metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Synthesis and structure of trans-bis­­(4-amino-3-nitro­benzoato-κO)bis­­(4-amino-3-nitro­benzoic acid-κO)di­aqua­manganese(II) dihydrate

crossmark logo

aTermez State University, Barkamol Avlod Street 43, Termez city, Uzbekistan, bInstitute of General and Inorganic Chemistry of Uzbekistan Academy of Sciences, 100170, Mirzo Ulug'bek str., 77a, Uzbekistan, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str 83, Tashkent, Uzbekistan
*Correspondence e-mail: ashurovjamshid1@gmail.com

Edited by R. J. Butcher, Howard University, USA (Received 29 August 2023; accepted 10 January 2024; online 19 January 2024)

The manganese title complex, [Mn(C7H5N2O4)2(C7H6N2O4)2(H2O)2]·2H2O, is one of the first 4-amino 3-nitro­benzoic acid (4 A3NBA) monoligand metal complexes to be synthesized. It crystallizes in the centrosymmetric monoclinic space group P21/n with the complex mol­ecules located on inversion centers. Four 4 A3NBA ligand mol­ecules are monodentately coordinated by the Mn2+ ion through the carb­oxy­lic oxygen atoms while the other two positions of the inner coordination sphere are occupied by water mol­ecules, giving rise to a distorted octa­hedron, and two water mol­ecules are in the outer coordination sphere. There are two intra­molecular hydrogen bonds in the complex mol­ecule. The first is of the common N—H⋯O=N type, while the second is a rarely occurring very strong hydrogen bond in which a common proton is shared by two uncoordinated oxygen atoms of neighboring carboxyl­ate groups. In the crystal, an intricate system of inter­molecular hydrogen bonds links the complex mol­ecules into a three-dimensional-network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecular structure of the title complex is shown in Fig. 1[link]. It crystallizes in the centrosymmetric monoclinic space group P21/n with the complex mol­ecules located on inversion centers. Four 4-amino 3-nitro­benzoic acid (4 A3NBA) ligands are monodentately coordinated by the Mn2+ ion through the oxygen atoms of carb­oxy­lic groups while two other positions of the inner coordination sphere are occupied by water mol­ecules. The outer coordination sphere contains two water mol­ecules, i.e. the complex is crystal hydrate. The length of the Mn—O1 bond is 2.1575 (12) Å while Mn—O5 is 2.1600 (13) Å and Mn—O1W = 2.1630 (14) Å and bond angles are in the range 84.29 (5) to 95.71 (5)°. The geometry of the manganese atom is therefore a slightly distorted octa­hedron. The carboxyl­ate groups C7,O2,O1 and C14,O6,O5 are practically coplanar with the aromatic rings to which they are attached, forming dihedral angles of 4.1 (1) and 11.9 (1)°, respectively. The analogous angles for nitro groups N1,O3,O4 and N3,O7,O8 are 2.82 (9) and 8.6 (1)°. Thus in the ligand with the C8–C13 aromatic ring, the functional groups are more inclined relatively to the benzene ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius and hydrogen bonds are shown as dashed lines. Symmetry code: (i) 1 − x, 1 − y, −z.

