metal-organic compounds
Tetraaqua(ethane-1,2-diamine-κ2N,N′)nickel(II) naphthalene-1,5-disulfonate dihydrate
aTermez State University, Barkamol Avlod Street 43, Termez City, Uzbekistan, bInstitute of General and Inorganic Chemistry of Uzbekistan Academy of Sciences, 100170, Mirzo Ulug'bek Str. 77a, Tashkent, Uzbekistan, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str. 83, Tashkent, Uzbekistan
*Correspondence e-mail: ashurovjamshid1@gmail.com
The reaction of ethane-1,2-diamine (en, C2H8N2), the sodium salt of naphthalene-1,5-disulfonic acid (H2NDS, C10H8O6S2), and nickel sulfate in an aqueous solution resulted in the formation of the title salt, [Ni(C2H8N2)(H2O)4](C10H6O6S2)·2H2O or [Ni(en)(H2O)4](NDS)·2H2O. In the one half of an [Ni(en)(H2O)4]2+ cation and one half of an NDS2− anion, and one water molecule of crystallization are present. The Ni2+ cation in the complex is positioned on a twofold rotation axis and exhibits a slight tetragonal distortion of the cis-NiO4N2 octahedron, with an Ni—N bond length of 2.0782 (16) Å, and Ni—O bond lengths of 2.1170 (13) Å and 2.0648 (14) Å. The anion is completed by inversion symmetry. In the extended structure, the cations, anions, and non-coordinating water molecules are connected by intermolecular N—H⋯O and O—H⋯O hydrogen bonding, as well as C—H⋯π interactions, forming a three-dimensional network.
Keywords: ethane-1,2-diamine; naphthalene-1,5-disulfonate; crystal structure; hydrogen bonding; C—H⋯π interaction.
CCDC reference: 2311309
Structure description
As known for decades, ethane-1,2-diamine (en) exhibits excellent coordination and chelating abilities, forming five-membered rings with the central metals. Generally, these metallacycles adopt a twist conformation. En ligands can coordinate with metal ions in a monodentate fashion (Xue et al., 2016; Mitzinger et al., 2016) and in some complexes, they can act as bridging ligands (Binnemans et al., 2013; Bratsos et al., 2011; Doring & Jones, 2013). In most cases, en demonstrates chelating properties (Ashurov et al., 2018; Qadir et al., 2020). There are also metal complexes where non-coordinating en molecules are present (Sun et al., 2017; Tian et al., 2017; Mirzaei et al., 2014).
Complexes derived from naphthalene-1,5-disulfonic acid (H2NDS) are of great interest in supramolecular chemistry due to their ability to form hydrogen bonds (Shi et al., 2014; Xu et al., 2019; Chen et al., 2020; Suyunov et al., 2023), because the sulfonate group can accept up to six hydrogen bonds with its lone pairs (Oh et al., 2020; Chen et al., 2022). As a ligand, NDS2− sometimes binds in a bridging mode (Lian & Qu, 2013; Das et al., 2015; Tai et al., 2015). As part of our work in this area, we now describe the synthesis and structure of the hydrated title salt [Ni(en)(H2O)4]+·NDS2−·2H2O.
The 2O)4]2+ complex cation, one half of the NDS2− organic dianion, and a water molecule of crystallization. The Ni2+ cation in the complex is positioned on a twofold rotation axis and exhibits a slightly tetragonal distortion of the cis-NiO4N2 octahedron. The Ni—N bond length is 2.0782 (16) Å, and the Ni—O bond lengths are 2.1170 (13) Å and 2.0648 (14) Å, similar to those reported for other [Ni(en)(H2O)4]2+ complexes (Healy et al., 1984). The en ligand conformation conforms to the crystallographic twofold axis that passes through it. The NDS2− dianion exhibits inversion symmetry, with the inversion center located at the middle point of the C5—C5( − x, − y, − z) bond. The structures of the molecular entities are shown in Fig. 1. Neighboring anions have two distinct orientations relative to the complex cation, with the angle between their planes being 55.06 (7)°. The naphthalene ring system exhibits typical bond lengths and angles, with C—C bond lengths ranging from 1.368 (2) to 1.429 (2) Å, and C—C—C angles within the range 117.98 (18) to 123.08 (15)°.
