di­iodo­methane was added (0.2 g, 0.75 mmol) and heating resumed for another 5 min, resulting in a color change to yellow. The product subsequently precipitated after addition of water (15 ml) and was collected by centrifugation. It was taken up in chloro­form (5 ml), the solution centrifuged to remove traces of solids and the product crystallized by concentration to approx. 1 ml volume. Yellow needles, 61 mg (23%), m.p. 159–160°C. Like other monotellurides, the product is prone to slow oxidation in solution in solution. A crystal suitable for X-ray crystallography was obtained by concentration of a solution in chloro­form. 1H NMR (CDCl3, p.p.m.): 2.16 (s, 3H), 2.22 (s, 3H), 6.35 (s, 2H), 6.632 (s, 1H), 7.009 (s, 1 H). 13C NMR (CDCl3, p.p.m.): 19.04, 19.64, 51.11, 101.94, 112.81, 131.32, 132.93, 136.67, 159.58.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The Flack parameter (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]) refined to 0.49 (4), indicative of an inversion twin.

Table 1
Experimental details

Crystal data
Chemical formula C9H10OTe
Mr 261.77
Crystal system, space group Orthorhombic, P21212
Temperature (K) 100
a, b, c (Å) 13.6947 (12), 23.467 (2), 5.2287 (6)
V3) 1680.3 (3)
Z 8
Radiation type Ag Kα, λ = 0.56086 Å
μ (mm−1) 1.84
Crystal size (mm) 0.23 × 0.10 × 0.09
 
Data collection
Diffractometer Bruker D8 Venture DUO with Photon III C14
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.701, 0.852
No. of measured, independent and observed [I > 2σ(I)] reflections 83209, 11161, 9763
Rint 0.080
(sin θ/λ)max−1) 0.926
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.061, 1.05
No. of reflections 11161
No. of parameters 204
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.74, −1.28
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.49 (4)
Computer programs: APEX4 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

5,6-Dimethylbenzo[d][1,3]oxatellurole top
Crystal data top
C9H10OTeDx = 2.069 Mg m3
Mr = 261.77Ag Kα radiation, λ = 0.56086 Å
Orthorhombic, P21212Cell parameters from 9865 reflections
a = 13.6947 (12) Åθ = 2.4–30.8°
b = 23.467 (2) ŵ = 1.84 mm1
c = 5.2287 (6) ÅT = 100 K
V = 1680.3 (3) Å3Needle, yellow
Z = 80.23 × 0.10 × 0.09 mm
F(000) = 992
Data collection top
Bruker D8 Venture DUO with Photon III C14
diffractometer
9763 reflections with I > 2σ(I)
Radiation source: IµS 3.0 microfocusRint = 0.080
φ and ω scansθmax = 31.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2325
Tmin = 0.701, Tmax = 0.852k = 4343
83209 measured reflectionsl = 99
11161 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0081P)2 + 1.4627P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.001
S = 1.05Δρmax = 1.74 e Å3
11161 reflectionsΔρmin = 1.28 e Å3
204 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.49 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

