metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­aqua­(ethane-1,2-di­amine-κ2N,N′)nickel(II) naphthalene-1,5-di­sulfonate dihydrate

crossmark logo

aTermez State University, Barkamol Avlod Street 43, Termez City, Uzbekistan, bInstitute of General and Inorganic Chemistry of Uzbekistan Academy of Sciences, 100170, Mirzo Ulug'bek Str. 77a, Tashkent, Uzbekistan, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 100125, M. Ulugbek Str. 83, Tashkent, Uzbekistan
*Correspondence e-mail: ashurovjamshid1@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 November 2023; accepted 30 November 2023; online 14 December 2023)

The reaction of ethane-1,2-di­amine (en, C2H8N2), the sodium salt of naphthalene-1,5-di­sulfonic acid (H2NDS, C10H8O6S2), and nickel sulfate in an aqueous solution resulted in the formation of the title salt, [Ni(C2H8N2)(H2O)4](C10H6O6S2)·2H2O or [Ni(en)(H2O)4](NDS)·2H2O. In the asymmetric unit, one half of an [Ni(en)(H2O)4]2+ cation and one half of an NDS2− anion, and one water mol­ecule of crystallization are present. The Ni2+ cation in the complex is positioned on a twofold rotation axis and exhibits a slight tetra­gonal distortion of the cis-NiO4N2 octa­hedron, with an Ni—N bond length of 2.0782 (16) Å, and Ni—O bond lengths of 2.1170 (13) Å and 2.0648 (14) Å. The anion is completed by inversion symmetry. In the extended structure, the cations, anions, and non-coordinating water mol­ecules are connected by inter­molecular N—H⋯O and O—H⋯O hydrogen bonding, as well as C—H⋯π inter­actions, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As known for decades, ethane-1,2-di­amine (en) exhibits excellent coordination and chelating abilities, forming five-membered rings with the central metals. Generally, these metallacycles adopt a twist conformation. En ligands can coordinate with metal ions in a monodentate fashion (Xue et al., 2016[Xue, H., Zhao, J. Zh., Pan, R., Yang, B. F., Yang, G. Y. & Liu, H. Sh. (2016). Chem. Eur. J. 22, 12322-12331.]; Mitzinger et al., 2016[Mitzinger, S., Broeckaert, L., Massa, W., Weigend, F. & Dehnen, S. (2016). Nat. Commun. 7(10480), 1-10.]) and in some complexes, they can act as bridging ligands (Binnemans et al., 2013[Binnemans, K., Brooks, N. R., Depuydt, D., Meervelt, L. V., Schaltin, S. & Fransaer, J. (2013). ChemPlusChem, 78, 578-588.]; Bratsos et al., 2011[Bratsos, I., Simonin, C., Zangrando, E., Gianferrara, T., Bergamo, A. & Alessio, E. (2011). Dalton Trans. 40, 9533-9543.]; Doring & Jones, 2013[Döring, C. & Jones, P. G. (2013). Z. Naturforsch. Teil B, 68, 474-492.]). In most cases, en demonstrates chelating properties (Ashurov et al., 2018[Ashurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2018). IUCrData, 3, x181250.]; Qadir et al., 2020[Qadir, A. M., Kansiz, S., Rosair, G. M., Dege, N. & Iskenderov, T. S. (2020). Acta Cryst. E76, 111-114.]). There are also metal complexes where non-coordinating en mol­ecules are present (Sun et al., 2017[Sun, P., Liu, S., Han, J., Shen, Y., Sun, H. & Jia, D. (2017). Transition Met. Chem. 42, 387-393.]; Tian et al., 2017[Tian, F. Y., Liu, G. H., Li, B., Song, Y. T. & Wang, J. (2017). Russ. J. Coord. Chem. 43, 304-313.]; Mirzaei et al., 2014[Mirzaei, M., Eshtiagh-Hosseini, H., Bauzá, A., Zarghami, S., Ballester, P., Mague, J. T. & Frontera, A. (2014). CrystEngComm, 16, 6149-6158.]).