There are two intra­molecular hydrogen bonds in the complex mol­ecule (Table 1[link]). The first bond is of the usual N—H⋯O=N type, closing a six-membered ring with an S11(6) graph-set motif (Etter 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Ibragimov et al., 2017[Ibragimov, A. B., Ashurov, Z. M. & Zakirov, B. S. (2017). J. Struct. Chem. 58, 588-590.]; Ruzmetov et al., 2022[Ruzmetov, A., Ibragimov, A., Ashurov, J., Boltaeva, Z., Ibragimov, B. & Usmanov, S. (2022). Acta Cryst. E78, 660-664.]). The second is a rarely occurring very strong hydrogen bond closing a nine-membered ring where a common proton, H20, is shared by two uncoordinated oxygen atoms O2 and O6 of neighboring carboxyl­ate groups. The atom H20, situated between the two oxygen atoms, is located closer to atom O2 at a distance of 1.270 (2) Å [and 1.198 (2) Å from O6]. Despite this, it is impossible to indicate which of the four carb­oxy­lic groups present are deprotonated. The total negative charge of the carb­oxy­lic groups is 2 and it compensates the +2 charge of the Mn2+ ion.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.83 (2) 2.06 (2) 2.8850 (19) 176 (2)
O1W—H1WA⋯O4i 0.83 (2) 2.55 (2) 3.1418 (19) 130 (2)
O1W—H1WA⋯N1i 0.83 (2) 2.63 (2) 3.4029 (19) 157 (2)
O1W—H1WB⋯O2W 0.81 (2) 1.98 (2) 2.784 (2) 170 (2)
O2—H2O⋯O5 1.27 (4) 2.57 (4) 3.448 (2) 124 (2)
O6—H2O⋯O2 1.20 (4) 1.27 (4) 2.4541 (18) 168 (4)
N2—H2A⋯O6ii 0.86 2.19 3.0160 (19) 162
N2—H2B⋯O4 0.85 1.99 2.629 (2) 131
N4—H4A⋯O8 0.87 2.03 2.648 (2) 128
N4—H4B⋯O2Wi 0.87 2.16 3.021 (2) 173
C5—H5⋯O2ii 0.93 2.57 3.489 (2) 170
C9—H9⋯N2iii 0.93 2.66 3.544 (2) 160
C12—H12⋯O8iv 0.93 2.42 3.178 (2) 138
O2W—H2WA⋯O7v 0.86 2.14 2.995 (2) 173
O2W—H2WB⋯O1Wvi 0.85 2.39 3.127 (2) 145
O2W—H2WB⋯O5vii 0.85 2.65 3.341 (2) 139
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x+2, -y+1, -z+1]; (vi) [-x+2, -y+1, -z]; (vii) [x+1, y, z].

There are 17 proton-acceptor oxygen atoms, 4 proton-donor nitro­gen atoms and 2 water mol­ecules in the title complex. These atoms are involved in a complex system of inter­molecular hydrogen bonds (Table 1[link]). Moreover, three weak C—H⋯O hydrogen bonds are also observed in the structure (Table 1[link], Fig. 2[link]). Together these hydrogen bonds link the complex mol­ecules into a three-dimensional network (Fig. 2[link].).

[Figure 2]
Figure 2
The crystal packing viewed along [100] showing the O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds (dashed red lines) in the crystal structure.

Synthesis and crystallization

All reagents and solvents were purchased from Sigma-Aldrich (Darmstadt, Germany) and they were used as received. MnCl2·H2O (0.198 g, 1.0 mmol) was dissolved in a small amount of water. 4-Amino 3-nitro­benzoic acid (0.364 g, 2 mmol) was dissolved in a mixed solvent of 3 ml of absolute alcohol and 3 ml of distilled water. After dropwise addition of the 4 A3NBA solution to the manganese salt solution, the resultant solution was stirred for 2 h with a magnetic stirrer at 55°C. The solution was allowed to stand at 30°C in a beaker with small holes in the cover for evaporation. After about eight days, block-shaped single crystals ofthe title compound appeared. Analysis calculated: C28H30MnN8O20: C, 39.40%; H, 3.54; N, 13.13%. Found: C, 39.32%; H, 3.47%; N, 13.08%.

Refinement

Crystal data, data collection and structure refinement details for the structure of the synthesized compound are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Mn(C7H5MnN2O4)2(C7H6MnN2O4)2(H2O)2]·2H2O
Mr 853.54
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 7.0419 (1), 19.2513 (3), 12.7175 (2)
β (°) 100.513 (2)
V3) 1695.12 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 4.08
Crystal size (mm) 0.28 × 0.22 × 0.14
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.523, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3291, 3291, 2966
Rint 0.037
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.06
No. of reflections 3291
No. of parameters 269
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.44
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

