organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 1-(4-fluoro­benz­yl)-1H-indazole-3-carboxyl­ate

crossmark logo

aOsaka Institute of Public Health, Division of Hygienic Chemistry, Pharmaceutical Affairs Section, Nakamichi 1-3-3, Higashinari-ku, Osaka, 537-0025, Japan
*Correspondence e-mail: tdoi@iph.osaka.jp

Edited by M. Zeller, Purdue University, USA (Received 8 August 2023; accepted 16 November 2023; online 23 November 2023)

The title compound, C16H13FN2O2, was synthesized by nucleophilic substitution of the indazole N—H hydrogen atom of methyl 1H-indazole-3-carboxyl­ate with 1-(bromo­meth­yl)-4-fluoro­benzene. In the crystal, some hydrogen-bond-like inter­actions are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Methyl 1-(4-fluoro­benz­yl)-1H-indazole-3-carboxyl­ate is an inter­mediate compound of synthetic cannabinoids, a class of compounds with a high potential for abuse as psychoactive substances, acting as the agonist of the cannabinoid type 1 receptor (Longworth et al., 2017[Longworth, M., Banister, S. D., Boyd, R., Kevin, R. C., Connor, M., McGregor, I. S. & Kassiou, M. (2017). ACS Chem. Neurosci. 8, 2159-2167.]; Doi et al., 2018[Doi, T., Tagami, T., Takeda, A., Asada, A. & Sawabe, Y. (2018). Forensic Toxicol. 36, 51-60.]; Cannaert et al., 2020[Cannaert, A., Sparkes, E., Pike, E., Luo, J. L., Fang, A., Kevin, R. C., Ellison, R., Gerona, R., Banister, S. D. & Stove, C. P. (2020). ACS Chem. Neurosci. 11, 4434-4446.]). The mol­ecule is composed of two planar segments connected at a bond angle of 110.90 (8)° at C6. The indazole ring is nearly coplanar with the ester moiety, suggesting that the ester moiety is conjugated with the aromatic ring. Furthermore, the C3—C14 bond distance is 1.4790 (14) Å, which provides further evidence for the existence of conjugation (Fig. 1[link]). The crystal packing of the title compound is displayed in Fig. 2[link]. At the centre of the crystal, two weak hydrogen-bond-like inter­actions (C13—H13⋯N2ii and C6—H6A⋯O15ii) are formed between two adjacent mol­ecules related by inversion (Fig. 2[link]) [symmetry operator: (ii) −x, −y + 1, −z + 1]. The hydrogen-donor mol­ecule also acts as acceptor of the same inter­actions, creating inversion-related dimers. In the extended structure, there are four more non-classical hydrogen-bond-like inter­actions and a weak C—H⋯π inter­action is also observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4/C5/C18–C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O15i 0.99 2.67 3.3417 (13) 125
C12—H12⋯O15ii 0.95 2.61 3.2190 (12) 123
C13—H13⋯O15ii 0.95 2.62 3.2339 (12) 123
C13—H13⋯N2i 0.95 2.62 3.4578 (13) 148
C19—H19⋯F11iii 0.95 2.73 3.3840 (13) 127
C9—H9⋯F11iv 0.95 2.59 3.2577 (12) 127
C17—H17ACgv 0.98 2.95 3.8114 (12) 148
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, -y+1, -z+2]; (v) [x-{\script{3\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of the title compound.

Synthesis and crystallization

The synthesis of methyl 1-(4-fluoro­benz­yl)-1H-indazole-3-carboxyl­ate was described previously (Doi et al., 2018[Doi, T., Tagami, T., Takeda, A., Asada, A. & Sawabe, Y. (2018). Forensic Toxicol. 36, 51-60.]). In a microvial, the resulted compound was dissolved with ethyl acetate at a concentration of 3% (w/v). The microvial was left at room temperature for several months, resulting in the formation of several large rod shape crystals in the vial.

