inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Crystal structure of AlFe0.95

crossmark logo

aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China, bHebei Key Lab for Optimizing Metal Product Technology and Performance, Yanshan University, Qinhuangdao 066004, People's Republic of China, and cSchool of Mechanical and Materials Engineering, North China University of Technology, Beijing, People's Republic of China
*Correspondence e-mail: chzfan@ysu.edu.cn

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 30 October 2023; accepted 13 December 2023; online 14 December 2023)

Three B2-type inter­metallic AlFe1 – δ phases (0.18 < δ < 0.05) in the Al–Fe binary system were synthesized by smelting and high temperature sinter­ing methods. The exact crystal structure for δ = 0.05 was refined by single-crystal X-ray diffraction. The amount of vacancy defects at the Fe atom sites was obtained by refining the corresponding site occupancy factor, converging to the chemical formula AlFe0.95, with a structure identical to that of ideal AlFe models inferred from powder X-ray or neutron diffraction patterns.

3D view (loading...)
[Scheme 3D1]

Structure description

There are diverse inter­metallic phases in the Al–Fe system, among which AlFe has attracted much attention because of its special B2 structure. For example, Van der Kraan & Buschow (1986[Van der Kraan, A. M. & Buschow, K. H. J. (1986). Phys. B+C, 138, 55-62.]) studied the crystal structure of the AlFe phase, after heat treatment at 1273 K for 50 h, by X-ray powder diffraction. The authors suggested that AlFe has a CsCl-type structure with cell parameter a = 2.907 Å. During the study of the crystal structure of La(T,Al)13 (T = Fe, Co), a coexisting AlFe cubic phase was discovered. The crystal structure of cubic AlFe was also refined using X-ray powder diffraction data, affording the cell parameter a = 2.889 (4) Å, and a model in which Al and Fe atoms are occupying the Wyckoff positions 1a and 1b, respectively, in space group Pm[\overline{3}]m (Guo et al., 1997[Guo, Y., Liang, J., Zhang, X., Tang, W., Zhao, Y. & Rao, G. (1997). J. Alloys Compd. 257, 69-74.]). Makhlouf et al. (1994[Makhlouf, S. A., Nakamura, T. & Shiga, M. (1994). J. Magn. Magn. Mater. 135, 257-264.]) studied the structure of the magnetic alloys FeAl1 - xRhx by X-ray diffraction, and concluded that the crystal structure of these alloys remains in the B2 structural type. Stein et al. (2010[Stein, F., Vogel, S. C., Eumann, M. & Palm, M. (2010). Intermetallics, 18, 150-156.]), using the high-temperature neutron diffraction approach, found that the cell parameter of the AlFe phase gradually increases by increasing the temperature: the cell parameter of the AlFe phase at room temperature, 373, 1353 and 1393 K, is 2.9097, 2.9136, 2.9681 and 2.9720 Å, respectively. They also proposed that the AlFe phase has a B2-type crystal structure (Pm[\overline{3}]m space group, cP2 Pearson symbol).

In the present work, three kinds of Fe-deficient B2-type AlFe1–δ phases were synthesized by smelting and high-temperature sinter­ing methods, with very similar lattice parameters. The AlFe0.95 (δ = 0.05) phase was obtained by the smelting method, while AlFe0.82 and AlFe0.84 phases (δ = 0.18 and δ = 0.16) were obtained from an inter­growth sample by the high-temperature sinter­ing method. The refined chemical formula of the AlFe0.95 phase is in accordance with the complementary EDX results (see Table S1 of the supporting information). Different options for refinements are listed in Table S2 of the supporting information. The structure description reported herein is for the AlFe0.95 (δ = 0.05) phase.

Fig. 1[link] shows the unit cell of AlFe0.95. The environments of the Al and Fe sites are shown in Figs. 2[link] and 3[link], respectively. The Al1 atom at (0, 0, 0) is centred at a rhombic dodeca­hedron, whose vertices are six Al1 atoms and eight Fe1 atoms; conversely, the Fe1 site at (1/2, 1/2, 1/2) is surrounded by eight Al1 atoms and six Fe1 atoms. The shortest Al1 to Fe1 separation is 2.5164 (4) Å and the shortest Al1 to Al1 link is 2.9057 (5) Å. The R1 refinement residue versus δ values has been plotted for 0 < δ < 0.1 and is shown in Fig. 4[link], where one can see that R1 has the lowest value when the chemical occupancy of Fe atoms is 0.95.