Complexes derived from naphthalene-1,5-di­sulfonic acid (H2NDS) are of great inter­est in supra­molecular chemistry due to their ability to form hydrogen bonds (Shi et al., 2014[Shi, Ch., Wei, B. & Zhang, W. (2014). Cryst. Growth Des. 14, 6570-6580.]; Xu et al., 2019[Xu, W., Lu, Y., Xia, Y. Y., Liu, B., Jin, S., Zhong, B., Wang, D. & Guo, M. (2019). J. Mol. Struct. 1189, 81-93.]; Chen et al., 2020[Chen, J., Li, J., Fu, X., Xie, Q., Zeng, T., Jin, S., Xu, W. & Wang, D. (2020). J. Mol. Struct. 1204, 127491.]; Suyunov et al., 2023[Suyunov, J. R., Turaev, K. K., Alimnazarov, B. K., Nazarov, Y. E., Mengnorov, I. J., Ibragimov, B. T. & Ashurov, J. M. (2023). Acta Cryst. E79, 1083-1087.]), because the sulfonate group can accept up to six hydrogen bonds with its lone pairs (Oh et al., 2020[Oh, H., Kim, D., Kim, D., Park, I.-H. & Jung, O.-S. (2020). Cryst. Growth Des. 20, 7027-7033.]; Chen et al., 2022[Chen, B., Ye, W., Li, Z., Jin, S., Wang, J., Guo, M. & Wang, D. (2022). J. Mol. Struct. 1249, 131602.]). As a ligand, NDS2− sometimes binds in a bridging mode (Lian & Qu, 2013[Lian, Z. & Qu, J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 482-484.]; Das et al., 2015[Das, D., Mahata, G., Adhikary, A., Konar, S. & Biradha, K. (2015). Cryst. Growth Des. 15, 4132-4141.]; Tai et al., 2015[Tai, X.-S., Zhang, Y.-P. & Zhao, W.-H. (2015). Res. Chem. Intermed. 41, 4339-4347.]). As part of our work in this area, we now describe the synthesis and structure of the hydrated title salt [Ni(en)(H2O)4]+·NDS2−·2H2O.

The asymmetric unit consists of one-half of the [Ni(en)(H2O)4]2+ complex cation, one half of the NDS2− organic dianion, and a water mol­ecule of crystallization. The Ni2+ cation in the complex is positioned on a twofold rotation axis and exhibits a slightly tetra­gonal distortion of the cis-NiO4N2 octa­hedron. The Ni—N bond length is 2.0782 (16) Å, and the Ni—O bond lengths are 2.1170 (13) Å and 2.0648 (14) Å, similar to those reported for other [Ni(en)(H2O)4]2+ complexes (Healy et al., 1984[Healy, P. C., Patrick, J. M. & White, A. H. (1984). Aust. J. Chem. 37, 921-928.]). The en ligand conformation conforms to the crystallographic twofold axis that passes through it. The NDS2− dianion exhibits inversion symmetry, with the inversion center located at the middle point of the C5—C5([{3\over 2}] − x, [{3\over 2}] − y, [{3\over 2}] − z) bond. The structures of the mol­ecular entities are shown in Fig. 1[link]. Neighboring anions have two distinct orientations relative to the complex cation, with the angle between their planes being 55.06 (7)°. The naphthalene ring system exhibits typical bond lengths and angles, with C—C bond lengths ranging from 1.368 (2) to 1.429 (2) Å, and C—C—C angles within the range 117.98 (18) to 123.08 (15)°.

[Figure 1]
Figure 1
The structures of the mol­ecular entities in the title salt, showing the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius and hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) [{3\over 2}] − x, [{3\over 2}] − y, [{3\over 2}] − z; (ii) [{3\over 2}] − x, y, 1 − z.]