Refinement

Crystal, data collection and refinement details are presented in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H13FN2O2
Mr 284.28
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 5.04322 (3), 18.11509 (13), 14.46487 (10)
β (°) 90.4600 (6)
V3) 1321.45 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.88
Crystal size (mm) 0.32 × 0.13 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix-Arc 100
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.])
Tmin, Tmax 0.626, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 47493, 2732, 2666
Rint 0.035
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.03
No. of reflections 2732
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.18
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Methyl 1-(4-fluorobenzyl)-1H-indazole-3-carboxylate top
Crystal data top
C16H13FN2O2F(000) = 592
Mr = 284.28Dx = 1.429 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 5.04322 (3) ÅCell parameters from 29913 reflections
b = 18.11509 (13) Åθ = 3.9–79.9°
c = 14.46487 (10) ŵ = 0.88 mm1
β = 90.4600 (6)°T = 100 K
V = 1321.45 (2) Å3Block, clear light colourless
Z = 40.32 × 0.13 × 0.12 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix-Arc 100
diffractometer
2732 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.0000 pixels mm-1θmax = 75.3°, θmin = 3.9°
ω scansh = 66
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
k = 2122
Tmin = 0.626, Tmax = 1.000l = 1818
47493 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.532P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.30 e Å3
2732 reflectionsΔρmin = 0.18 e Å3
192 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0027 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms were included using a riding model starting from calculated positions (aromatic C—H = 0.95 Å, methylene C—H = 0.99 Å, and alkyl C—H = 1.00 Å). The Uiso(H) values were fixed at 1.2 times the equivalent Ueq value of the parent C atoms (1.5 times for the methyl group).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F110.20188 (14)0.51087 (4)0.93308 (4)0.03075 (18)
O160.11216 (15)0.25606 (4)0.38007 (5)0.02287 (18)
O150.03249 (15)0.37833 (4)0.38349 (5)0.02512 (19)
N10.65913 (16)0.38193 (5)0.56604 (6)0.01720 (19)
N20.45483 (16)0.39395 (5)0.50783 (6)0.01800 (19)
C50.71051 (19)0.30814 (5)0.57692 (7)0.0168 (2)
C40.52753 (19)0.27022 (5)0.52017 (7)0.0170 (2)
C30.37458 (19)0.32774 (5)0.47872 (7)0.0172 (2)
C70.63589 (19)0.46374 (5)0.70088 (7)0.0180 (2)
C60.7843 (2)0.44440 (6)0.61369 (7)0.0194 (2)
H6A0.7868480.4877190.5719910.023*
H6B0.9700400.4316740.6296470.023*
C120.2762 (2)0.52949 (6)0.77426 (7)0.0201 (2)
H120.1314950.5629820.7711530.024*
C130.4240 (2)0.51310 (5)0.69631 (7)0.0191 (2)
H130.3801340.5358460.6390210.023*
C140.1556 (2)0.32536 (6)0.41015 (7)0.0185 (2)
C180.5330 (2)0.19243 (6)0.51774 (7)0.0200 (2)
H180.4118520.1655880.4800120.024*
C210.9019 (2)0.27162 (6)0.63117 (7)0.0198 (2)
H211.0251450.2979720.6686320.024*
C100.3461 (2)0.49563 (6)0.85637 (7)0.0212 (2)
C200.9017 (2)0.19570 (6)0.62728 (8)0.0226 (2)
H201.0280260.1689850.6630670.027*
C80.7006 (2)0.43131 (6)0.78554 (7)0.0219 (2)
H80.8459250.3980460.7894010.026*
C190.7187 (2)0.15640 (6)0.57148 (8)0.0225 (2)
H190.7239700.1039840.5710450.027*
C90.5551 (2)0.44705 (6)0.86433 (7)0.0242 (2)
H90.5986360.4249340.9220350.029*
C170.0982 (2)0.24943 (6)0.31188 (8)0.0250 (2)
H17A0.0467100.2751110.2551590.038*
H17B0.2608220.2715340.3360940.038*
H17C0.1294300.1971430.2982220.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F110.0376 (4)0.0365 (4)0.0183 (3)0.0086 (3)0.0041 (3)0.0015 (3)
O160.0232 (4)0.0211 (4)0.0241 (4)0.0026 (3)0.0085 (3)0.0028 (3)
O150.0253 (4)0.0218 (4)0.0281 (4)0.0045 (3)0.0065 (3)0.0027 (3)
N10.0187 (4)0.0158 (4)0.0171 (4)0.0004 (3)0.0013 (3)0.0006 (3)
N20.0189 (4)0.0187 (4)0.0163 (4)0.0013 (3)0.0001 (3)0.0014 (3)
C50.0170 (4)0.0165 (5)0.0171 (5)0.0003 (4)0.0025 (4)0.0006 (4)
C40.0160 (4)0.0183 (5)0.0168 (5)0.0005 (4)0.0012 (4)0.0009 (4)