consists of one-half of the [Ni(en)(HIn the crystal, the [Ni(en)(H2O)4]2+ cation, the NDS2− anion, and the water molecules are associated via classical O—H⋯O and N—H⋯O hydrogen bonds (Table 1). Each [Ni(en)(H2O)4]2+ cation forms four N—H⋯O and eight O—H⋯O hydrogen bonds with six neighboring organic anions and two water molecules of crystallization. The four aqua and the en ligands in the cation participate exclusively as hydrogen-bonding donor groups (Fig. 2). All six acceptor O atoms of the SO3− groups of the NDS2− anions participate as double acceptor atoms. It should be noted that the water molecule of crystallization (O3W) is involved in three hydrogen-bonding interactions: two as a donor group with two sulfonate O atoms from two different NDS2− anions as acceptor atoms, and one as an acceptor group for a hydrogen bond with an aqua ligand. Next to Coulombic interactions, these intermolecular interactions connect the molecular building units into the three-dimensional supramolecular structure, as depicted in Fig. 2. As a result of the caused by the sulfonate group, the nearest centroid distance between the naphthalene rings is 6.773 (2) Å. There are four notable C—H⋯π interactions between the methylene groups of the en ligands and the naphthalene rings of the NDS2− anions (Table 1, Fig. 2).
Synthesis and crystallization
The commercially available starting materials were used without further purification. Ethane-1,2-diamine (0.06 g, 1.00 mmol) was added slowly to an aqueous solution of NiSO4·7H2O (0.28 g, 1.00 mmol), and disodium naphthalene-1,5-disulfonate (0.33 g, 1.00 mmol) was added to the resulting clear deep-blue solution. The resulting solution was set out in an open beaker at room temperature. After 7 d, block-like green crystals were obtained in 60% yield (based on Ni). Elemental analysis calculated (%) for C12H26N2NiO12S2: C, 28.09; H, 5.11; N, 5.46; S, 12.50, found: C, 28.01; H, 5.06; N, 5.37; S, 12.43.
Refinement
Crystal data, data collection and structure . Hydrogen atoms attached to nitrogen and those of the water molecules were located in a difference-Fourier map and refined with bond-length restraints of 0.89 (1) and 0.85 (1) Å, respectively.
details are summarized in Table 2
|
Structural data
CCDC reference: 2311309
https://doi.org/10.1107/S2414314623010325/wm4202sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623010325/wm4202Isup2.hkl
[Ni(C2H8N2)(H2O)4](C10H6O6S2)·2H2O | F(000) = 1072 |
Mr = 513.18 | Dx = 1.716 Mg m−3 |
Monoclinic, I2/a | Cu Kα radiation, λ = 1.54184 Å |
a = 15.4103 (3) Å | Cell parameters from 8478 reflections |