trans-Bis(4-amino-3-nitrobenzoato-κO)bis(4-amino-3-nitrobenzoic acid-κO)diaquamanganese(II) dihydrate top
Crystal data top
[Mn(C7H5MnN2O4)2(C7H6MnN2O4)2(H2O)2]·2H2OF(000) = 878
Mr = 853.54Dx = 1.672 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 7.0419 (1) ÅCell parameters from 11377 reflections
b = 19.2513 (3) Åθ = 2.3–71.4°
c = 12.7175 (2) ŵ = 4.08 mm1
β = 100.513 (2)°T = 293 K
V = 1695.12 (5) Å3Block, light pink
Z = 20.28 × 0.22 × 0.14 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
3291 independent reflections
Radiation source: micro-focus sealed X-ray tube2966 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.037
ω scansθmax = 71.5°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
h = 88
Tmin = 0.523, Tmax = 1.000k = 2322
3291 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.2227P]
where P = (Fo2 + 2Fc2)/3
3291 reflections(Δ/σ)max < 0.001
269 parametersΔρmax = 0.27 e Å3
3 restraintsΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms of water molecules and amino groups were located in difference-Fourier maps and refined freely. The H atoms of the benzene ring were calculated geometrically with C—H = 0.93 A° and Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.5000000.5000000.0000000.02947 (13)
O10.4809 (2)0.39058 (6)0.03322 (11)0.0489 (4)
O1W0.8075 (2)0.50832 (7)0.05836 (12)0.0464 (3)
H1WA0.848 (4)0.5418 (9)0.0964 (19)0.070*
H1WB0.879 (4)0.4760 (9)0.078 (2)0.070*
O20.6022 (2)0.36153 (7)0.20147 (10)0.0515 (4)
H2O0.619 (6)0.422 (2)0.242 (3)0.155 (15)*
O30.5562 (2)0.13009 (7)0.31842 (10)0.0560 (4)
O40.4652 (2)0.04466 (7)0.21207 (11)0.0545 (4)
O50.4355 (2)0.52907 (8)0.15374 (10)0.0457 (3)
O60.6122 (2)0.47449 (7)0.29174 (10)0.0483 (4)
O70.7667 (2)0.59190 (8)0.62838 (11)0.0590 (4)
O80.6914 (2)0.69874 (8)0.65088 (11)0.0612 (4)
N10.4964 (2)0.10712 (7)0.22733 (11)0.0363 (3)
N20.3472 (2)0.06488 (7)0.00606 (12)0.0431 (4)
H2A0.3028090.0572040.0603400.052*
H2B0.3658070.0349040.0560600.052*
N30.6948 (2)0.64740 (8)0.59270 (12)0.0410 (4)
N40.5654 (3)0.77954 (8)0.48424 (14)0.0481 (4)
H4A0.5872790.7788680.5534500.058*
H4B0.5162690.8143680.4451600.058*
C10.4755 (2)0.27328 (8)0.08203 (13)0.0297 (3)
C20.5071 (2)0.22409 (8)0.16193 (13)0.0294 (3)
H20.5578930.2374290.2316740.035*
C30.4636 (2)0.15439 (8)0.13907 (12)0.0291 (3)
C40.3884 (2)0.13131 (8)0.03426 (12)0.0298 (3)
C50.3551 (3)0.18352 (9)0.04571 (13)0.0351 (4)
H50.3037350.1709660.1157510.042*
