organic compounds
Methyl 1-(4-fluorobenzyl)-1H-indazole-3-carboxylate
aOsaka Institute of Public Health, Division of Hygienic Chemistry, Pharmaceutical Affairs Section, Nakamichi 1-3-3, Higashinari-ku, Osaka, 537-0025, Japan
*Correspondence e-mail: tdoi@iph.osaka.jp
The title compound, C16H13FN2O2, was synthesized by nucleophilic substitution of the indazole N—H hydrogen atom of methyl 1H-indazole-3-carboxylate with 1-(bromomethyl)-4-fluorobenzene. In the crystal, some hydrogen-bond-like interactions are observed.
Keywords: crystal structure; synthetic cannabinoid; intermediate compound.
CCDC reference: 2308333
Structure description
Methyl 1-(4-fluorobenzyl)-1H-indazole-3-carboxylate is an intermediate compound of synthetic cannabinoids, a class of compounds with a high potential for abuse as psychoactive substances, acting as the agonist of the cannabinoid type 1 receptor (Longworth et al., 2017; Doi et al., 2018; Cannaert et al., 2020). The molecule is composed of two planar segments connected at a bond angle of 110.90 (8)° at C6. The indazole ring is nearly coplanar with the ester moiety, suggesting that the ester moiety is conjugated with the aromatic ring. Furthermore, the C3—C14 bond distance is 1.4790 (14) Å, which provides further evidence for the existence of conjugation (Fig. 1). The crystal packing of the title compound is displayed in Fig. 2. At the centre of the crystal, two weak hydrogen-bond-like interactions (C13—H13⋯N2ii and C6—H6A⋯O15ii) are formed between two adjacent molecules related by inversion (Fig. 2) [symmetry operator: (ii) −x, −y + 1, −z + 1]. The hydrogen-donor molecule also acts as acceptor of the same interactions, creating inversion-related dimers. In the extended structure, there are four more non-classical hydrogen-bond-like interactions and a weak C—H⋯π interaction is also observed (Table 1).
Synthesis and crystallization
The synthesis of methyl 1-(4-fluorobenzyl)-1H-indazole-3-carboxylate was described previously (Doi et al., 2018). In a microvial, the resulted compound was dissolved with ethyl acetate at a concentration of 3% (w/v). The microvial was left at room temperature for several months, resulting in the formation of several large rod shape crystals in the vial.
Refinement
Crystal, data collection and .
details are presented in Table 2
|
Structural data
CCDC reference: 2308333
https://doi.org/10.1107/S2414314623009951/zl4059sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2414314623009951/zl4059Isup3.cml
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623009951/zl4059Isup4.hkl
C16H13FN2O2 | F(000) = 592 |
Mr = 284.28 | Dx = 1.429 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 5.04322 (3) Å | Cell parameters from 29913 reflections |
b = 18.11509 (13) Å | θ = 3.9–79.9° |
c = 14.46487 (10) Å | µ = 0.88 mm−1 |
β = 90.4600 (6)° | T = 100 K |
