organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino­benzoxazole–oxalic acid (2/1)

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, bInstitute of General and Inorganic Chemistry, Academy of Sciences of Uzbekistan, 100170, M. Ulugbek Str 77a, Tashkent, Uzbekistan, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek, Str, 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru

Edited by R. J. Butcher, Howard University, USA (Received 20 September 2023; accepted 9 January 2024; online 26 January 2024)

In the title compound, 2C7H7N2O+·C2O42−, proton transfer from oxalic acid to the N atom of the heterocycle has occurred to form a 2:1 molecular salt. In the extended structure, N—H⋯O hydrogen bonds link the components into [100] chains, which feature R22(8) and R44(14) loops.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

2-Amino­benzoxazole has gained significant attention in the field of organic chemistry due to its diverse range of applications and properties. This heterocyclic compound exhibits intriguing structural features and has demonstrated potential utility in the development of pharmaceuticals and agrochemicals and in materials science (Hwang et al., 2006[Hwang, J. Y. & Gong, Y.-D. (2006). J. Comb. Chem. 8, 297-303.]; Potashman et al., 2007[Potashman, M. H., Bready, J., Coxon, A., DeMelfi, T. M., DiPietro, L., Doerr, N., Elbaum, D., Estrada, J., Gallant, P., Germain, J., Gu, Y., Harmange, J. C., Kaufman, S. A., Kendall, R., Kim, J. L., Kumar, G. N., Long, A. M., Neervannan, S., Patel, V. F., Polverino, A., Rose, P., van der Plas, S., Whittington, D., Zanon, R. & Zhao, H. (2007). J. Med. Chem. 50, 4351-4373.]). With its aromatic and nitro­gen-containing structural motifs, 2-amino­benzoxazole has emerged as a key scaffold for the synthesis of biologically active mol­ecules and advanced materials. Herein, we report on the crystal structure analysis of a new 2-amino­benzoxazole–oxalic acid mol­ecular salt.

The title organic salt crystallizes in the monoclinic space group P21/n. The mol­ecular structure of the organic salt is shown in Fig. 1[link]. The geometric parameters of the arene and oxazole rings are similar to standard values and to those in other related structures (Ashurov et al., 2011[Ashurov, J., Karimova, G., Mukhamedov, N., Parpiev, N. A. & Ibragimov, B. (2011). Acta Cryst. E67, m432.], 2015[Ashurov, J. M., Mukhamedov, N. S., Tashkhodzhaev, B. & Ibragimov, A. B. (2015). J. Struct. Chem. 56, 1148-1153.]; Wang et al., 2016[Wang, A., Ashurov, J., Ibragimov, A., Wang, R., Mouhib, H., Mukhamedov, N. & Englert, U. (2016). Acta Cryst. B72, 142-150.]). In the oxalate (OXL) part of the organic salt, two hydrogen atoms are transferred to the nitro­gen of the oxazole fragments, as in other 2-amino­benzoxazole (2ABO) structures (Nandy et al., 2016[Nandy, P., Nayak, A., Biswas, S. N. & Pedireddi, V. R. (2016). J. Mol. Struct. 1108, 717-726.]; Razzoqova et al., 2022[Razzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277-1283.], 2023[Razzoqova, S., Ibragimov, A., Torambetov, B., Kadirova, S., Holczbauer, T., Ashurov, J. & Ibragimov, B. (2023). Acta Cryst. E79, 862-866.]). As a result, the 2ABO and OXL ions form two closed eight-membered rings with an R22(8) graph-set notation (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). This represents a 1:2 acid-base association (Calva et al., 2011[Calva, A. H., Velasco, A. L. P., Martínez, M., Pérez-Benítez, A., Bernès, S. & Vergara, E. G. (2011). J. Chem. Crystallogr. 41, 1461-1466.]), with the first ring formed by N1—H1⋯O4 and N2—H2B⋯O3 hydrogen bonds and the second by N4—H4B⋯O6 and N3—H3A⋯O5 hydrogen bonds (Table 1[link]). N2—H2A⋯O4 and N4—H4A⋯O5 hydrogen bonds further link the components into [100] chains, thereby forming a 14-membered ring with an R44(14) graph-set motif (Fig. 2[link]) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). The chains are shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.88 (1) 1.78 (1) 2.650 (2) 176 (3)
N2—H2A⋯O4i 0.87 (1) 2.00 (1) 2.863 (2) 174 (3)
N2—H2B⋯O3 0.86 (1) 1.94 (1) 2.770 (2) 164 (2)
C2—H2⋯O1ii 0.93 2.65 3.522 (2) 157
N3—H3A⋯O5 0.88 (1) 1.71 (1) 2.577 (2) 173 (3)
N4—H4A⋯O5ii 0.87 (1) 2.06 (1) 2.918 (2) 172 (2)
N4—H4B⋯O6 0.86 (1) 2.02 (1) 2.851 (2) 163 (2)
Symmetry codes: (i) [x-1, y, z]; (ii) [x+1, y, z].
[Figure 1]
Figure 1
The organic salt structure of 2ABO and OXL. Displacement ellipsoids are drawn at the 50% probability level and N—H⋯O hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
The crystal structure of the organic salt structure of 2ABO and OXL viewed along the c axis.
[Figure 3]
Figure 3
A fragment of a [100] chain in the extended structure of the title compound with hydrogen bonds shown as dashed lines.