C60.3963 (2)0.25158 (9)0.02257 (13)0.0333 (4)
H60.3716090.2844120.0769920.040*
C70.5212 (2)0.34754 (8)0.10562 (13)0.0335 (4)
C80.5352 (2)0.59261 (9)0.31259 (13)0.0330 (4)
C90.6043 (2)0.59219 (9)0.42108 (13)0.0338 (4)
H90.6438580.5504940.4551050.041*
C100.6160 (2)0.65326 (9)0.48065 (13)0.0333 (4)
C110.5581 (2)0.71818 (9)0.43305 (15)0.0358 (4)
C120.4899 (3)0.71660 (9)0.32115 (15)0.0409 (4)
H120.4532930.7580550.2856140.049*
C130.4760 (3)0.65655 (10)0.26390 (14)0.0384 (4)
H130.4263660.6578030.1909640.046*
C140.5253 (3)0.52789 (9)0.24730 (13)0.0352 (4)
O2W1.0872 (2)0.40951 (8)0.13520 (11)0.0542 (4)
H2WA1.1195770.4069310.2032990.081*
H2WB1.1615770.4339310.1039990.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0436 (2)0.02138 (19)0.01972 (19)0.00214 (14)0.00417 (15)0.00137 (12)
O10.0807 (10)0.0235 (6)0.0358 (7)0.0052 (6)0.0070 (6)0.0050 (5)
O1W0.0456 (7)0.0419 (8)0.0444 (8)0.0030 (6)0.0114 (6)0.0121 (6)
O20.0808 (10)0.0297 (7)0.0340 (7)0.0014 (6)0.0157 (6)0.0019 (5)
O30.0926 (11)0.0393 (7)0.0283 (7)0.0025 (7)0.0099 (7)0.0063 (5)
O40.0851 (10)0.0251 (6)0.0454 (8)0.0059 (6)0.0086 (7)0.0091 (5)
O50.0584 (8)0.0528 (8)0.0221 (6)0.0066 (6)0.0030 (5)0.0078 (5)
O60.0748 (9)0.0322 (7)0.0303 (7)0.0027 (6)0.0106 (6)0.0053 (5)
O70.0864 (11)0.0519 (9)0.0318 (7)0.0122 (8)0.0079 (7)0.0002 (6)
O80.0824 (11)0.0605 (9)0.0366 (8)0.0046 (8)0.0006 (7)0.0225 (7)
N10.0459 (8)0.0285 (7)0.0305 (7)0.0019 (6)0.0038 (6)0.0066 (5)
N20.0643 (10)0.0265 (7)0.0336 (8)0.0027 (7)0.0044 (7)0.0028 (6)
N30.0479 (9)0.0443 (9)0.0287 (7)0.0013 (7)0.0012 (6)0.0084 (6)
N40.0589 (10)0.0334 (8)0.0510 (10)0.0015 (7)0.0072 (8)0.0093 (7)
C10.0353 (8)0.0235 (8)0.0280 (8)0.0022 (6)0.0001 (6)0.0019 (6)
C20.0360 (8)0.0249 (8)0.0247 (7)0.0012 (6)0.0010 (6)0.0008 (6)
C30.0347 (8)0.0242 (8)0.0267 (8)0.0035 (6)0.0011 (6)0.0042 (6)
C40.0333 (8)0.0243 (7)0.0299 (8)0.0013 (6)0.0003 (6)0.0020 (6)
C50.0468 (9)0.0304 (9)0.0244 (8)0.0012 (7)0.0036 (7)0.0015 (6)
C60.0422 (9)0.0282 (8)0.0268 (8)0.0010 (7)0.0013 (7)0.0045 (6)
C70.0421 (9)0.0248 (8)0.0307 (8)0.0003 (7)0.0012 (7)0.0030 (6)
C80.0391 (9)0.0335 (9)0.0252 (8)0.0017 (7)0.0030 (6)0.0033 (6)
C90.0394 (9)0.0312 (8)0.0286 (8)0.0011 (7)0.0004 (7)0.0015 (6)
C100.0362 (8)0.0354 (9)0.0264 (8)0.0002 (7)0.0012 (7)0.0027 (6)
C110.0331 (8)0.0337 (9)0.0402 (9)0.0015 (7)0.0058 (7)0.0043 (7)
C120.0484 (10)0.0324 (9)0.0401 (10)0.0039 (8)0.0032 (8)0.0050 (7)