[Figure 1]
Figure 1
The AlFe0.95 structure (one unit cell), with displacement ellipsoids at the 95% probability level.
[Figure 2]
Figure 2
(a) The dodeca­hedron formed around the Al1 atom at the 1a site and (b) the environment of the Al1 atom with displacement ellipsoids given at the 99% probability level. [Symmetry codes: (iii) x, y, z + 1; (viii) x, y, z − 1; (ix) x − 1, y, z; (x) x, y − 1, z.]
[Figure 3]
Figure 3
(a) The dodeca­hedron formed around the Fe1 atom at the 1b site and (b) the environment of the Fe1 atom with displacement ellipsoids given at the 99% probability level. [Symmetry codes: (i) x + 1, y + 1, z + 1; (ii) x + 1, y, z + 1; (iii) x, y, z + 1; (iv) x + 1, y + 1, z; (v) x, y + 1, z; (vi) x, y + 1, z + 1; (vii) x + 1, y, z; (viii) x, y, z − 1; (ix) x − 1, y, z.]
[Figure 4]
Figure 4
The variation of residual R1 versus δ for the title compound, obtained by refining the model with different values for δ. The minimum of the curve is at δ = 0.05.

Synthesis and crystallization

For the here reported sample obtained by smelting (δ = 0.05), high-purity elements Al (indicated purity 99.95%; 1.629 g) and Fe (indicated purity 99.99%; 3.371 g) were mixed in the stoichiometric ratio 1:1 and the alloy was prepared from the elements by arc melting under an argon atmosphere. Suitable pieces of single-crystal grains were broken and selected from the product for single-crystal X-ray diffraction.

For the sample obtained by high-temperature sinter­ing (δ = 0.16 and 0.18), high-purity elements Al (indicated purity 99.95%; 0.7362 g) and Fe (indicated purity 99.9%; 0.2684 g) were mixed in the molar ratio 85:15, ground evenly in an agate mortar, and put into a silicon glass tube, which was vacuum-sealed using a home-made sealing machine. The resulting ampoule was placed in a furnace (SG-XQL1200) and heated up to 473 K for 5 min with a heating rate of 10 K min−1, and then heated up to 1373 K for 2 h with the same heating rate. Finally, the sample was slowly cooled to room temperature by turning off the furnace power. Suitable pieces of single-crystal grains were broken and selected from the product for single-crystal X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details of AlFe0.95 are summarized in Table 1[link], while crystal data, data collection and structure refinement details of the AlFe0.82 and AlFe0.84 phases are summarized in Table S3 of the supporting information. Different options for refinement are listed in Table S2. For the AlFe0.95 phase, the maximum and minimum residual electron densities in the final difference map are located 1.30 Å and 0.72 Å from Al1.

