organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

rac-Hy­dr­oxy­isovaleric acid

crossmark logo

aNelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@mandela.ac.za

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 19 December 2023; accepted 20 December 2023; online 5 January 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title compound (systematic name: rac-2-hydroxy-3-methylbutanoic acid), C5H10O3, is the constitutional isomer of α-hy­droxy­butanoic acid. In the crystal, hydrogen bonds involving the alcoholic hydroxyl group give rise to centrosymmetric dimers that are extended to sheets perpendicular to the crystallographic c axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The Krebs Cycle – also known as Citric Acid Cycle – is at the centre of metabolic processes in aerobic organisms. It involves a number of hy­droxy­carb­oxy­lic acids that constitute intriguing chelating ligands for a variety of transition metals of pharmaceutical inter­est (McMurry, 2008[McMurry, J. (2008). Org. Chem. 7th ed. Totnes: Thomson Learning.]). These potential ligands classify as chelate ligands, which have found widespread use in coordination chemistry due to the increased stability of coordination compounds they can form in comparison to monodentate ligands (Gade, 1998[Gade, L. H. (1998). Koordinationschemie, ed. 1. Weinheim: Wiley-VCH.]). Hy­droxy­carb­oxy­lic acids are a particularly inter­esting class of ligands as they offer two functional groups that, depending on the experimental conditions, can either act as fully neutral, fully anionic or mixed neutral-anionic donors. Upon varying the substitution pattern on the hydro­carbon backbone, the acidity of the respective hydroxyl groups can be fine-tuned over a wide range and they may, thus, serve as probes for establishing the rules in which pKa range coordination to various central atoms can be observed. Furthermore, the steric pretence of potential substituents may give rise to unique coordination and bonding patterns. Given the multidentate nature of hy­droxy­carb­oxy­lic acids encountered in the Krebs Cycle it appears prudent to investigate simpler `cut outs' with a more limited number of donor sites to avoid complexer mixtures of reaction products in envisioned synthesis procedures, thus prompting the diffraction study of the title compound to allow for comparisons of metrical parameters of the free ligand and the ligand in envisioned coordination compounds. The present study falls into the ambit of our continued inter­est into structural aspects of alpha-hy­droxy­carb­oxy­lic acids such as 1-hy­droxy­cyclo­propane­carb­oxy­lic acid (Betz & Klüfers, 2007a[Betz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o3891.]), 1-hy­droxy­cyclo­butane­carb­oxy­lic acid (Betz & Klüfers, 2007b[Betz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4032.]), 1-hy­droxy­cyclo­penta­necarb­oxy­lic acid (Betz & Klüfers, 2007c[Betz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o3932.]) or tert-butyl­glycolic acid (Betz et al., 2007[Betz, R., Klüfers, P. & Mangstl, M. M. (2007). Acta Cryst. E63, o4144.]). Furthermore, geometrical data for glycolic acid (Ellison et al., 1971[Ellison, R. D., Johnson, C. K. & Levy, H. A. (1971). Acta Cryst. B27, 333-344.]; Pijper, 1971[Pijper, W. P. (1971). Acta Cryst. B27, 344-348.]) and L-lactic acid (Schouten et al., 1994[Schouten, A., Kanters, J. A. & van Krieken, J. (1994). J. Mol. Struct. 323, 165-168.]; Yang et al., 2021[Yang, J., Hu, C. T., Reiter, E. & Kahr, B. (2021). CrystEngComm, 23, 2644-2647.]) is apparent in the literature while, to the best of our knowledge, none of the various hy­droxy-n-butanoic acids have been subjected to diffraction studies. Only one report provides the crystal and mol­ecular structure for gamma-hy­droxy­butanoic acid as a solvent mol­ecule in a barium-supported tetra­phenyl­imidodiphosphinato compound (Morales-Juarez et al., 2005[Morales-Juárez, J., Cea-Olivares, R., Moya-Cabrera, M. M., Jancik, V., García-Montalvo, V. & Toscano, R. A. (2005). Inorg. Chem. 44, 6924-6926.]).