The identification of the co-crystal as a salt is based on the successful refinement of the relevant H atoms using X-ray data. The proton transfer is further supported by the C—O distances [O4—C15 = 1.266 (2) Å, O3—C15 = 1.234 (2) Å, O5—C16 = 1.272 (2) Å and O6—C16 = 1.222 (2) Å] with differences between the bond lengths within each group of 0.032 and 0.050 Å; these differences differ from those for O—C distances in deproton­ated carboxyl groups. In non-deprotonated oxalic acid, these differences are greater (Sasaki et al., 2020[Sasaki, T., Sakamoto, S. & Takamizawa, S. (2020). Cryst. Growth Des. 20, 1935-1939.]). The mean planes of the carb­oxy­lic fragments in the OXL ion are turned by 10.13 (4)° from each other. In the crystal, the 2BAO and OXL ions are not coplanar, the 2ABO ions being inclined to the OXL ions by 18.81 (3) and 16.00 (5)°. The dihedral angle between the 2ABO ions is 37.52 (2)°.

Synthesis and crystallization

A 2:1 stoichiometric ratio of 2-amino­benzoxazole (0.268 g, 2.0 mmol) and oxalic acid (0.090 g, 1.0 mmol) was dissolved and mixed well in distilled water (5 ml). The mixture was stirred at room temperature for 30 minutes. The solution was then transferred to a vial with small holes in the cover to allow for evaporation. After about 3 weeks, cube-like single crystals of the title salt suitable for data collection were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C7H7N2O+·C2O42−
Mr 358.31
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 6.5080 (2), 17.6943 (7), 13.6264 (5)
β (°) 100.200 (4)
V3) 1544.34 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.03
Crystal size (mm) 0.17 × 0.14 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.157, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2960, 2960, 2288
Rint 0.031
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.132, 1.04
No. of reflections 2960
No. of parameters 259
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.20
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Bis(2-aminobenzoxazol-3-ium) oxalate top
Crystal data top
2C7H7N2O+·C2O42F(000) = 744
Mr = 358.31Dx = 1.541 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 6.5080 (2) ÅCell parameters from 2449 reflections
b = 17.6943 (7) Åθ = 4.1–70.3°
c = 13.6264 (5) ŵ = 1.03 mm1
β = 100.200 (4)°T = 293 K
V = 1544.34 (10) Å3Needle, light yellow
Z = 40.17 × 0.14 × 0.12 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
2960 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2288 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.0000 pixels mm-1θmax = 71.4°, θmin = 4.1°
ω scansh = 87
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 2021
Tmin = 0.157, Tmax = 1.000l = 1316
2960 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0724P)2 + 0.1538P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2960 reflectionsΔρmax = 0.23 e Å3
259 parametersΔρmin = 0.20 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms of amino groups and protonated nitro­gen atoms of oxzole groups were located in difference - Fourier maps and refined with restrained distances of 0.85±(1) Å. The H atoms of the benzene ring were calculated geometrically with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1212 (2)0.44529 (8)0.33805 (10)0.0428 (3)