Table 1
Experimental details

Crystal data
Chemical formula AlFe0.95
Mr 80.04
Crystal system, space group Cubic, Pm[\overline{3}]m
Temperature (K) 300
a (Å) 2.9057 (5)
V3) 24.53 (1)
Z 1
Radiation type Mo Kα
μ (mm−1) 14.45
Crystal size (mm) 0.10 × 0.08 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.560, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 815, 17, 17
Rint 0.032
(sin θ/λ)max−1) 0.709
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.010, 0.026, 1.44
No. of reflections 17
No. of parameters 3
Δρmax, Δρmin (e Å−3) 0.14, −0.24
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2017[Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Aluminium iron top
Crystal data top
AlFe0.95Mo Kα radiation, λ = 0.71073 Å
Mr = 80.04Cell parameters from 750 reflections
Cubic, Pm3mθ = 7.0–30.3°
a = 2.9057 (5) ŵ = 14.45 mm1
V = 24.53 (1) Å3T = 300 K
Z = 1Lump, dark gray
F(000) = 380.10 × 0.08 × 0.06 mm
Dx = 5.417 Mg m3
Data collection top
Bruker D8 Venture Photon 100 CMOS
diffractometer
17 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.3°, θmin = 7.0°
Tmin = 0.560, Tmax = 0.746h = 44
815 measured reflectionsk = 44
17 independent reflectionsl = 44
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.010 w = 1/[σ2(Fo2) + (0.0141P)2 + 0.007P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.026(Δ/σ)max < 0.001
S = 1.44Δρmax = 0.14 e Å3
17 reflectionsΔρmin = 0.23 e Å3
3 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.5000000.5000000.5000000.0084 (3)0.9499
Al10.0000000.0000000.0000000.0086 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0084 (3)0.0084 (3)0.0084 (3)0.0000.0000.000
Al10.0086 (4)0.0086 (4)0.0086 (4)0.0000.0000.000
Geometric parameters (Å, º) top
Fe1—Al1i2.5164 (4)Fe1—Fe1viii2.9057 (5)
Fe1—Al12.5164 (4)Fe1—Fe1v2.9057 (5)
Fe1—Al1ii2.5164 (4)Fe1—Fe1vii2.9057 (5)
Fe1—Al1iii2.5164 (4)Fe1—Fe1ix2.9057 (5)
Fe1—Al1iv2.5164 (4)Al1—Al1iii2.9057 (5)
Fe1—Al1v2.5164 (4)Al1—Al1viii2.9057 (5)
Fe1—Al1vi2.5164 (4)Al1—Al1x2.9057 (5)
Fe1—Al1vii2.5164 (4)Al1—Al1ix2.9057 (5)
Al1i—Fe1—Al1180.0Fe1xi—Al1—Fe1180.0
Al1i—Fe1—Al1ii70.5Fe1xi—Al1—Fe1x109.5
Al1—Fe1—Al1ii109.5Fe1—Al1—Fe1x70.5
Al1i—Fe1—Al1iii109.5Fe1xi—Al1—Fe1xii70.5
Al1—Fe1—Al1iii70.529 (1)Fe1—Al1—Fe1xii109.5
Al1ii—Fe1—Al1iii70.5Fe1x—Al1—Fe1xii70.5
Al1i—Fe1—Al1iv70.529 (1)Fe1xi—Al1—Fe1xiii70.5
Al1—Fe1—Al1iv109.471 (1)Fe1—Al1—Fe1xiii109.5
Al1ii—Fe1—Al1iv109.5Fe1x—Al1—Fe1xiii180.0
Al1iii—Fe1—Al1iv180.0Fe1xii—Al1—Fe1xiii109.5
Al1i—Fe1—Al1v109.5Fe1xi—Al1—Fe1viii109.5
Al1—Fe1—Al1v70.5Fe1—Al1—Fe1viii70.5
Al1ii—Fe1—Al1v180.0Fe1x—Al1—Fe1viii109.5
Al1iii—Fe1—Al1v109.5Fe1xii—Al1—Fe1viii180.0
Al1iv—Fe1—Al1v70.5Fe1xiii—Al1—Fe1viii70.5
Al1i—Fe1—Al1vi70.529 (1)Fe1xi—Al1—Fe1ix109.5
Al1—Fe1—Al1vi109.471 (1)Fe1—Al1—Fe1ix70.5
Al1ii—Fe1—Al1vi109.5Fe1x—Al1—Fe1ix109.5
Al1iii—Fe1—Al1vi70.5Fe1xii—Al1—Fe1ix70.5
Al1iv—Fe1—Al1vi109.5Fe1xiii—Al1—Fe1ix70.5
Al1v—Fe1—Al1vi70.5Fe1viii—Al1—Fe1ix109.5
Al1i—Fe1—Al1vii109.5Fe1xi—Al1—Fe1xiv70.5
Al1—Fe1—Al1vii70.5Fe1—Al1—Fe1xiv109.5
Al1ii—Fe1—Al1vii70.5Fe1x—Al1—Fe1xiv70.5