In the crystal, the [Ni(en)(H2O)4]2+ cation, the NDS2− anion, and the water mol­ecules are associated via classical O—H⋯O and N—H⋯O hydrogen bonds (Table 1[link]). Each [Ni(en)(H2O)4]2+ cation forms four N—H⋯O and eight O—H⋯O hydrogen bonds with six neighboring organic anions and two water mol­ecules of crystallization. The four aqua and the en ligands in the cation participate exclusively as hydrogen-bonding donor groups (Fig. 2[link]). All six acceptor O atoms of the SO3 groups of the NDS2− anions participate as double acceptor atoms. It should be noted that the water mol­ecule of crystallization (O3W) is involved in three hydrogen-bonding inter­actions: two as a donor group with two sulfonate O atoms from two different NDS2− anions as acceptor atoms, and one as an acceptor group for a hydrogen bond with an aqua ligand. Next to Coulombic inter­actions, these inter­molecular inter­actions connect the mol­ecular building units into the three-dimensional supra­molecular structure, as depicted in Fig. 2[link]. As a result of the steric hindrance caused by the sulfonate group, the nearest centroid distance between the naphthalene rings is 6.773 (2) Å. There are four notable C—H⋯π inter­actions between the methyl­ene groups of the en ligands and the naphthalene rings of the NDS2− anions (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C5/C5′ and C1′–C5′/C5 rings, respectively, where primed atoms are related by the symmetry operation [{3\over 2}] − x, [{3\over 2}] − y, [{3\over 2}] − z.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1i 0.85 (1) 1.99 (1) 2.8329 (19) 171 (3)
O1W—H1WB⋯O3W 0.85 (1) 1.85 (1) 2.692 (2) 176 (3)
O2W—H2WA⋯O3i 0.84 (1) 2.06 (1) 2.8670 (19) 160 (3)
O2W—H2WB⋯O2ii 0.85 (1) 1.99 (1) 2.830 (2) 168 (3)
N1—H1A⋯O3iii 0.88 (1) 2.44 (1) 3.274 (2) 159 (2)
N1—H1B⋯O2iv 0.89 (1) 2.36 (2) 3.079 (2) 139 (2)
O3W—H3WA⋯O3 0.85 (1) 1.97 (1) 2.794 (2) 164 (3)
O3W—H3WB⋯O1v 0.84 (1) 2.11 (1) 2.950 (2) 175 (3)
C6—H6ACg1iii 0.97 2.93 3.755 (2) 143
C6—H6ACg2vi 0.97 2.93 3.755 (2) 143
C6—H6BCg1vii 0.97 2.88 3.781 (2) 155
C6—H6BCg2 0.97 2.88 3.781 (2) 155
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+{\script{3\over 2}}, y, -z+1]; (iv) [x+{\script{1\over 2}}, -y+1, z]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title salt in a view along [100]. O—H⋯O and N—H⋯O hydrogen bonds are shown as dashed blue lines, and C—H⋯π inter­actions as dashed green lines. The coordination polyhedron around NiII is given in the polyhedral representation.