V = 1321.45 (2) Å3 | Block, clear light colourless |
Z = 4 | 0.32 × 0.13 × 0.12 mm |
XtaLAB Synergy, Single source at home/near, HyPix-Arc 100 diffractometer | 2732 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 2666 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 75.3°, θmin = 3.9° |
ω scans | h = −6→6 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2023) | k = −21→22 |
Tmin = 0.626, Tmax = 1.000 | l = −18→18 |
47493 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0369P)2 + 0.532P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.078 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 0.30 e Å−3 |
2732 reflections | Δρmin = −0.18 e Å−3 |
192 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0027 (3) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All the H atoms were included using a riding model starting from calculated positions (aromatic C—H = 0.95 Å, methylene C—H = 0.99 Å, and alkyl C—H = 1.00 Å). The Uiso(H) values were fixed at 1.2 times the equivalent Ueq value of the parent C atoms (1.5 times for the methyl group). |
x | y | z | Uiso*/Ueq | ||
F11 | 0.20188 (14) | 0.51087 (4) | 0.93308 (4) | 0.03075 (18) | |
O16 | 0.11216 (15) | 0.25606 (4) | 0.38007 (5) | 0.02287 (18) | |
O15 | 0.03249 (15) | 0.37833 (4) | 0.38349 (5) | 0.02512 (19) | |
N1 | 0.65913 (16) | 0.38193 (5) | 0.56604 (6) | 0.01720 (19) | |
N2 | 0.45483 (16) | 0.39395 (5) | 0.50783 (6) | 0.01800 (19) | |
C5 | 0.71051 (19) | 0.30814 (5) | 0.57692 (7) | 0.0168 (2) | |
C4 | 0.52753 (19) | 0.27022 (5) | 0.52017 (7) | 0.0170 (2) | |
C3 | 0.37458 (19) | 0.32774 (5) | 0.47872 (7) | 0.0172 (2) | |
C7 | 0.63589 (19) | 0.46374 (5) | 0.70088 (7) | 0.0180 (2) | |
C6 | 0.7843 (2) | 0.44440 (6) | 0.61369 (7) | 0.0194 (2) | |
H6A | 0.786848 | 0.487719 | 0.571991 | 0.023* | |
H6B | 0.970040 | 0.431674 | 0.629647 | 0.023* | |
C12 | 0.2762 (2) | 0.52949 (6) | 0.77426 (7) | 0.0201 (2) | |
H12 | 0.131495 | 0.562982 | 0.771153 | 0.024* | |
C13 | 0.4240 (2) | 0.51310 (5) | 0.69631 (7) | 0.0191 (2) | |
H13 | 0.380134 | 0.535846 | 0.639021 | 0.023* | |
C14 | 0.1556 (2) | 0.32536 (6) | 0.41015 (7) | 0.0185 (2) | |
C18 | 0.5330 (2) | 0.19243 (6) | 0.51774 (7) | 0.0200 (2) | |
H18 | 0.411852 | 0.165588 | 0.480012 | 0.024* | |
C21 | 0.9019 (2) | 0.27162 (6) | 0.63117 (7) | 0.0198 (2) | |
H21 | 1.025145 | 0.297972 | 0.668632 | 0.024* | |
C10 | 0.3461 (2) | 0.49563 (6) | 0.85637 (7) | 0.0212 (2) | |
C20 | 0.9017 (2) | 0.19570 (6) | 0.62728 (8) | 0.0226 (2) | |
H20 | 1.028026 | 0.168985 | 0.663067 | 0.027* | |
C8 | 0.7006 (2) | 0.43131 (6) | 0.78554 (7) | 0.0219 (2) | |
H8 | 0.845925 | 0.398046 | 0.789401 | 0.026* | |
C19 | 0.7187 (2) | 0.15640 (6) | 0.57148 (8) | 0.0225 (2) | |
H19 | 0.723970 | 0.103984 | 0.571045 | 0.027* | |
C9 | 0.5551 (2) | 0.44705 (6) | 0.86433 (7) | 0.0242 (2) | |
H9 | 0.598636 | 0.424934 | 0.922035 | 0.029* | |
C17 | −0.0982 (2) | 0.24943 (6) | 0.31188 (8) | 0.0250 (2) | |