All H atoms were located in difference maps and then treated as riding in geometrically idealized positions with C—H distances 0.95 Å and with Uiso(H) = 1.2Ueq for the attached C atom (0.98 Å and 1.5Ueq for methyl groups).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.60109 (2)0.44282 (2)0.70610 (4)0.01156 (3)
O10.66046 (16)0.32225 (8)0.7300 (5)0.0171 (4)
C10.7160 (2)0.40889 (11)0.9272 (6)0.0125 (5)
C20.7249 (2)0.35032 (12)0.8897 (6)0.0139 (5)
C30.7937 (2)0.31871 (13)1.0236 (6)0.0157 (5)
H30.7998790.2789650.9931250.019*
C40.8534 (2)0.34532 (12)1.2023 (8)0.0165 (5)
C50.8459 (2)0.40437 (13)1.2423 (6)0.0156 (6)
C60.7776 (2)0.43536 (13)1.1010 (6)0.0146 (5)
H60.7732820.4754241.1243290.018*
C70.6149 (2)0.35744 (11)0.5459 (6)0.0139 (5)
H7A0.5495690.3421500.5025990.017*
H7B0.6545910.3586290.3877390.017*
C80.9241 (2)0.31015 (15)1.3595 (7)0.0229 (7)
H8A0.9264720.2712281.2918200.034*
H8B0.9021880.3092181.5379110.034*
H8C0.9892870.3272251.3505490.034*
C90.9089 (2)0.43445 (15)1.4362 (7)0.0227 (6)
H9A0.9013150.4757531.4168020.034*
H9B0.9774120.4240281.4089410.034*
H9C0.8889310.4231431.6088290.034*
Te20.40868 (2)0.43608 (2)0.20506 (4)0.01157 (3)
O20.36896 (16)0.31277 (8)0.2343 (5)0.0164 (4)
C100.2997 (2)0.39623 (11)0.4274 (6)0.0123 (5)
C110.3004 (2)0.33735 (11)0.3916 (6)0.0134 (5)
C120.2362 (2)0.30266 (12)0.5262 (6)0.0144 (5)
H120.2367750.2626340.4990770.017*
C130.1713 (2)0.32627 (12)0.6998 (7)0.0151 (5)
C140.1696 (2)0.38537 (12)0.7403 (6)0.0143 (5)
C150.2342 (2)0.41978 (12)0.5996 (7)0.0150 (5)
H150.2328650.4599170.6229810.018*
C160.4082 (2)0.35010 (11)0.0473 (6)0.0146 (5)
H16A0.3679580.3488540.1099100.018*
H16B0.4755540.3383790.0028560.018*
C170.1054 (3)0.28707 (14)0.8522 (7)0.0213 (6)
H17A0.1108240.2481730.7855240.032*
H17B0.0376590.3000800.8373290.032*
H17C0.1251510.2876181.0323600.032*
C180.1027 (2)0.41186 (15)0.9348 (7)0.0202 (6)
H18A0.1264380.4030301.1071970.030*
H18B0.0366630.3965600.9134270.030*
H18C0.1015510.4532730.9107800.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.01223 (6)0.00991 (5)0.01252 (8)0.00161 (5)0.00064 (7)0.00114 (6)
O10.0230 (10)0.0110 (7)0.0173 (12)0.0028 (7)0.0044 (9)0.0001 (8)
C10.0140 (12)0.0119 (10)0.0115 (13)0.0022 (9)0.0008 (10)0.0007 (9)
C20.0156 (12)0.0142 (10)0.0118 (12)0.0023 (9)0.0008 (10)0.0006 (9)
C30.0158 (12)0.0157 (11)0.0155 (14)0.0036 (10)0.0017 (11)0.0022 (10)
C40.0137 (11)0.0210 (11)0.0147 (12)0.0054 (9)0.0022 (13)0.0019 (13)
C50.0114 (10)0.0239 (12)0.0116 (15)0.0003 (9)0.0012 (9)0.0007 (9)
C60.0143 (11)0.0168 (11)0.0127 (12)0.0006 (10)0.0004 (10)0.0021 (10)
C70.0161 (12)0.0120 (10)0.0136 (13)0.0007 (9)0.0008 (10)0.0023 (9)
C80.0173 (14)0.0296 (15)0.0219 (17)0.0074 (12)0.0014 (12)0.0063 (13)
C90.0157 (12)0.0352 (16)0.0172 (15)0.0019 (14)0.0029 (11)0.0050 (13)
Te20.01233 (7)0.01001 (6)0.01239 (8)0.00127 (5)0.00103 (7)0.00133 (6)
O20.0214 (9)0.0116 (7)0.0160 (12)0.0015 (7)0.0048 (9)0.0006 (7)
C100.0132 (11)0.0122 (10)0.0114 (12)0.0020 (9)0.0005 (9)0.0012 (9)
C110.0153 (12)0.0122 (10)0.0126 (12)0.0020 (9)0.0014 (10)0.0008 (9)
C120.0173 (13)0.0140 (10)0.0121 (13)0.0037 (9)0.0016 (11)0.0001 (9)
C130.0143 (10)0.0174 (10)0.0135 (12)0.0052 (8)0.0034 (12)0.0010 (12)
C140.0121 (10)0.0194 (11)0.0115 (15)0.0001 (9)0.0007 (9)0.0001 (9)
C150.0141 (12)0.0151 (11)0.0157 (14)0.0001 (9)0.0022 (11)0.0011 (10)
C160.0189 (13)0.0120 (9)0.0130 (13)0.0009 (10)0.0008 (11)0.0021 (8)
C170.0200 (14)0.0238 (13)0.0201 (17)0.0080 (12)0.0031 (12)0.0034 (11)
C180.0164 (13)0.0287 (14)0.0157 (15)0.0001 (12)0.0003 (12)0.0025 (11)
Geometric parameters (Å, º) top
Te1—C12.108 (3)Te2—C102.110 (3)
Te1—C72.180 (3)Te2—C162.180 (3)
O1—C21.382 (4)O2—C111.375 (4)
O1—C71.414 (4)O2—C161.419 (4)
C1—C61.387 (4)C10—C151.387 (4)
C1—C21.394 (4)C10—C111.394 (4)
C2—C31.388 (4)C11—C121.390 (4)
C3—C41.390 (5)C12—C131.386 (5)
C3—H30.9500C12—H120.9500
C4—C51.405 (4)C13—C141.403 (4)
C4—C81.514 (4)C13—C171.515 (4)
C5—C61.396 (4)C14—C151.405 (4)
C5—C91.506 (4)C14—C181.503 (4)
C6—H60.9500C15—H150.9500
C7—H7A0.9900C16—H16A0.9900
C7—H7B0.9900C16—H16B0.9900
C8—H8A0.9800C17—H17A0.9800
C8—H8B0.9800C17—H17B0.9800
C8—H8C0.9800C17—H17C0.9800
C9—H9A0.9800C18—H18A0.9800
C9—H9B0.9800C18—H18B0.9800
C9—H9C0.9800C18—H18C0.9800
C1—Te1—C778.40 (11)C10—Te2—C1678.24 (11)
C2—O1—C7114.5 (2)C11—O2—C16114.3 (2)
C6—C1—C2118.7 (3)C15—C10—C11119.1 (3)
C6—C1—Te1130.1 (2)C15—C10—Te2129.7 (2)
C2—C1—Te1111.2 (2)C11—C10—Te2111.1 (2)
O1—C2—C3118.9 (2)O2—C11—C12119.3 (2)
O1—C2—C1119.9 (3)O2—C11—C10120.0 (3)
C3—C2—C1121.0 (3)C12—C11—C10120.6 (3)
C2—C3—C4119.9 (3)C13—C12—C11120.2 (3)
C2—C3—H3120.1C13—C12—H12119.9
C4—C3—H3120.1C11—C12—H12119.9
C3—C4—C5120.0 (3)C12—C13—C14120.3 (3)
C3—C4—C8119.7 (3)C12—C13—C17118.9 (3)
C5—C4—C8120.2 (3)C14—C13—C17120.7 (3)
C6—C5—C4118.9 (3)C13—C14—C15118.6 (3)
C6—C5—C9119.7 (3)C13—C14—C18121.4 (3)
C4—C5—C9121.4 (3)C15—C14—C18120.0 (3)
C1—C6—C5121.4 (3)C10—C15—C14121.2 (3)
C1—C6—H6119.3C10—C15—H15119.4
C5—C6—H6119.3C14—C15—H15119.4
O1—C7—Te1108.27 (19)O2—C16—Te2108.16 (19)
O1—C7—H7A110.0O2—C16—H16A110.1
Te1—C7—H7A110.0Te2—C16—H16A110.1
O1—C7—H7B110.0O2—C16—H16B110.1
Te1—C7—H7B110.0Te2—C16—H16B110.1
H7A—C7—H7B108.4H16A—C16—H16B108.4
C4—C8—H8A109.5C13—C17—H17A109.5
C4—C8—H8B109.5C13—C17—H17B109.5
H8A—C8—H8B109.5H17A—C17—H17B109.5
C4—C8—H8C109.5C13—C17—H17C109.5
H8A—C8—H8C109.5H17A—C17—H17C109.5
H8B—C8—H8C109.5H17B—C17—H17C109.5
C5—C9—H9A109.5C14—C18—H18A109.5
C5—C9—H9B109.5C14—C18—H18B109.5
H9A—C9—H9B109.5H18A—C18—H18B109.5
C5—C9—H9C109.5C14—C18—H18C109.5
H9A—C9—H9C109.5H18A—C18—H18C109.5
H9B—C9—H9C109.5H18B—C18—H18C109.5
 