Synthesis and crystallization

The commercially available starting materials were used without further purification. Ethane-1,2-di­amine (0.06 g, 1.00 mmol) was added slowly to an aqueous solution of NiSO4·7H2O (0.28 g, 1.00 mmol), and disodium naphthalene-1,5-di­sulfonate (0.33 g, 1.00 mmol) was added to the resulting clear deep-blue solution. The resulting solution was set out in an open beaker at room temperature. After 7 d, block-like green crystals were obtained in 60% yield (based on Ni). Elemental analysis calculated (%) for C12H26N2NiO12S2: C, 28.09; H, 5.11; N, 5.46; S, 12.50, found: C, 28.01; H, 5.06; N, 5.37; S, 12.43.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms attached to nitro­gen and those of the water mol­ecules were located in a difference-Fourier map and refined with bond-length restraints of 0.89 (1) and 0.85 (1) Å, respectively.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C2H8N2)(H2O)4](C10H6O6S2)·2H2O
Mr 513.18
Crystal system, space group Monoclinic, I2/a
Temperature (K) 291
a, b, c (Å) 15.4103 (3), 10.1338 (2), 13.4284 (2)
β (°) 108.692 (2)
V3) 1986.44 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.99
Crystal size (mm) 0.28 × 0.24 × 0.2
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.419, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10963, 1926, 1881
Rint 0.037
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.085, 1.05
No. of reflections 1926
No. of parameters 165
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.33
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), andpubCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Tetraaqua(ethane-1,2-diamine-κ2N,N')nickel(II) naphthalene-1,5-disulfonate dihydrate top
Crystal data top
[Ni(C2H8N2)(H2O)4](C10H6O6S2)·2H2OF(000) = 1072
Mr = 513.18Dx = 1.716 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 15.4103 (3) ÅCell parameters from 8478 reflections
b = 10.1338 (2) Åθ = 3.8–71.3°
c = 13.4284 (2) ŵ = 3.99 mm1
β = 108.692 (2)°T = 291 K
V = 1986.44 (7) Å3Block, light green
Z = 40.28 × 0.24 × 0.2 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
1926 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1881 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.0000 pixels mm-1θmax = 71.5°, θmin = 3.8°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1112
Tmin = 0.419, Tmax = 1.000l = 1516
10963 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0539P)2 + 1.9301P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.40 e Å3
1926 reflectionsΔρmin = 0.33 e Å3
165 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
8 restraintsExtinction coefficient: 0.00087 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.7500000.31595 (4)0.5000000.02364 (16)
O1W0.66391 (10)0.16745 (13)0.51659 (11)0.0345 (3)
H1WA0.6474 (19)0.106 (2)0.4714 (17)0.055 (8)*
H1WB0.6172 (15)0.191 (3)0.532 (3)0.069 (10)*
O2W0.69189 (10)0.31220 (13)0.33422 (11)0.0341 (3)
H2WA0.6830 (19)0.2367 (15)0.306 (2)0.051 (7)*
H2WB0.6401 (11)0.350 (3)0.312 (2)0.059 (8)*
N10.83603 (11)0.46867 (16)0.48778 (13)0.0301 (3)
H1A0.8373 (19)0.473 (3)0.4228 (11)0.048 (7)*
H1B0.8942 (9)0.459 (2)0.5276 (18)0.050 (7)*
C60.80179 (13)0.59247 (19)0.52035 (16)0.0363 (4)
H6A0.8251440.6677340.4922340.044*
H6B0.8229090.5991870.5964210.044*
S10.57628 (3)0.54449 (4)0.76422 (3)0.02430 (16)
O10.59637 (9)0.54691 (13)0.87797 (10)0.0337 (3)
O20.47965 (9)0.56091 (14)0.70702 (11)0.0369 (3)
O30.61490 (9)0.42790 (12)0.73007 (11)0.0343 (3)
C10.63244 (11)0.68365 (16)0.73175 (13)0.0231 (3)
C20.57843 (12)0.78162 (18)0.67353 (14)0.0281 (4)
H20.5149880.7742900.6533570.034*
C30.61849 (12)0.89311 (18)0.64417 (14)0.0301 (4)
H30.5812940.9593250.6047140.036*
C40.71119 (12)0.90538 (17)0.67283 (14)0.0274 (4)
H40.7365310.9792130.6515990.033*
C50.76989 (12)0.80698 (15)0.73475 (13)0.0224 (3)
O3W0.52056 (11)0.25077 (18)0.57325 (13)0.0495 (4)
H3WA0.540 (2)0.304 (2)0.6243 (16)0.062 (9)*
H3WB0.485 (2)0.196 (3)0.588 (3)0.076 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0186 (2)0.0240 (2)0.0265 (2)0.0000.00471 (17)0.000