b = 10.1338 (2) Å | θ = 3.8–71.3° |
c = 13.4284 (2) Å | µ = 3.99 mm−1 |
β = 108.692 (2)° | T = 291 K |
V = 1986.44 (7) Å3 | Block, light green |
Z = 4 | 0.28 × 0.24 × 0.2 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 1926 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 1881 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.037 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 71.5°, θmin = 3.8° |
ω scans | h = −18→18 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −11→12 |
Tmin = 0.419, Tmax = 1.000 | l = −15→16 |
10963 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0539P)2 + 1.9301P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.085 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.40 e Å−3 |
1926 reflections | Δρmin = −0.33 e Å−3 |
165 parameters | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
8 restraints | Extinction coefficient: 0.00087 (12) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.750000 | 0.31595 (4) | 0.500000 | 0.02364 (16) | |
O1W | 0.66391 (10) | 0.16745 (13) | 0.51659 (11) | 0.0345 (3) | |
H1WA | 0.6474 (19) | 0.106 (2) | 0.4714 (17) | 0.055 (8)* | |
H1WB | 0.6172 (15) | 0.191 (3) | 0.532 (3) | 0.069 (10)* | |
O2W | 0.69189 (10) | 0.31220 (13) | 0.33422 (11) | 0.0341 (3) | |
H2WA | 0.6830 (19) | 0.2367 (15) | 0.306 (2) | 0.051 (7)* | |
H2WB | 0.6401 (11) | 0.350 (3) | 0.312 (2) | 0.059 (8)* | |
N1 | 0.83603 (11) | 0.46867 (16) | 0.48778 (13) | 0.0301 (3) | |
H1A | 0.8373 (19) | 0.473 (3) | 0.4228 (11) | 0.048 (7)* | |
H1B | 0.8942 (9) | 0.459 (2) | 0.5276 (18) | 0.050 (7)* | |
C6 | 0.80179 (13) | 0.59247 (19) | 0.52035 (16) | 0.0363 (4) | |
H6A | 0.825144 | 0.667734 | 0.492234 | 0.044* | |
H6B | 0.822909 | 0.599187 | 0.596421 | 0.044* | |
S1 | 0.57628 (3) | 0.54449 (4) | 0.76422 (3) | 0.02430 (16) | |
O1 | 0.59637 (9) | 0.54691 (13) | 0.87797 (10) | 0.0337 (3) | |
O2 | 0.47965 (9) | 0.56091 (14) | 0.70702 (11) | 0.0369 (3) | |
O3 | 0.61490 (9) | 0.42790 (12) | 0.73007 (11) | 0.0343 (3) | |
C1 | 0.63244 (11) | 0.68365 (16) | 0.73175 (13) | 0.0231 (3) | |
C2 | 0.57843 (12) | 0.78162 (18) | 0.67353 (14) | 0.0281 (4) | |
H2 | 0.514988 | 0.774290 | 0.653357 | 0.034* | |
C3 | 0.61849 (12) | 0.89311 (18) | 0.64417 (14) | 0.0301 (4) | |
H3 | 0.581294 | 0.959325 | 0.604714 | 0.036* | |
C4 | 0.71119 (12) | 0.90538 (17) | 0.67283 (14) | 0.0274 (4) | |
H4 | 0.736531 | 0.979213 | 0.651599 | 0.033* | |
C5 | 0.76989 (12) | 0.80698 (15) | 0.73475 (13) | 0.0224 (3) | |
O3W | 0.52056 (11) | 0.25077 (18) | 0.57325 (13) | 0.0495 (4) | |