N10.4453 (2)0.48755 (9)0.38019 (11)0.0381 (4)
H10.545 (3)0.5203 (13)0.3995 (19)0.082 (9)*
C10.4597 (3)0.41299 (11)0.34764 (13)0.0366 (4)
O21.3397 (2)0.94256 (8)0.42539 (10)0.0410 (3)
N20.1639 (3)0.56637 (11)0.39934 (16)0.0521 (5)
H2A0.0351 (19)0.5701 (15)0.4069 (18)0.069 (8)*
H2B0.252 (3)0.6021 (11)0.4168 (18)0.069 (8)*
C20.6255 (3)0.36637 (12)0.34088 (15)0.0439 (5)
H20.7629340.3822830.3601140.053*
O30.4839 (2)0.67161 (8)0.42640 (12)0.0540 (4)
N31.0284 (2)0.88951 (9)0.42134 (12)0.0381 (4)
H3A0.927 (3)0.8578 (14)0.427 (2)0.090 (10)*
C30.5769 (4)0.29442 (12)0.30389 (16)0.0518 (5)
H30.6850940.2610480.2990920.062*
O40.7441 (2)0.58949 (7)0.42948 (10)0.0432 (3)
N41.3345 (3)0.81860 (10)0.47545 (14)0.0470 (4)
H4A1.4629 (19)0.8123 (15)0.4680 (17)0.061 (7)*
H4B1.258 (3)0.7797 (10)0.4805 (18)0.064 (8)*
C40.3719 (4)0.27030 (13)0.27364 (17)0.0533 (6)
H40.3462430.2220440.2472530.064*
O50.7522 (2)0.78759 (8)0.43539 (12)0.0517 (4)
C50.2049 (3)0.31731 (12)0.28231 (16)0.0497 (5)
H50.0669610.3019040.2633140.060*
O61.0164 (2)0.70685 (9)0.46759 (14)0.0624 (5)
C60.2561 (3)0.38746 (11)0.32045 (13)0.0394 (4)
C70.2444 (3)0.50366 (11)0.37490 (13)0.0383 (4)
C80.9941 (3)0.96341 (10)0.38748 (13)0.0350 (4)
C90.8136 (3)1.00364 (12)0.35338 (13)0.0420 (4)
H90.6820790.9821920.3500860.050*
C100.8389 (3)1.07772 (13)0.32431 (15)0.0490 (5)
H100.7209451.1064020.3003360.059*
C111.0345 (4)1.11046 (13)0.32983 (16)0.0531 (5)
H111.0444761.1605080.3103640.064*
C121.2147 (3)1.06995 (12)0.36377 (16)0.0483 (5)
H121.3467071.0912250.3681160.058*
C131.1870 (3)0.99662 (11)0.39057 (13)0.0377 (4)
C141.2326 (3)0.87935 (11)0.44171 (13)0.0372 (4)
C150.6703 (3)0.65540 (10)0.43310 (13)0.0354 (4)
C160.8301 (3)0.72137 (11)0.44698 (14)0.0379 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0305 (7)0.0392 (7)0.0574 (8)0.0051 (5)0.0037 (5)0.0028 (6)
N10.0284 (8)0.0363 (9)0.0492 (8)0.0048 (6)0.0058 (6)0.0030 (7)
C10.0356 (10)0.0348 (10)0.0396 (9)0.0046 (8)0.0071 (7)0.0037 (7)
O20.0322 (7)0.0382 (7)0.0536 (8)0.0047 (5)0.0098 (5)0.0007 (6)
N20.0331 (9)0.0404 (10)0.0844 (13)0.0023 (8)0.0144 (9)0.0085 (9)
C20.0377 (11)0.0428 (11)0.0523 (11)0.0007 (8)0.0110 (8)0.0039 (9)
O30.0292 (7)0.0391 (8)0.0945 (11)0.0031 (6)0.0131 (7)0.0047 (8)
N30.0298 (8)0.0342 (9)0.0515 (9)0.0049 (7)0.0101 (6)0.0018 (7)
C30.0567 (14)0.0396 (11)0.0626 (13)0.0058 (10)0.0202 (10)0.0046 (10)
O40.0327 (7)0.0323 (7)0.0645 (8)0.0021 (5)0.0086 (6)0.0027 (6)
N40.0360 (10)0.0392 (10)0.0663 (11)0.0014 (8)0.0102 (8)0.0037 (8)
C40.0648 (15)0.0344 (11)0.0637 (13)0.0072 (10)0.0199 (11)0.0045 (10)
O50.0324 (7)0.0332 (7)0.0900 (11)0.0013 (6)0.0120 (7)0.0054 (7)
C50.0486 (12)0.0430 (12)0.0579 (12)0.0135 (9)0.0105 (9)0.0027 (9)
O60.0291 (8)0.0397 (9)0.1155 (14)0.0015 (6)0.0047 (8)0.0032 (8)
C60.0351 (10)0.0378 (10)0.0451 (10)0.0019 (8)0.0063 (7)0.0037 (8)
C70.0328 (9)0.0344 (10)0.0477 (10)0.0039 (7)0.0066 (7)0.0009 (8)
C80.0355 (10)0.0337 (10)0.0367 (8)0.0029 (7)0.0093 (7)0.0032 (7)
C90.0353 (10)0.0433 (11)0.0476 (10)0.0004 (8)0.0082 (8)0.0014 (9)
C100.0491 (12)0.0459 (12)0.0525 (11)0.0074 (9)0.0102 (9)0.0043 (9)
C110.0620 (14)0.0383 (12)0.0616 (13)0.0022 (10)0.0180 (10)0.0085 (10)
C120.0476 (12)0.0418 (12)0.0576 (12)0.0100 (9)0.0154 (9)0.0013 (9)
C130.0361 (10)0.0357 (10)0.0423 (9)0.0014 (8)0.0098 (7)0.0029 (8)