H17A | −0.046710 | 0.275111 | 0.255159 | 0.038* | |
H17B | −0.260822 | 0.271534 | 0.336094 | 0.038* | |
H17C | −0.129430 | 0.197143 | 0.298222 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F11 | 0.0376 (4) | 0.0365 (4) | 0.0183 (3) | 0.0086 (3) | 0.0041 (3) | −0.0015 (3) |
O16 | 0.0232 (4) | 0.0211 (4) | 0.0241 (4) | 0.0026 (3) | −0.0085 (3) | −0.0028 (3) |
O15 | 0.0253 (4) | 0.0218 (4) | 0.0281 (4) | 0.0045 (3) | −0.0065 (3) | 0.0027 (3) |
N1 | 0.0187 (4) | 0.0158 (4) | 0.0171 (4) | 0.0004 (3) | −0.0013 (3) | 0.0006 (3) |
N2 | 0.0189 (4) | 0.0187 (4) | 0.0163 (4) | 0.0013 (3) | −0.0001 (3) | 0.0014 (3) |
C5 | 0.0170 (4) | 0.0165 (5) | 0.0171 (5) | 0.0003 (4) | 0.0025 (4) | 0.0006 (4) |
C4 | 0.0160 (4) | 0.0183 (5) | 0.0168 (5) | 0.0005 (4) | 0.0012 (4) | 0.0009 (4) |
C3 | 0.0179 (5) | 0.0169 (5) | 0.0168 (5) | 0.0008 (4) | 0.0009 (4) | 0.0009 (4) |
C7 | 0.0190 (5) | 0.0151 (5) | 0.0199 (5) | −0.0037 (4) | −0.0022 (4) | −0.0014 (4) |
C6 | 0.0202 (5) | 0.0165 (5) | 0.0216 (5) | −0.0027 (4) | −0.0004 (4) | −0.0010 (4) |
C12 | 0.0209 (5) | 0.0168 (5) | 0.0224 (5) | 0.0009 (4) | −0.0028 (4) | −0.0008 (4) |
C13 | 0.0218 (5) | 0.0166 (5) | 0.0189 (5) | −0.0022 (4) | −0.0039 (4) | 0.0018 (4) |
C14 | 0.0184 (5) | 0.0197 (5) | 0.0172 (5) | 0.0009 (4) | 0.0011 (4) | 0.0013 (4) |
C18 | 0.0195 (5) | 0.0174 (5) | 0.0230 (5) | −0.0009 (4) | −0.0001 (4) | −0.0004 (4) |
C21 | 0.0180 (5) | 0.0216 (5) | 0.0199 (5) | 0.0007 (4) | −0.0015 (4) | 0.0005 (4) |
C10 | 0.0255 (5) | 0.0208 (5) | 0.0173 (5) | −0.0008 (4) | 0.0003 (4) | −0.0034 (4) |
C20 | 0.0202 (5) | 0.0221 (5) | 0.0255 (5) | 0.0043 (4) | −0.0018 (4) | 0.0042 (4) |
C8 | 0.0236 (5) | 0.0187 (5) | 0.0235 (5) | 0.0032 (4) | −0.0043 (4) | −0.0007 (4) |
C19 | 0.0227 (5) | 0.0162 (5) | 0.0287 (5) | 0.0019 (4) | 0.0007 (4) | 0.0019 (4) |
C9 | 0.0315 (6) | 0.0231 (5) | 0.0179 (5) | 0.0023 (4) | −0.0053 (4) | 0.0019 (4) |
C17 | 0.0231 (5) | 0.0284 (6) | 0.0234 (5) | 0.0017 (4) | −0.0082 (4) | −0.0035 (4) |
F11—C10 | 1.3601 (12) | C12—H12 | 0.9500 |
O16—C14 | 1.3459 (13) | C12—C13 | 1.3887 (15) |
O16—C17 | 1.4477 (12) | C12—C10 | 1.3801 (15) |
O15—C14 | 1.2047 (13) | C13—H13 | 0.9500 |
N1—N2 | 1.3432 (12) | C18—H18 | 0.9500 |
N1—C5 | 1.3704 (13) | C18—C19 | 1.3767 (15) |
N1—C6 | 1.4653 (13) | C21—H21 | 0.9500 |
N2—C3 | 1.3329 (13) | C21—C20 | 1.3765 (15) |
C5—C4 | 1.4090 (14) | C10—C9 | 1.3770 (15) |
C5—C21 | 1.4046 (14) | C20—H20 | 0.9500 |
C4—C3 | 1.4259 (13) | C20—C19 | 1.4135 (15) |
C4—C18 | 1.4098 (14) | C8—H8 | 0.9500 |
C3—C14 | 1.4790 (14) | C8—C9 | 1.3900 (15) |
C7—C6 | 1.5129 (14) | C19—H19 | 0.9500 |
C7—C13 | 1.3943 (14) | C9—H9 | 0.9500 |
C7—C8 | 1.3946 (14) | C17—H17A | 0.9800 |
C6—H6A | 0.9900 | C17—H17B | 0.9800 |
C6—H6B | 0.9900 | C17—H17C | 0.9800 |
C14—O16—C17 | 114.47 (8) | O15—C14—O16 | 123.86 (9) |
N2—N1—C5 | 111.93 (8) | O15—C14—C3 | 124.86 (9) |