C130.0437 (9)0.0418 (10)0.0271 (8)0.0016 (8)0.0005 (7)0.0029 (7)
C140.0432 (9)0.0372 (9)0.0237 (8)0.0032 (7)0.0021 (7)0.0037 (7)
O2W0.0659 (9)0.0496 (8)0.0448 (8)0.0015 (7)0.0040 (7)0.0036 (6)
Geometric parameters (Å, º) top
Mn1—O1i2.1575 (12)N4—H4A0.8655
Mn1—O12.1575 (12)N4—H4B0.8680
Mn1—O5i2.1600 (13)C1—C21.377 (2)
Mn1—O52.1600 (13)C1—C61.409 (2)
Mn1—O1W2.1630 (14)C1—C71.484 (2)
Mn1—O1Wi2.1630 (14)C2—C31.395 (2)
O1—C71.233 (2)C2—H20.9300
O1W—H1WA0.827 (16)C3—C41.413 (2)
O1W—H1WB0.813 (16)C4—C51.419 (2)
O2—C71.277 (2)C5—C61.363 (2)
O2—H2O1.27 (4)C5—H50.9300
O3—N11.2398 (19)C6—H60.9300
O4—N11.2314 (19)C8—C91.377 (2)
O5—C141.242 (2)C8—C131.406 (2)
O6—C141.275 (2)C8—C141.492 (2)
O6—H2O1.20 (4)C9—C101.393 (2)
O7—N31.233 (2)C9—H90.9300
O8—N31.237 (2)C10—C111.416 (2)
N1—C31.4307 (19)C11—C121.417 (3)
N2—C41.345 (2)C12—C131.360 (3)
N2—H2A0.8581C12—H120.9300
N2—H2B0.8510C13—H130.9300
N3—C101.436 (2)O2W—H2WA0.8558
N4—C111.345 (2)O2W—H2WB0.8537
O1i—Mn1—O1180.0C3—C2—H2119.7
O1i—Mn1—O5i92.57 (6)C2—C3—C4121.96 (14)
O1—Mn1—O5i87.43 (6)C2—C3—N1116.77 (14)
O1i—Mn1—O587.43 (6)C4—C3—N1121.27 (14)
O1—Mn1—O592.57 (6)N2—C4—C3125.16 (15)
O5i—Mn1—O5180.0N2—C4—C5118.87 (14)
O1i—Mn1—O1W84.29 (5)C3—C4—C5115.97 (14)
O1—Mn1—O1W95.71 (5)C6—C5—C4121.70 (15)
O5i—Mn1—O1W88.12 (5)C6—C5—H5119.1
O5—Mn1—O1W91.88 (5)C4—C5—H5119.1
O1i—Mn1—O1Wi95.71 (5)C5—C6—C1121.42 (15)
O1—Mn1—O1Wi84.29 (5)C5—C6—H6119.3
O5i—Mn1—O1Wi91.88 (5)C1—C6—H6119.3
O5—Mn1—O1Wi88.12 (5)O1—C7—O2124.97 (16)
O1W—Mn1—O1Wi180.0O1—C7—C1118.99 (15)
C7—O1—Mn1142.04 (12)O2—C7—C1116.03 (14)
Mn1—O1W—H1WA118.6 (17)C9—C8—C13117.94 (15)
Mn1—O1W—H1WB125.3 (18)C9—C8—C14121.66 (15)
H1WA—O1W—H1WB106 (2)C13—C8—C14120.40 (15)
C7—O2—H2O124.8 (18)C8—C9—C10121.00 (16)
C14—O5—Mn1135.11 (13)C8—C9—H9119.5
C14—O6—H2O120.4 (19)C10—C9—H9119.5
O4—N1—O3121.07 (14)C9—C10—C11121.91 (15)
O4—N1—C3119.93 (14)C9—C10—N3116.57 (15)
O3—N1—C3119.00 (14)C11—C10—N3121.50 (15)
C4—N2—H2A116.6N4—C11—C10125.85 (17)
C4—N2—H2B116.7N4—C11—C12118.74 (17)
H2A—N2—H2B126.7C10—C11—C12115.41 (15)
O7—N3—O8121.58 (15)C13—C12—C11122.26 (16)
O7—N3—C10119.44 (14)C13—C12—H12118.9
O8—N3—C10118.98 (16)C11—C12—H12118.9
C11—N4—H4A117.6C12—C13—C8121.45 (16)
C11—N4—H4B115.2C12—C13—H13119.3
H4A—N4—H4B124.9C8—C13—H13119.3
C2—C1—C6118.40 (14)O5—C14—O6123.99 (16)
C2—C1—C7120.90 (14)O5—C14—C8118.82 (16)
C6—C1—C7120.70 (14)O6—C14—C8117.19 (15)
C1—C2—C3120.53 (15)H2WA—O2W—H2WB115.4
C1—C2—H2119.7
C6—C1—C2—C30.7 (2)C13—C8—C9—C100.2 (3)