Acknowledgements

We are grateful to the Department of Chemistry, University of Louisiana at Lafayette for material support of this work.

Funding information

Funding for this research was provided by: Louisiana Board of Regents (grant No. LEQSF(2011-12)-ENH-TR-01).

References

First citationAlbeck, A., Weitman, H., Sredni, B. & Albeck, M. (1998). Inorg. Chem. 37, 1704–1712.  Web of Science CrossRef CAS Google Scholar
First citationBa, L. A., Döring, M., Jamier, V. & Jacob, C. (2010). Org. Biomol. Chem. 8, 4203–4216.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBack, T. G., Kuzma, D. & Parvez, M. (2005). J. Org. Chem. 70, 9230–9236.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrodsky, M., Yosef, S., Galit, R., Albeck, M., Longo, D. L., Albeck, A. & Sredni, B. (2007). J. Interferon Cytokine Res. 27, 453–462.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarroll, P. J., Lakshmikantham, M. V., Cave, M. P., Wudl, F., Aharon-Shalom, E. & Cox, S. D. (1982). J. Chem. Soc. Chem. Commun. pp. 1316–1318.  CrossRef Web of Science Google Scholar
First citationFarrar, W. V. & Gulland, J. M. (1945). J. Chem. Soc. pp. 11–14.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFronczek, F. R. (2018). Acta Cryst. A74, a60.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFuller, A. L., Scott-Hayward, L. A. S., Li, Y., Bühl, M., Slawin, A. M. Z. & Woollins, J. D. (2010). J. Am. Chem. Soc. 132, 5799–5802.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKojima, T., Tanaka, K., Ishida, T. & Nogami, T. (2004). J. Org. Chem. 69, 9319–9322.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLaitalainen, T., Simonen, T., Kivekäs, R. & Klinga, M. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 333–340.  CSD CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPersike, D. S., Cunha, R. L. O. R., Juliano, L., Silva, I. R., Rosim, F. E., Vignoli, T., Dona, F., Cavalheiro, E. A. & Fernandes, M. J. da S. (2008). Neurobiol. Dis. 31, 120–126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWessig, P., John, L., Sperlich, E. & Kelling, A. (2021). Eur. J. Org. Chem. pp. 499–511.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZigman-Hoffman, E., Sredni, B., Meilik, B., Naparstek, E. & Tartakovsky, B. (2021). Leuk. Lymphoma, 62, 1146–1156.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146