Al1iii—Fe1—Al1vii109.5Fe1xii—Al1—Fe1xiv109.5
Al1iv—Fe1—Al1vii70.5Fe1xiii—Al1—Fe1xiv109.5
Al1v—Fe1—Al1vii109.5Fe1viii—Al1—Fe1xiv70.5
Al1vi—Fe1—Al1vii180.0Fe1ix—Al1—Fe1xiv180.0
Al1i—Fe1—Fe1viii125.3Fe1xi—Al1—Al1iii125.3
Al1—Fe1—Fe1viii54.7Fe1—Al1—Al1iii54.7
Al1ii—Fe1—Fe1viii125.3Fe1x—Al1—Al1iii54.7
Al1iii—Fe1—Fe1viii125.3Fe1xii—Al1—Al1iii54.7
Al1iv—Fe1—Fe1viii54.7Fe1xiii—Al1—Al1iii125.3
Al1v—Fe1—Fe1viii54.7Fe1viii—Al1—Al1iii125.3
Al1vi—Fe1—Fe1viii125.3Fe1ix—Al1—Al1iii54.7
Al1vii—Fe1—Fe1viii54.7Fe1xiv—Al1—Al1iii125.3
Al1i—Fe1—Fe1v54.7Fe1xi—Al1—Al1viii54.7
Al1—Fe1—Fe1v125.3Fe1—Al1—Al1viii125.3
Al1ii—Fe1—Fe1v125.3Fe1x—Al1—Al1viii125.3
Al1iii—Fe1—Fe1v125.3Fe1xii—Al1—Al1viii125.3
Al1iv—Fe1—Fe1v54.7Fe1xiii—Al1—Al1viii54.7
Al1v—Fe1—Fe1v54.7Fe1viii—Al1—Al1viii54.7
Al1vi—Fe1—Fe1v54.7Fe1ix—Al1—Al1viii125.3
Al1vii—Fe1—Fe1v125.3Fe1xiv—Al1—Al1viii54.7
Fe1viii—Fe1—Fe1v90.0Al1iii—Al1—Al1viii180.0
Al1i—Fe1—Fe1vii54.7Fe1xi—Al1—Al1x54.7
Al1—Fe1—Fe1vii125.3Fe1—Al1—Al1x125.3
Al1ii—Fe1—Fe1vii54.7Fe1x—Al1—Al1x54.7
Al1iii—Fe1—Fe1vii125.3Fe1xii—Al1—Al1x54.7
Al1iv—Fe1—Fe1vii54.7Fe1xiii—Al1—Al1x125.3
Al1v—Fe1—Fe1vii125.3Fe1viii—Al1—Al1x125.3
Al1vi—Fe1—Fe1vii125.3Fe1ix—Al1—Al1x125.3
Al1vii—Fe1—Fe1vii54.7Fe1xiv—Al1—Al1x54.7
Fe1viii—Fe1—Fe1vii90.0Al1iii—Al1—Al1x90.0
Fe1v—Fe1—Fe1vii90.0Al1viii—Al1—Al1x90.0
Al1i—Fe1—Fe1ix125.3Fe1xi—Al1—Al1ix54.7
Al1—Fe1—Fe1ix54.7Fe1—Al1—Al1ix125.3
Al1ii—Fe1—Fe1ix125.3Fe1x—Al1—Al1ix125.3
Al1iii—Fe1—Fe1ix54.7Fe1xii—Al1—Al1ix54.7
Al1iv—Fe1—Fe1ix125.3Fe1xiii—Al1—Al1ix54.7
Al1v—Fe1—Fe1ix54.7Fe1viii—Al1—Al1ix125.3
Al1vi—Fe1—Fe1ix54.7Fe1ix—Al1—Al1ix54.7
Al1vii—Fe1—Fe1ix125.3Fe1xiv—Al1—Al1ix125.3
Fe1viii—Fe1—Fe1ix90.0Al1iii—Al1—Al1ix90.0
Fe1v—Fe1—Fe1ix90.0Al1viii—Al1—Al1ix90.0
Fe1vii—Fe1—Fe1ix180.0Al1x—Al1—Al1ix90.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x, y+1, z+1; (vii) x+1, y, z; (viii) x, y, z1; (ix) x1, y, z; (x) x, y1, z; (xi) x1, y1, z1; (xii) x1, y1, z; (xiii) x1, y, z1; (xiv) x, y1, z1.
 

Funding information

Funding for this research was provided by: The National Natural Science Foundation of China (grant Nos. 52173231 and 51925105); Hebei Natural Science Foundation (grant No. E2022203182); The Innovation Ability Promotion Project of Hebei supported by Hebei Key Lab for Optimizing Metal Product Technology and Performance (grant No. 22567609H).

References

First citationBrandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.  Google Scholar
First citationGuo, Y., Liang, J., Zhang, X., Tang, W., Zhao, Y. & Rao, G. (1997). J. Alloys Compd. 257, 69–74.  CrossRef ICSD Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMakhlouf, S. A., Nakamura, T. & Shiga, M. (1994). J. Magn. Magn. Mater. 135, 257–264.  CrossRef ICSD CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStein, F., Vogel, S. C., Eumann, M. & Palm, M. (2010). Intermetallics, 18, 150–156.  Web of Science CrossRef ICSD CAS Google Scholar
First citationVan der Kraan, A. M. & Buschow, K. H. J. (1986). Phys. B+C, 138, 55–62.  CrossRef ICSD CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146