The asymmetric unit of the title compound is shown in Fig. 1[link] and contains one complete mol­ecule. C—O bond lengths are found to be 1.4175 (11) Å for the alcoholic hydroxyl group and 1.2064 (12) and 1.3143 (11) Å for the carb­oxy­lic acid group and, thus, lie in the normal range reported for other hy­droxy­carb­oxy­lic acids whose metrical parameters have been deposited with the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The alcoholic hy­droxy group adopts a staggered conformation relative to the two terminal methyl groups with the relevant C—C—C—O torsional angles measuring −58.32 (11) and 66.60 (12)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

In the crystal, classical hydrogen bonds of the O—H⋯O type (Table 1[link]) are apparent that involve all hydroxyl groups as donors and the oxygen atom of the alcoholic hydroxyl group and the carbonyl oxygen atom as acceptors. The hydrogen bonds supported by the alcoholic hydroxyl group as donor and the carbonyl oxygen atom as acceptor connect the individual mol­ecules into centrosymmetric dimers, which are further extended to sheets perpendicular to the crystallographic c axis by means of the carb­oxy­lic acid's hydroxyl group as donor and the alcoholic hydroxyl group's oxygen atom as acceptor. In terms of graph-set analysis (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), the descriptor for these hydrogen bonds is C11(5) R22(10) on the unary level. A depiction of the hydrogen-bonding pattern is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.84 1.78 2.6143 (9) 169
O3—H3A⋯O2 0.84 2.32 2.7069 (10) 108
O3—H3A⋯O2ii 0.84 2.00 2.7597 (11) 150
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, -y, -z+1].
[Figure 2]
Figure 2
Inter­molecular hydrogen bonds (dotted blue lines), viewed along [001].

Synthesis and crystallization

The compound was obtained commercially (Fluka). Crystals suitable for the diffraction studies were taken directly from the provided material.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C5H10O3
Mr 118.13
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 200
a, b, c (Å) 10.9589 (4), 9.3280 (4), 12.7255 (6)
V3) 1300.86 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.60 × 0.51 × 0.35
 
Data collection
Diffractometer Bruker (2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]) APEXII CCD
Absorption correction Numerical (SADABS, Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.928, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 10603, 1620, 1366
Rint 0.017
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.107, 1.05
No. of reflections 1620
No. of parameters 79
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.15
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

rac-2-Hydroxy-3-methylbutanoic acid top
Crystal data top
C5H10O3Dx = 1.206 Mg m3
Mr = 118.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4732 reflections
a = 10.9589 (4) Åθ = 3.2–28.1°
b = 9.3280 (4) ŵ = 0.10 mm1
c = 12.7255 (6) ÅT = 200 K
V = 1300.86 (10) Å3Blocks, colourless
Z = 80.60 × 0.51 × 0.35 mm
F(000) = 512
Data collection top
Bruker (2010) APEXII CCD
diffractometer
1620 independent reflections
Radiation source: sealed tube1366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 28.4°, θmin = 3.2°
Absorption correction: numerical
(SADABS, Krause et al., 2015)
h = 1114
Tmin = 0.928, Tmax = 0.990k = 1212
10603 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.2192P]
where P = (Fo2 + 2Fc2)/3
1620 reflections(Δ/σ)max < 0.001
79 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The carbon-bound H atom of the methine group was placed in a calculated position1 (C–H 1.00 Å) and was included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C).