O1W0.0315 (7)0.0306 (7)0.0426 (8)0.0085 (5)0.0135 (6)0.0048 (6)
O2W0.0309 (7)0.0348 (7)0.0307 (7)0.0010 (6)0.0017 (6)0.0023 (5)
N10.0231 (7)0.0330 (8)0.0338 (8)0.0030 (6)0.0086 (6)0.0004 (6)
C60.0348 (11)0.0275 (9)0.0436 (10)0.0046 (8)0.0085 (8)0.0027 (8)
S10.0179 (2)0.0253 (2)0.0283 (2)0.00158 (14)0.00546 (17)0.00269 (14)
O10.0335 (7)0.0381 (7)0.0309 (7)0.0009 (5)0.0123 (6)0.0064 (5)
O20.0184 (7)0.0412 (7)0.0459 (8)0.0040 (5)0.0030 (6)0.0088 (6)
O30.0322 (7)0.0258 (6)0.0431 (7)0.0022 (5)0.0097 (6)0.0036 (5)
C10.0185 (8)0.0247 (8)0.0249 (8)0.0009 (6)0.0053 (6)0.0003 (6)
C20.0181 (8)0.0308 (9)0.0324 (9)0.0023 (7)0.0039 (7)0.0040 (7)
C30.0220 (8)0.0281 (9)0.0360 (9)0.0067 (7)0.0034 (7)0.0099 (7)
C40.0235 (8)0.0243 (8)0.0325 (8)0.0008 (6)0.0064 (7)0.0060 (7)
C50.0197 (8)0.0232 (8)0.0230 (8)0.0004 (6)0.0049 (6)0.0002 (6)
O3W0.0438 (9)0.0612 (10)0.0485 (9)0.0163 (8)0.0219 (7)0.0165 (8)
Geometric parameters (Å, º) top
Ni1—O1Wi2.0648 (14)S1—O11.4583 (14)
Ni1—O1W2.0648 (14)S1—O21.4498 (13)
Ni1—O2W2.1170 (13)S1—O31.4612 (14)
Ni1—O2Wi2.1170 (13)S1—C11.7803 (17)
Ni1—N12.0782 (16)C1—C21.368 (2)
Ni1—N1i2.0783 (15)C1—C5ii1.429 (2)
O1W—H1WA0.847 (10)C2—H20.9300
O1W—H1WB0.846 (10)C2—C31.403 (3)
O2W—H2WA0.844 (10)C3—H30.9300
O2W—H2WB0.849 (10)C3—C41.361 (2)
N1—H1A0.880 (10)C4—H40.9300
N1—H1B0.889 (10)C4—C51.422 (2)
N1—C61.480 (2)C5—C5ii1.428 (3)
C6—C6i1.512 (4)O3W—H3WA0.846 (10)
C6—H6A0.9700O3W—H3WB0.844 (10)
C6—H6B0.9700
O1Wi—Ni1—O1W86.43 (8)N1—C6—H6A109.9
O1Wi—Ni1—O2W86.76 (6)N1—C6—H6B109.9
O1W—Ni1—O2W91.75 (6)C6i—C6—H6A109.9
O1Wi—Ni1—O2Wi91.74 (6)C6i—C6—H6B109.9
O1W—Ni1—O2Wi86.76 (6)H6A—C6—H6B108.3
O1Wi—Ni1—N194.94 (6)O1—S1—O3111.79 (8)
O1Wi—Ni1—N1i178.02 (6)O1—S1—C1106.65 (8)
O1W—Ni1—N1178.02 (6)O2—S1—O1112.96 (8)
O1W—Ni1—N1i94.94 (6)O2—S1—O3112.27 (8)
O2Wi—Ni1—O2W177.95 (8)O2—S1—C1106.06 (8)
N1—Ni1—O2W89.77 (6)O3—S1—C1106.55 (8)
N1—Ni1—O2Wi91.76 (6)C2—C1—S1117.40 (13)
N1i—Ni1—O2Wi89.77 (6)C2—C1—C5ii121.20 (15)
N1i—Ni1—O2W91.77 (6)C5ii—C1—S1121.41 (12)
N1—Ni1—N1i83.73 (9)C1—C2—H2119.9
Ni1—O1W—H1WA120.8 (19)C1—C2—C3120.19 (16)
Ni1—O1W—H1WB117 (2)C3—C2—H2119.9
H1WA—O1W—H1WB107 (3)C2—C3—H3119.6
Ni1—O2W—H2WA116.0 (19)C4—C3—C2120.71 (16)
Ni1—O2W—H2WB113 (2)C4—C3—H3119.6
H2WA—O2W—H2WB105 (3)C3—C4—H4119.5
Ni1—N1—H1A109.5 (17)C3—C4—C5120.97 (16)
Ni1—N1—H1B114.7 (17)C5—C4—H4119.5
H1A—N1—H1B105 (2)C4—C5—C1ii123.08 (15)
C6—N1—Ni1108.12 (12)C4—C5—C5ii118.94 (19)
C6—N1—H1A112.0 (17)C5ii—C5—C1ii117.98 (18)
C6—N1—H1B107.4 (17)H3WA—O3W—H3WB108 (3)
N1—C6—C6i109.15 (12)
Ni1—N1—C6—C6i38.8 (2)O3—S1—C1—C5ii53.25 (16)
S1—C1—C2—C3179.17 (14)C1—C2—C3—C40.1 (3)
O1—S1—C1—C2113.59 (15)C2—C3—C4—C51.1 (3)
O1—S1—C1—C5ii66.29 (15)C3—C4—C5—C1ii178.96 (17)
O2—S1—C1—C27.07 (16)C3—C4—C5—C5ii1.1 (3)
O2—S1—C1—C5ii173.05 (14)C5ii—C1—C2—C31.0 (3)
O3—S1—C1—C2126.87 (14)
Symmetry codes: (i) x+3/2, y, z+1; (ii) x+3/2, y+3/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C5/C5' and C1'–C5'/C5 rings, respectively, where primed atoms are related by the symmetry operation 3/2 - x, 3/2 - y, 3/2 - z.
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1iii0.85 (1)1.99 (1)2.8329 (19)171 (3)
O1W—H1WB···O3W0.85 (1)1.85 (1)2.692 (2)176 (3)
O2W—H2WA···O3iii0.84 (1)2.06 (1)2.8670 (19)160 (3)
O2W—H2WB···O2iv0.85 (1)1.99 (1)2.830 (2)168 (3)
N1—H1A···O3i0.88 (1)2.44 (1)3.274 (2)159 (2)
N1—H1B···O2v0.89 (1)2.36 (2)3.079 (2)139 (2)
O3W—H3WA···O30.85 (1)1.97 (1)2.794 (2)164 (3)
O3W—H3WB···O1vi0.84 (1)2.11 (1)2.950 (2)175 (3)
C6—H6A···Cg1i0.972.933.755 (2)143
C6—H6A···Cg2vii0.972.933.755 (2)143
C6—H6B···Cg1ii0.972.883.781 (2)155
C6—H6B···Cg20.972.883.781 (2)155
Symmetry codes: (i) x+3/2, y, z+1; (ii) x+3/2, y+3/2, z+3/2; (iii) x, y+1/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1/2, y+1, z; (vi) x+1, y1/2, z+3/2; (vii) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank the Uzbekistan government for direct financial support of this research. A Grant for Fundamental Research from the Center of Science and Technology of Uzbekistan is gratefully acknowledged.