C7—C1—C2—C3179.94 (15)C14—C8—C9—C10178.81 (16)
C1—C2—C3—C40.8 (3)C8—C9—C10—C110.1 (3)
C1—C2—C3—N1178.46 (15)C8—C9—C10—N3178.47 (16)
O4—N1—C3—C2178.27 (16)O7—N3—C10—C97.9 (3)
O3—N1—C3—C21.7 (2)O8—N3—C10—C9173.23 (17)
O4—N1—C3—C42.5 (2)O7—N3—C10—C11170.52 (17)
O3—N1—C3—C4177.55 (16)O8—N3—C10—C118.4 (3)
C2—C3—C4—N2178.46 (16)C9—C10—C11—N4179.64 (18)
N1—C3—C4—N22.3 (3)N3—C10—C11—N41.3 (3)
C2—C3—C4—C51.7 (2)C9—C10—C11—C120.6 (3)
N1—C3—C4—C5177.57 (15)N3—C10—C11—C12177.70 (16)
N2—C4—C5—C6179.08 (17)N4—C11—C12—C13179.19 (18)
C3—C4—C5—C61.0 (3)C10—C11—C12—C131.7 (3)
C4—C5—C6—C10.5 (3)C11—C12—C13—C82.1 (3)
C2—C1—C6—C51.4 (3)C9—C8—C13—C121.3 (3)
C7—C1—C6—C5179.42 (17)C14—C8—C13—C12177.73 (17)
Mn1—O1—C7—O20.8 (3)Mn1—O5—C14—O651.2 (3)
Mn1—O1—C7—C1178.67 (15)Mn1—O5—C14—C8128.20 (16)
C2—C1—C7—O1175.97 (17)C9—C8—C14—O5169.25 (17)
C6—C1—C7—O13.2 (3)C13—C8—C14—O511.7 (3)
C2—C1—C7—O24.5 (3)C9—C8—C14—O611.3 (3)
C6—C1—C7—O2176.31 (16)C13—C8—C14—O6167.69 (17)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3ii0.83 (2)2.06 (2)2.8850 (19)176 (2)
O1W—H1WA···O4ii0.83 (2)2.55 (2)3.1418 (19)130 (2)
O1W—H1WA···N1ii0.83 (2)2.63 (2)3.4029 (19)157 (2)
O1W—H1WB···O2W0.81 (2)1.98 (2)2.784 (2)170 (2)
O2—H2O···O51.27 (4)2.57 (4)3.448 (2)124 (2)
O6—H2O···O21.20 (4)1.27 (4)2.4541 (18)168 (4)
N2—H2A···O6iii0.862.193.0160 (19)162
N2—H2B···O40.851.992.629 (2)131
N4—H4A···O80.872.032.648 (2)128
N4—H4B···O2Wii0.872.163.021 (2)173
C5—H5···O2iii0.932.573.489 (2)170
C9—H9···N2iv0.932.663.544 (2)160
C12—H12···O8v0.932.423.178 (2)138
O2W—H2WA···O7vi0.862.142.995 (2)173
O2W—H2WB···O1Wvii0.852.393.127 (2)145
O2W—H2WB···O5viii0.852.653.341 (2)139
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+3/2, z1/2; (vi) x+2, y+1, z+1; (vii) x+2, y+1, z; (viii) x+1, y, z.
 

Funding information

The authors gratefully acknowledge the Ministry of Higher Education, Science and Innovation for financial support (project No. F3–20200929348) and would also like to thank the Uzbekistan government for direct financial support of this research.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationIbragimov, A. B., Ashurov, Z. M. & Zakirov, B. S. (2017). J. Struct. Chem. 58, 588–590.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRuzmetov, A., Ibragimov, A., Ashurov, J., Boltaeva, Z., Ibragimov, B. & Usmanov, S. (2022). Acta Cryst. E78, 660–664.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146