C30.0179 (5)0.0169 (5)0.0168 (5)0.0008 (4)0.0009 (4)0.0009 (4)
C70.0190 (5)0.0151 (5)0.0199 (5)0.0037 (4)0.0022 (4)0.0014 (4)
C60.0202 (5)0.0165 (5)0.0216 (5)0.0027 (4)0.0004 (4)0.0010 (4)
C120.0209 (5)0.0168 (5)0.0224 (5)0.0009 (4)0.0028 (4)0.0008 (4)
C130.0218 (5)0.0166 (5)0.0189 (5)0.0022 (4)0.0039 (4)0.0018 (4)
C140.0184 (5)0.0197 (5)0.0172 (5)0.0009 (4)0.0011 (4)0.0013 (4)
C180.0195 (5)0.0174 (5)0.0230 (5)0.0009 (4)0.0001 (4)0.0004 (4)
C210.0180 (5)0.0216 (5)0.0199 (5)0.0007 (4)0.0015 (4)0.0005 (4)
C100.0255 (5)0.0208 (5)0.0173 (5)0.0008 (4)0.0003 (4)0.0034 (4)
C200.0202 (5)0.0221 (5)0.0255 (5)0.0043 (4)0.0018 (4)0.0042 (4)
C80.0236 (5)0.0187 (5)0.0235 (5)0.0032 (4)0.0043 (4)0.0007 (4)
C190.0227 (5)0.0162 (5)0.0287 (5)0.0019 (4)0.0007 (4)0.0019 (4)
C90.0315 (6)0.0231 (5)0.0179 (5)0.0023 (4)0.0053 (4)0.0019 (4)
C170.0231 (5)0.0284 (6)0.0234 (5)0.0017 (4)0.0082 (4)0.0035 (4)
Geometric parameters (Å, º) top
F11—C101.3601 (12)C12—H120.9500
O16—C141.3459 (13)C12—C131.3887 (15)
O16—C171.4477 (12)C12—C101.3801 (15)
O15—C141.2047 (13)C13—H130.9500
N1—N21.3432 (12)C18—H180.9500
N1—C51.3704 (13)C18—C191.3767 (15)
N1—C61.4653 (13)C21—H210.9500
N2—C31.3329 (13)C21—C201.3765 (15)
C5—C41.4090 (14)C10—C91.3770 (15)
C5—C211.4046 (14)C20—H200.9500
C4—C31.4259 (13)C20—C191.4135 (15)
C4—C181.4098 (14)C8—H80.9500
C3—C141.4790 (14)C8—C91.3900 (15)
C7—C61.5129 (14)C19—H190.9500
C7—C131.3943 (14)C9—H90.9500
C7—C81.3946 (14)C17—H17A0.9800
C6—H6A0.9900C17—H17B0.9800
C6—H6B0.9900C17—H17C0.9800
C14—O16—C17114.47 (8)O15—C14—O16123.86 (9)
N2—N1—C5111.93 (8)O15—C14—C3124.86 (9)
N2—N1—C6119.68 (8)C4—C18—H18120.9
C5—N1—C6128.23 (8)C19—C18—C4118.24 (9)
C3—N2—N1106.36 (8)C19—C18—H18120.9
N1—C5—C4106.64 (8)C5—C21—H21121.7
N1—C5—C21130.70 (9)C20—C21—C5116.59 (10)
C21—C5—C4122.66 (9)C20—C21—H21121.7
C5—C4—C3103.78 (8)F11—C10—C12118.50 (9)
C5—C4—C18119.27 (9)F11—C10—C9118.41 (9)
C18—C4—C3136.95 (9)C9—C10—C12123.09 (10)
N2—C3—C4111.28 (9)C21—C20—H20119.1
N2—C3—C14117.47 (9)C21—C20—C19121.78 (10)
C4—C3—C14131.23 (9)C19—C20—H20119.1
C13—C7—C6119.54 (9)C7—C8—H8119.6
C13—C7—C8119.06 (9)C9—C8—C7120.80 (10)
C8—C7—C6121.36 (9)C9—C8—H8119.6
N1—C6—C7110.90 (8)C18—C19—C20121.45 (10)
N1—C6—H6A109.5C18—C19—H19119.3
N1—C6—H6B109.5C20—C19—H19119.3
C7—C6—H6A109.5C10—C9—C8118.12 (10)
C7—C6—H6B109.5C10—C9—H9120.9
H6A—C6—H6B108.0C8—C9—H9120.9
C13—C12—H12121.0O16—C17—H17A109.5
C10—C12—H12121.0O16—C17—H17B109.5
C10—C12—C13117.95 (9)O16—C17—H17C109.5
C7—C13—H13119.5H17A—C17—H17B109.5
C12—C13—C7120.97 (9)H17A—C17—H17C109.5
C12—C13—H13119.5H17B—C17—H17C109.5
O16—C14—C3111.28 (8)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4/C5/C18–C21 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6A···O15i0.992.673.3417 (13)125
C12—H12···O15ii0.952.613.2190 (12)123
C13—H13···O15ii0.952.623.2339 (12)123
C13—H13···N2i0.952.623.4578 (13)148
C19—H19···F11iii0.952.733.3840 (13)127
C9—H9···F11iv0.952.593.2577 (12)127
C17—H17A···Cgv0.982.953.8114 (12)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1/2, y1/2, z+3/2; (iv) x+1, y+1, z+2; (v) x3/2, y1/2, z3/2.
 

Acknowledgements

The authors would like to sincerely thank Dr Takashi Sato (Rigaku Corporation) for his helpful and fundamental instructions and advice on the measurement, analysis, and inter­pretation of the results.

Funding information

Funding for this research was provided by: JSPS KAKENHI (grant No. 18K19719 to T. Doi; grant No. 22K10521 to T. Doi, T. Sakai).

References

First citationCannaert, A., Sparkes, E., Pike, E., Luo, J. L., Fang, A., Kevin, R. C., Ellison, R., Gerona, R., Banister, S. D. & Stove, C. P. (2020). ACS Chem. Neurosci. 11, 4434–4446.  CrossRef CAS PubMed Google Scholar
First citationDoi, T., Tagami, T., Takeda, A., Asada, A. & Sawabe, Y. (2018). Forensic Toxicol. 36, 51-60.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLongworth, M., Banister, S. D., Boyd, R., Kevin, R. C., Connor, M., McGregor, I. S. & Kassiou, M. (2017). ACS Chem. Neurosci. 8, 2159–2167.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146