H3WA | 0.540 (2) | 0.304 (2) | 0.6243 (16) | 0.062 (9)* | |
H3WB | 0.485 (2) | 0.196 (3) | 0.588 (3) | 0.076 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0186 (2) | 0.0240 (2) | 0.0265 (2) | 0.000 | 0.00471 (17) | 0.000 |
O1W | 0.0315 (7) | 0.0306 (7) | 0.0426 (8) | −0.0085 (5) | 0.0135 (6) | −0.0048 (6) |
O2W | 0.0309 (7) | 0.0348 (7) | 0.0307 (7) | 0.0010 (6) | 0.0017 (6) | −0.0023 (5) |
N1 | 0.0231 (7) | 0.0330 (8) | 0.0338 (8) | −0.0030 (6) | 0.0086 (6) | 0.0004 (6) |
C6 | 0.0348 (11) | 0.0275 (9) | 0.0436 (10) | −0.0046 (8) | 0.0085 (8) | −0.0027 (8) |
S1 | 0.0179 (2) | 0.0253 (2) | 0.0283 (2) | −0.00158 (14) | 0.00546 (17) | 0.00269 (14) |
O1 | 0.0335 (7) | 0.0381 (7) | 0.0309 (7) | 0.0009 (5) | 0.0123 (6) | 0.0064 (5) |
O2 | 0.0184 (7) | 0.0412 (7) | 0.0459 (8) | −0.0040 (5) | 0.0030 (6) | 0.0088 (6) |
O3 | 0.0322 (7) | 0.0258 (6) | 0.0431 (7) | −0.0022 (5) | 0.0097 (6) | −0.0036 (5) |
C1 | 0.0185 (8) | 0.0247 (8) | 0.0249 (8) | −0.0009 (6) | 0.0053 (6) | 0.0003 (6) |
C2 | 0.0181 (8) | 0.0308 (9) | 0.0324 (9) | 0.0023 (7) | 0.0039 (7) | 0.0040 (7) |
C3 | 0.0220 (8) | 0.0281 (9) | 0.0360 (9) | 0.0067 (7) | 0.0034 (7) | 0.0099 (7) |
C4 | 0.0235 (8) | 0.0243 (8) | 0.0325 (8) | 0.0008 (6) | 0.0064 (7) | 0.0060 (7) |
C5 | 0.0197 (8) | 0.0232 (8) | 0.0230 (8) | 0.0004 (6) | 0.0049 (6) | −0.0002 (6) |
O3W | 0.0438 (9) | 0.0612 (10) | 0.0485 (9) | −0.0163 (8) | 0.0219 (7) | −0.0165 (8) |
Ni1—O1Wi | 2.0648 (14) | S1—O1 | 1.4583 (14) |
Ni1—O1W | 2.0648 (14) | S1—O2 | 1.4498 (13) |
Ni1—O2W | 2.1170 (13) | S1—O3 | 1.4612 (14) |
Ni1—O2Wi | 2.1170 (13) | S1—C1 | 1.7803 (17) |
Ni1—N1 | 2.0782 (16) | C1—C2 | 1.368 (2) |
Ni1—N1i | 2.0783 (15) | C1—C5ii | 1.429 (2) |
O1W—H1WA | 0.847 (10) | C2—H2 | 0.9300 |
O1W—H1WB | 0.846 (10) | C2—C3 | 1.403 (3) |
O2W—H2WA | 0.844 (10) | C3—H3 | 0.9300 |
O2W—H2WB | 0.849 (10) | C3—C4 | 1.361 (2) |
N1—H1A | 0.880 (10) | C4—H4 | 0.9300 |
N1—H1B | 0.889 (10) | C4—C5 | 1.422 (2) |
N1—C6 | 1.480 (2) | C5—C5ii | 1.428 (3) |
C6—C6i | 1.512 (4) | O3W—H3WA | 0.846 (10) |
C6—H6A | 0.9700 | O3W—H3WB | 0.844 (10) |
C6—H6B | 0.9700 | ||
O1Wi—Ni1—O1W | 86.43 (8) | N1—C6—H6A | 109.9 |
O1Wi—Ni1—O2W | 86.76 (6) | N1—C6—H6B | 109.9 |
O1W—Ni1—O2W | 91.75 (6) | C6i—C6—H6A | 109.9 |
O1Wi—Ni1—O2Wi | 91.74 (6) | C6i—C6—H6B | 109.9 |
O1W—Ni1—O2Wi | 86.76 (6) | H6A—C6—H6B | 108.3 |
O1Wi—Ni1—N1 | 94.94 (6) | O1—S1—O3 | 111.79 (8) |
O1Wi—Ni1—N1i | 178.02 (6) | O1—S1—C1 | 106.65 (8) |
O1W—Ni1—N1 | 178.02 (6) | O2—S1—O1 | 112.96 (8) |
O1W—Ni1—N1i | 94.94 (6) | O2—S1—O3 | 112.27 (8) |
O2Wi—Ni1—O2W | 177.95 (8) | O2—S1—C1 | 106.06 (8) |