C140.0330 (10)0.0340 (10)0.0453 (9)0.0050 (7)0.0090 (7)0.0041 (8)
C150.0304 (9)0.0343 (10)0.0420 (9)0.0025 (7)0.0079 (7)0.0009 (8)
C160.0305 (9)0.0336 (10)0.0498 (10)0.0033 (7)0.0077 (7)0.0007 (8)
Geometric parameters (Å, º) top
O1—C61.397 (2)N4—H4A0.866 (10)
O1—C71.349 (2)N4—H4B0.858 (10)
N1—H10.876 (10)N4—C141.303 (3)
N1—C11.400 (3)C4—H40.9300
N1—C71.328 (2)C4—C51.390 (3)
C1—C21.374 (3)O5—C161.276 (2)
C1—C61.386 (3)C5—H50.9300
O2—C131.400 (2)C5—C61.364 (3)
O2—C141.357 (2)O6—C161.222 (2)
N2—H2A0.865 (10)C8—C91.382 (3)
N2—H2B0.857 (10)C8—C131.380 (3)
N2—C71.296 (3)C9—H90.9300
C2—H20.9300C9—C101.388 (3)
C2—C31.385 (3)C10—H100.9300
O3—C151.234 (2)C10—C111.388 (3)
N3—H3A0.877 (10)C11—H110.9300
N3—C81.391 (2)C11—C121.382 (3)
N3—C141.321 (2)C12—H120.9300
C3—H30.9300C12—C131.369 (3)
C3—C41.392 (3)C15—C161.553 (3)
O4—C151.266 (2)
C7—O1—C6105.93 (14)C5—C6—C1123.77 (19)
C1—N1—H1129 (2)N1—C7—O1111.77 (16)
C7—N1—H1123 (2)N2—C7—O1120.69 (17)
C7—N1—C1107.77 (15)N2—C7—N1127.53 (18)
C2—C1—N1133.15 (18)C9—C8—N3132.26 (18)
C2—C1—C6120.73 (18)C13—C8—N3107.36 (16)
C6—C1—N1106.12 (16)C13—C8—C9120.37 (18)
C14—O2—C13105.31 (14)C8—C9—H9121.8
H2A—N2—H2B122 (3)C8—C9—C10116.46 (19)
C7—N2—H2A122.7 (18)C10—C9—H9121.8
C7—N2—H2B115.0 (19)C9—C10—H10118.9
C1—C2—H2121.8C9—C10—C11122.2 (2)
C1—C2—C3116.40 (19)C11—C10—H10118.9
C3—C2—H2121.8C10—C11—H11119.4
C8—N3—H3A123 (2)C12—C11—C10121.1 (2)
C14—N3—H3A129 (2)C12—C11—H11119.4
C14—N3—C8107.10 (15)C11—C12—H12122.1
C2—C3—H3118.8C13—C12—C11115.9 (2)
C2—C3—C4122.3 (2)C13—C12—H12122.1
C4—C3—H3118.8C8—C13—O2107.87 (16)
H4A—N4—H4B119 (2)C12—C13—O2128.21 (18)
C14—N4—H4A120.4 (17)C12—C13—C8123.92 (19)
C14—N4—H4B115.1 (18)N3—C14—O2112.34 (16)
C3—C4—H4119.5N4—C14—O2119.57 (17)
C5—C4—C3120.9 (2)N4—C14—N3128.08 (18)
C5—C4—H4119.5O3—C15—O4125.89 (17)
C4—C5—H5122.1O3—C15—C16117.56 (16)
C6—C5—C4115.8 (2)O4—C15—C16116.55 (16)
C6—C5—H5122.1O5—C16—C15115.62 (16)
C1—C6—O1108.39 (16)O6—C16—O5125.33 (18)
C5—C6—O1127.84 (18)O6—C16—C15119.06 (17)
N1—C1—C2—C3179.9 (2)C6—C1—C2—C31.4 (3)
N1—C1—C6—O11.0 (2)C7—O1—C6—C10.03 (19)
N1—C1—C6—C5178.36 (18)C7—O1—C6—C5179.3 (2)
C1—N1—C7—O11.8 (2)C7—N1—C1—C2177.2 (2)
C1—N1—C7—N2179.0 (2)C7—N1—C1—C61.7 (2)
C1—C2—C3—C40.9 (3)C8—N3—C14—O21.1 (2)
C2—C1—C6—O1178.00 (16)C8—N3—C14—N4179.93 (19)
C2—C1—C6—C52.6 (3)C8—C9—C10—C110.6 (3)
C2—C3—C4—C52.0 (3)C9—C8—C13—O2178.45 (16)
O3—C15—C16—O510.1 (3)C9—C8—C13—C121.8 (3)
O3—C15—C16—O6169.97 (19)C9—C10—C11—C120.8 (3)
N3—C8—C9—C10179.46 (19)C10—C11—C12—C130.3 (3)
N3—C8—C13—O20.65 (19)C11—C12—C13—O2178.73 (18)
N3—C8—C13—C12179.10 (18)C11—C12—C13—C81.6 (3)
C3—C4—C5—C60.9 (3)C13—O2—C14—N30.71 (19)
O4—C15—C16—O5169.79 (17)C13—O2—C14—N4179.63 (17)
O4—C15—C16—O610.2 (3)C13—C8—C9—C100.6 (3)
C4—C5—C6—O1179.32 (18)C14—O2—C13—C80.00 (18)
C4—C5—C6—C11.4 (3)C14—O2—C13—C12179.74 (19)
C6—O1—C7—N11.1 (2)C14—N3—C8—C9177.88 (19)
C6—O1—C7—N2179.66 (18)C14—N3—C8—C131.07 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.88 (1)1.78 (1)2.650 (2)176 (3)
N2—H2A···O4i0.87 (1)2.00 (1)2.863 (2)174 (3)
N2—H2B···O30.86 (1)1.94 (1)2.770 (2)164 (2)
C2—H2···O1ii0.932.653.522 (2)157
N3—H3A···O50.88 (1)1.71 (1)2.577 (2)173 (3)
N4—H4A···O5ii0.87 (1)2.06 (1)2.918 (2)172 (2)
N4—H4B···O60.86 (1)2.02 (1)2.851 (2)163 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Funding information