The H atoms of the hydroxyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62325 (6)0.36594 (8)0.47438 (7)0.0378 (2)
H1A0.6955180.3481570.4921010.066 (5)*
O20.59660 (8)0.13436 (8)0.51070 (8)0.0464 (3)
O30.35374 (6)0.15502 (8)0.47493 (7)0.0341 (2)
H3A0.3943550.0786450.4746260.049 (4)*
C10.55798 (9)0.24797 (10)0.47994 (8)0.0288 (2)
C20.42861 (8)0.26994 (9)0.44097 (8)0.0266 (2)
H20.3964790.3604130.4727730.032*
C30.42813 (9)0.28752 (12)0.32116 (8)0.0379 (3)
H30.4869540.3656790.3030820.046*
C40.47104 (15)0.15122 (17)0.26654 (11)0.0592 (4)
H4A0.4725860.1667300.1903820.089*
H4B0.4149420.0725670.2830460.089*
H4C0.5532060.1266840.2910450.089*
C50.30193 (13)0.3343 (2)0.28387 (12)0.0647 (4)
H5A0.3038230.3510070.2078650.097*
H5B0.2784570.4228880.3199440.097*
H5C0.2424570.2588940.2998610.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0214 (3)0.0242 (4)0.0678 (5)0.0016 (3)0.0083 (3)0.0040 (3)
O20.0317 (4)0.0245 (4)0.0830 (6)0.0016 (3)0.0136 (4)0.0091 (4)
O30.0187 (3)0.0242 (4)0.0593 (5)0.0019 (2)0.0065 (3)0.0076 (3)
C10.0218 (4)0.0216 (4)0.0431 (5)0.0010 (3)0.0013 (4)0.0008 (3)
C20.0192 (4)0.0190 (4)0.0417 (5)0.0006 (3)0.0001 (4)0.0004 (3)
C30.0299 (5)0.0418 (6)0.0421 (6)0.0069 (4)0.0015 (4)0.0056 (4)
C40.0572 (8)0.0690 (9)0.0514 (7)0.0101 (7)0.0171 (6)0.0167 (6)
C50.0441 (7)0.0949 (12)0.0550 (7)0.0007 (7)0.0172 (6)0.0153 (7)
Geometric parameters (Å, º) top
O1—C11.3143 (11)C3—C51.5257 (17)
O1—H1A0.8400C3—H31.0000
O2—C11.2064 (12)C4—H4A0.9800
O3—C21.4175 (11)C4—H4B0.9800
O3—H3A0.8400C4—H4C0.9800
C1—C21.5159 (13)C5—H5A0.9800
C2—C31.5334 (14)C5—H5B0.9800
C2—H21.0000C5—H5C0.9800
C3—C41.5234 (18)
C1—O1—H1A109.5C5—C3—H3107.7
C2—O3—H3A109.5C2—C3—H3107.7
O2—C1—O1124.19 (9)C3—C4—H4A109.5
O2—C1—C2123.57 (9)C3—C4—H4B109.5
O1—C1—C2112.22 (8)H4A—C4—H4B109.5
O3—C2—C1109.83 (7)C3—C4—H4C109.5
O3—C2—C3112.46 (8)H4A—C4—H4C109.5
C1—C2—C3110.06 (8)H4B—C4—H4C109.5
O3—C2—H2108.1C3—C5—H5A109.5
C1—C2—H2108.1C3—C5—H5B109.5
C3—C2—H2108.1H5A—C5—H5B109.5
C4—C3—C5112.11 (12)C3—C5—H5C109.5
C4—C3—C2111.31 (10)H5A—C5—H5C109.5
C5—C3—C2110.05 (9)H5B—C5—H5C109.5
C4—C3—H3107.7
O2—C1—C2—O317.39 (14)O3—C2—C3—C458.32 (11)
O1—C1—C2—O3163.81 (8)C1—C2—C3—C464.49 (11)
O2—C1—C2—C3106.95 (12)O3—C2—C3—C566.60 (12)
O1—C1—C2—C371.85 (10)C1—C2—C3—C5170.59 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.841.782.6143 (9)169
O3—H3A···O20.842.322.7069 (10)108
O3—H3A···O2ii0.842.002.7597 (11)150
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank Mrs Alida Gerryts for useful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o3891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4032.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o3932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Klüfers, P. & Mangstl, M. M. (2007). Acta Cryst. E63, o4144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEllison, R. D., Johnson, C. K. & Levy, H. A. (1971). Acta Cryst. B27, 333–344.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGade, L. H. (1998). Koordinationschemie, ed. 1. Weinheim: Wiley-VCH.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcMurry, J. (2008). Org. Chem. 7th ed. Totnes: Thomson Learning.  Google Scholar
First citationMorales-Juárez, J., Cea-Olivares, R., Moya-Cabrera, M. M., Jancik, V., García-Montalvo, V. & Toscano, R. A. (2005). Inorg. Chem. 44, 6924–6926.  Web of Science PubMed Google Scholar
First citationPijper, W. P. (1971). Acta Cryst. B27, 344–348.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchouten, A., Kanters, J. A. & van Krieken, J. (1994). J. Mol. Struct. 323, 165–168.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, J., Hu, C. T., Reiter, E. & Kahr, B. (2021). CrystEngComm, 23, 2644–2647.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146