N1—Ni1—O2W | 89.77 (6) | O3—S1—C1 | 106.55 (8) |
N1—Ni1—O2Wi | 91.76 (6) | C2—C1—S1 | 117.40 (13) |
N1i—Ni1—O2Wi | 89.77 (6) | C2—C1—C5ii | 121.20 (15) |
N1i—Ni1—O2W | 91.77 (6) | C5ii—C1—S1 | 121.41 (12) |
N1—Ni1—N1i | 83.73 (9) | C1—C2—H2 | 119.9 |
Ni1—O1W—H1WA | 120.8 (19) | C1—C2—C3 | 120.19 (16) |
Ni1—O1W—H1WB | 117 (2) | C3—C2—H2 | 119.9 |
H1WA—O1W—H1WB | 107 (3) | C2—C3—H3 | 119.6 |
Ni1—O2W—H2WA | 116.0 (19) | C4—C3—C2 | 120.71 (16) |
Ni1—O2W—H2WB | 113 (2) | C4—C3—H3 | 119.6 |
H2WA—O2W—H2WB | 105 (3) | C3—C4—H4 | 119.5 |
Ni1—N1—H1A | 109.5 (17) | C3—C4—C5 | 120.97 (16) |
Ni1—N1—H1B | 114.7 (17) | C5—C4—H4 | 119.5 |
H1A—N1—H1B | 105 (2) | C4—C5—C1ii | 123.08 (15) |
C6—N1—Ni1 | 108.12 (12) | C4—C5—C5ii | 118.94 (19) |
C6—N1—H1A | 112.0 (17) | C5ii—C5—C1ii | 117.98 (18) |
C6—N1—H1B | 107.4 (17) | H3WA—O3W—H3WB | 108 (3) |
N1—C6—C6i | 109.15 (12) | ||
Ni1—N1—C6—C6i | −38.8 (2) | O3—S1—C1—C5ii | −53.25 (16) |
S1—C1—C2—C3 | −179.17 (14) | C1—C2—C3—C4 | 0.1 (3) |
O1—S1—C1—C2 | −113.59 (15) | C2—C3—C4—C5 | −1.1 (3) |
O1—S1—C1—C5ii | 66.29 (15) | C3—C4—C5—C1ii | −178.96 (17) |
O2—S1—C1—C2 | 7.07 (16) | C3—C4—C5—C5ii | 1.1 (3) |
O2—S1—C1—C5ii | −173.05 (14) | C5ii—C1—C2—C3 | 1.0 (3) |
O3—S1—C1—C2 | 126.87 (14) |
Symmetry codes: (i) −x+3/2, y, −z+1; (ii) −x+3/2, −y+3/2, −z+3/2. |
Cg1 and Cg2 are the centroids of the C1–C5/C5' and C1'–C5'/C5 rings, respectively, where primed atoms are related by the symmetry operation 3/2 - x, 3/2 - y, 3/2 - z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O1iii | 0.85 (1) | 1.99 (1) | 2.8329 (19) | 171 (3) |
O1W—H1WB···O3W | 0.85 (1) | 1.85 (1) | 2.692 (2) | 176 (3) |
O2W—H2WA···O3iii | 0.84 (1) | 2.06 (1) | 2.8670 (19) | 160 (3) |
O2W—H2WB···O2iv | 0.85 (1) | 1.99 (1) | 2.830 (2) | 168 (3) |
N1—H1A···O3i | 0.88 (1) | 2.44 (1) | 3.274 (2) | 159 (2) |
N1—H1B···O2v | 0.89 (1) | 2.36 (2) | 3.079 (2) | 139 (2) |
O3W—H3WA···O3 | 0.85 (1) | 1.97 (1) | 2.794 (2) | 164 (3) |
O3W—H3WB···O1vi | 0.84 (1) | 2.11 (1) | 2.950 (2) | 175 (3) |
C6—H6A···Cg1i | 0.97 | 2.93 | 3.755 (2) | 143 |
C6—H6A···Cg2vii | 0.97 | 2.93 | 3.755 (2) | 143 |
C6—H6B···Cg1ii | 0.97 | 2.88 | 3.781 (2) | 155 |
C6—H6B···Cg2 | 0.97 | 2.88 | 3.781 (2) | 155 |
Symmetry codes: (i) −x+3/2, y, −z+1; (ii) −x+3/2, −y+3/2, −z+3/2; (iii) x, −y+1/2, z−1/2; (iv) −x+1, −y+1, −z+1; (v) x+1/2, −y+1, z; (vi) −x+1, y−1/2, −z+3/2; (vii) x, −y+3/2, z−1/2. |
Acknowledgements
The authors thank the Uzbekistan government for direct financial support of this research. A Grant for Fundamental Research from the Center of Science and Technology of Uzbekistan is gratefully acknowledged.