N2—N1—C6 | 119.68 (8) | C4—C18—H18 | 120.9 |
C5—N1—C6 | 128.23 (8) | C19—C18—C4 | 118.24 (9) |
C3—N2—N1 | 106.36 (8) | C19—C18—H18 | 120.9 |
N1—C5—C4 | 106.64 (8) | C5—C21—H21 | 121.7 |
N1—C5—C21 | 130.70 (9) | C20—C21—C5 | 116.59 (10) |
C21—C5—C4 | 122.66 (9) | C20—C21—H21 | 121.7 |
C5—C4—C3 | 103.78 (8) | F11—C10—C12 | 118.50 (9) |
C5—C4—C18 | 119.27 (9) | F11—C10—C9 | 118.41 (9) |
C18—C4—C3 | 136.95 (9) | C9—C10—C12 | 123.09 (10) |
N2—C3—C4 | 111.28 (9) | C21—C20—H20 | 119.1 |
N2—C3—C14 | 117.47 (9) | C21—C20—C19 | 121.78 (10) |
C4—C3—C14 | 131.23 (9) | C19—C20—H20 | 119.1 |
C13—C7—C6 | 119.54 (9) | C7—C8—H8 | 119.6 |
C13—C7—C8 | 119.06 (9) | C9—C8—C7 | 120.80 (10) |
C8—C7—C6 | 121.36 (9) | C9—C8—H8 | 119.6 |
N1—C6—C7 | 110.90 (8) | C18—C19—C20 | 121.45 (10) |
N1—C6—H6A | 109.5 | C18—C19—H19 | 119.3 |
N1—C6—H6B | 109.5 | C20—C19—H19 | 119.3 |
C7—C6—H6A | 109.5 | C10—C9—C8 | 118.12 (10) |
C7—C6—H6B | 109.5 | C10—C9—H9 | 120.9 |
H6A—C6—H6B | 108.0 | C8—C9—H9 | 120.9 |
C13—C12—H12 | 121.0 | O16—C17—H17A | 109.5 |
C10—C12—H12 | 121.0 | O16—C17—H17B | 109.5 |
C10—C12—C13 | 117.95 (9) | O16—C17—H17C | 109.5 |
C7—C13—H13 | 119.5 | H17A—C17—H17B | 109.5 |
C12—C13—C7 | 120.97 (9) | H17A—C17—H17C | 109.5 |
C12—C13—H13 | 119.5 | H17B—C17—H17C | 109.5 |
O16—C14—C3 | 111.28 (8) |
Cg is the centroid of the C4/C5/C18–C21 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···O15i | 0.99 | 2.67 | 3.3417 (13) | 125 |
C12—H12···O15ii | 0.95 | 2.61 | 3.2190 (12) | 123 |
C13—H13···O15ii | 0.95 | 2.62 | 3.2339 (12) | 123 |
C13—H13···N2i | 0.95 | 2.62 | 3.4578 (13) | 148 |
C19—H19···F11iii | 0.95 | 2.73 | 3.3840 (13) | 127 |
C9—H9···F11iv | 0.95 | 2.59 | 3.2577 (12) | 127 |
C17—H17A···Cgv | 0.98 | 2.95 | 3.8114 (12) | 148 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) −x+1/2, y−1/2, −z+3/2; (iv) −x+1, −y+1, −z+2; (v) x−3/2, −y−1/2, z−3/2. |
Acknowledgements
The authors would like to sincerely thank Dr Takashi Sato (Rigaku Corporation) for his helpful and fundamental instructions and advice on the measurement, analysis, and interpretation of the results.
Funding information
Funding for this research was provided by: JSPS KAKENHI (grant No. 18K19719 to T. Doi; grant No. 22K10521 to T. Doi, T. Sakai).
References
Cannaert, A., Sparkes, E., Pike, E., Luo, J. L., Fang, A., Kevin, R. C., Ellison, R., Gerona, R., Banister, S. D. & Stove, C. P. (2020). ACS Chem. Neurosci. 11, 4434–4446. CrossRef CAS PubMed Google Scholar
Doi, T., Tagami, T., Takeda, A., Asada, A. & Sawabe, Y. (2018). Forensic Toxicol. 36, 51-60. CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Longworth, M., Banister, S. D., Boyd, R., Kevin, R. C., Connor, M., McGregor, I. S. & Kassiou, M. (2017). ACS Chem. Neurosci. 8, 2159–2167. CrossRef CAS PubMed Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Inc., Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.