References

First citationAshurov, J. M., Ibragimov, A. B. & Ibragimov, B. T. (2018). IUCrData, 3, x181250.  Google Scholar
First citationBinnemans, K., Brooks, N. R., Depuydt, D., Meervelt, L. V., Schaltin, S. & Fransaer, J. (2013). ChemPlusChem, 78, 578–588.  Google Scholar
First citationBratsos, I., Simonin, C., Zangrando, E., Gianferrara, T., Bergamo, A. & Alessio, E. (2011). Dalton Trans. 40, 9533–9543.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, B., Ye, W., Li, Z., Jin, S., Wang, J., Guo, M. & Wang, D. (2022). J. Mol. Struct. 1249, 131602.  Web of Science CSD CrossRef Google Scholar
First citationChen, J., Li, J., Fu, X., Xie, Q., Zeng, T., Jin, S., Xu, W. & Wang, D. (2020). J. Mol. Struct. 1204, 127491.  Web of Science CSD CrossRef Google Scholar
First citationDas, D., Mahata, G., Adhikary, A., Konar, S. & Biradha, K. (2015). Cryst. Growth Des. 15, 4132–4141.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDöring, C. & Jones, P. G. (2013). Z. Naturforsch. Teil B, 68, 474–492.  Google Scholar
First citationHealy, P. C., Patrick, J. M. & White, A. H. (1984). Aust. J. Chem. 37, 921–928.  CSD CrossRef CAS Web of Science Google Scholar
First citationLian, Z. & Qu, J. (2013). Z. Kristallogr. New Cryst. Struct. 228, 482–484.  Web of Science CSD CrossRef CAS Google Scholar
First citationMirzaei, M., Eshtiagh-Hosseini, H., Bauzá, A., Zarghami, S., Ballester, P., Mague, J. T. & Frontera, A. (2014). CrystEngComm, 16, 6149–6158.  CSD CrossRef CAS Google Scholar
First citationMitzinger, S., Broeckaert, L., Massa, W., Weigend, F. & Dehnen, S. (2016). Nat. Commun. 7(10480), 1–10.  Google Scholar
First citationOh, H., Kim, D., Kim, D., Park, I.-H. & Jung, O.-S. (2020). Cryst. Growth Des. 20, 7027–7033.  Web of Science CSD CrossRef CAS Google Scholar
First citationQadir, A. M., Kansiz, S., Rosair, G. M., Dege, N. & Iskenderov, T. S. (2020). Acta Cryst. E76, 111–114.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Ch., Wei, B. & Zhang, W. (2014). Cryst. Growth Des. 14, 6570–6580.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, P., Liu, S., Han, J., Shen, Y., Sun, H. & Jia, D. (2017). Transition Met. Chem. 42, 387–393.  CSD CrossRef CAS Google Scholar
First citationSuyunov, J. R., Turaev, K. K., Alimnazarov, B. K., Nazarov, Y. E., Mengnorov, I. J., Ibragimov, B. T. & Ashurov, J. M. (2023). Acta Cryst. E79, 1083–1087.  CSD CrossRef IUCr Journals Google Scholar
First citationTai, X.-S., Zhang, Y.-P. & Zhao, W.-H. (2015). Res. Chem. Intermed. 41, 4339–4347.  Web of Science CSD CrossRef CAS Google Scholar
First citationTian, F. Y., Liu, G. H., Li, B., Song, Y. T. & Wang, J. (2017). Russ. J. Coord. Chem. 43, 304–313.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, W., Lu, Y., Xia, Y. Y., Liu, B., Jin, S., Zhong, B., Wang, D. & Guo, M. (2019). J. Mol. Struct. 1189, 81–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationXue, H., Zhao, J. Zh., Pan, R., Yang, B. F., Yang, G. Y. & Liu, H. Sh. (2016). Chem. Eur. J. 22, 12322–12331.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146