Funding for this research was provided by: Ministry of Higher Education, Science and Innovation of the Republic of Uzbekistan.

References

First citationAshurov, J., Karimova, G., Mukhamedov, N., Parpiev, N. A. & Ibragimov, B. (2011). Acta Cryst. E67, m432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAshurov, J. M., Mukhamedov, N. S., Tashkhodzhaev, B. & Ibragimov, A. B. (2015). J. Struct. Chem. 56, 1148–1153.  CSD CrossRef CAS Google Scholar
First citationCalva, A. H., Velasco, A. L. P., Martínez, M., Pérez-Benítez, A., Bernès, S. & Vergara, E. G. (2011). J. Chem. Crystallogr. 41, 1461–1466.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationHwang, J. Y. & Gong, Y.-D. (2006). J. Comb. Chem. 8, 297–303.  CrossRef PubMed CAS Google Scholar
First citationNandy, P., Nayak, A., Biswas, S. N. & Pedireddi, V. R. (2016). J. Mol. Struct. 1108, 717–726.  CSD CrossRef CAS Google Scholar
First citationPotashman, M. H., Bready, J., Coxon, A., DeMelfi, T. M., DiPietro, L., Doerr, N., Elbaum, D., Estrada, J., Gallant, P., Germain, J., Gu, Y., Harmange, J. C., Kaufman, S. A., Kendall, R., Kim, J. L., Kumar, G. N., Long, A. M., Neervannan, S., Patel, V. F., Polverino, A., Rose, P., van der Plas, S., Whittington, D., Zanon, R. & Zhao, H. (2007). J. Med. Chem. 50, 4351–4373.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRazzoqova, S., Ibragimov, A., Torambetov, B., Kadirova, S., Holczbauer, T., Ashurov, J. & Ibragimov, B. (2023). Acta Cryst. E79, 862–866.  CSD CrossRef IUCr Journals Google Scholar
First citationRazzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277–1283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSasaki, T., Sakamoto, S. & Takamizawa, S. (2020). Cryst. Growth Des. 20, 1935–1939.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, A., Ashurov, J., Ibragimov, A., Wang, R., Mouhib, H., Mukhamedov, N. & Englert, U. (2016). Acta Cryst. B72, 142–150.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146