References
Ashurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2018). IUCrData, 3, x181250. Google Scholar
Binnemans, K., Brooks, N. R., Depuydt, D., Meervelt, L. V., Schaltin, S. & Fransaer, J. (2013). ChemPlusChem, 78, 578–588. Google Scholar
Bratsos, I., Simonin, C., Zangrando, E., Gianferrara, T., Bergamo, A. & Alessio, E. (2011). Dalton Trans. 40, 9533–9543. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chen, B., Ye, W., Li, Z., Jin, S., Wang, J., Guo, M. & Wang, D. (2022). J. Mol. Struct. 1249, 131602. Web of Science CSD CrossRef Google Scholar
Chen, J., Li, J., Fu, X., Xie, Q., Zeng, T., Jin, S., Xu, W. & Wang, D. (2020). J. Mol. Struct. 1204, 127491. Web of Science CSD CrossRef Google Scholar
Das, D., Mahata, G., Adhikary, A., Konar, S. & Biradha, K. (2015). Cryst. Growth Des. 15, 4132–4141. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Döring, C. & Jones, P. G. (2013). Z. Naturforsch. Teil B, 68, 474–492. Google Scholar
Healy, P. C., Patrick, J. M. & White, A. H. (1984). Aust. J. Chem. 37, 921–928. CSD CrossRef CAS Web of Science Google Scholar
Lian, Z. & Qu, J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 482–484. Web of Science CSD CrossRef CAS Google Scholar
Mirzaei, M., Eshtiagh-Hosseini, H., Bauzá, A., Zarghami, S., Ballester, P., Mague, J. T. & Frontera, A. (2014). CrystEngComm, 16, 6149–6158. CSD CrossRef CAS Google Scholar
Mitzinger, S., Broeckaert, L., Massa, W., Weigend, F. & Dehnen, S. (2016). Nat. Commun. 7(10480), 1–10. Google Scholar
Oh, H., Kim, D., Kim, D., Park, I.-H. & Jung, O.-S. (2020). Cryst. Growth Des. 20, 7027–7033. Web of Science CSD CrossRef CAS Google Scholar
Qadir, A. M., Kansiz, S., Rosair, G. M., Dege, N. & Iskenderov, T. S. (2020). Acta Cryst. E76, 111–114. CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, Ch., Wei, B. & Zhang, W. (2014). Cryst. Growth Des. 14, 6570–6580. Web of Science CSD CrossRef CAS Google Scholar
Sun, P., Liu, S., Han, J., Shen, Y., Sun, H. & Jia, D. (2017). Transition Met. Chem. 42, 387–393. CSD CrossRef CAS Google Scholar
Suyunov, J. R., Turaev, K. K., Alimnazarov, B. K., Nazarov, Y. E., Mengnorov, I. J., Ibragimov, B. T. & Ashurov, J. M. (2023). Acta Cryst. E79, 1083–1087. CSD CrossRef IUCr Journals Google Scholar
Tai, X.-S., Zhang, Y.-P. & Zhao, W.-H. (2015). Res. Chem. Intermed. 41, 4339–4347. Web of Science CSD CrossRef CAS Google Scholar
Tian, F. Y., Liu, G. H., Li, B., Song, Y. T. & Wang, J. (2017). Russ. J. Coord. Chem. 43, 304–313. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, W., Lu, Y., Xia, Y. Y., Liu, B., Jin, S., Zhong, B., Wang, D. & Guo, M. (2019). J. Mol. Struct. 1189, 81–93. Web of Science CSD CrossRef CAS Google Scholar
Xue, H., Zhao, J. Zh., Pan, R., Yang, B. F., Yang, G. Y. & Liu, H. Sh. (2016). Chem. Eur. J. 22, 12322–12331. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.