metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Bis[bis­­(di­phenyl­phosphan­yl)methane-κ2P,P′]di­chlorido­ruthenium(II): a triclinic polymorph

crossmark logo

aDepartment of Chemical Sciences, University of Johannesburg, 2006, South Africa
*Correspondence e-mail: mansieurkelani@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 October 2023; accepted 10 November 2023; online 14 November 2023)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title compound, [RuCl2(C25H22P2)2] or [RuCl2(dppm)2] (dppm = bis­(di­phenyl­phosphan­yl)methane, C25H22P2) crystallizes as two half-mol­ecules (completed by inversion symmetry) in space group P[\overline{1}] (Z = 2), with the RuII atoms occupying inversion centers at 0,0,0 and 1/2, 1/2, 1/2, respectively. The bidentate phosphane ligands occupy equatorial positions while the chlorido ligands complete the distorted octa­hedral coordination spheres at axial positions. The bite angles of the phosphane chelates are similar for the two mol­ecules [(P—Ru—P)avg. = 71.1°], while there are significant differences in the twisting of the methyl­ene backbone, with a distance of the methyl­ene C atom from the RuP4 plane of 0.659 (2) and 0.299 (3) Å, respectively, and also for the phenyl substituents for both mol­ecules due to variations in weak C—H⋯Cl inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ruthenium complexes have proven versatility in catalysis (Younus et al., 2015[Younus, H. A., Su, W., Ahmad, N., Chen, S. & Verpoort, F. (2015). Adv. Synth. Catal. 357, 283-330.]; Saha et al., 2022[Saha, S., Averkiev, B. & Sues, P. E. (2022). Organometallics, 41, 2879-2890.]) and anti-cancer therapy (Levina et al., 2009[Levina, A., Mitra, A. & Lay, P. A. (2009). Metallomics, 1, 458-470.]). Hence, the quest for contributions towards advancing the exploration of ruthenium-based complexes in coordination chemistry is still on-going. Moreover, in the context of advancing sustainability with inexpensive materials, ruthenium(II) phosphane complexes are widely used as catalysts, e.g. in the hydrogenation of carbon dioxide to methanol (Wesselbaum et al., 2012[Wesselbaum, S., vom Stein, T., Klankermayer, J. & Leitner, W. (2012). Angew. Chem. Int. Ed. 51, 7499-7502.]), and formic acid (Tai et al., 2002[Tai, C. C., Pitts, J., Linehan, J. C., Main, A. D., Munshi, P. & Jessop, P. G. (2002). Inorg. Chem. 41, 1606-1614.]), as well as for the homogeneous catalytic degradation of the latter (Treigerman & Sasson, 2017[Treigerman, Z. & Sasson, Y. (2017). ChemistrySelect, 2, 5816-5823.]).

The title compound was reported previously, crystallizing as a monoclinic ansolvate (Chakravarty et al., 1984[Chakravarty, A. R., Cotton, F. A. & Schwotzer, W. (1984). Inorg. Chim. Acta, 84, 179-185.]). Moreover, various solvated forms are also known: a triclinic N,N-di­methyl­formamide solvate (Treigerman & Sasson, 2017[Treigerman, Z. & Sasson, Y. (2017). ChemistrySelect, 2, 5816-5823.]), a triclinic di­chloro­methane acetone solvate hemihydrate (Figueira et al., 2006[Figueira, J., Rodrigues, J. & Rissanen, K. (2006). Acta Cryst. E62, m3594-m3596.]), and a triclinic dideuterodi­chloro­methane solvate (Lynam et al., 2008[Lynam, J. M., Nixon, T. D. & Whitwood, A. C. (2008). J. Organomet. Chem. 693, 3103-3110.]). We report here the triclinic polymorph of the ansolvate.

The asymmetric unit of the title compound comprises two half-mol­ecules (Fig. 1[link]), with the RuII atoms situated at inversion centers (at 0,0,0 and 1/2, 1/2, 1/2). Bond lengths and angles of the RuII coordination spheres (Table 1[link]) are within the range of the monoclinic polymorph (Chakravarty et al., 1984[Chakravarty, A. R., Cotton, F. A. & Schwotzer, W. (1984). Inorg. Chim. Acta, 84, 179-185.]) or the solvated triclinic solvates (Treigerman & Sasson, 2017[Treigerman, Z. & Sasson, Y. (2017). ChemistrySelect, 2, 5816-5823.]; Figueira et al., 2006[Figueira, J., Rodrigues, J. & Rissanen, K. (2006). Acta Cryst. E62, m3594-m3596.]; Lynam et al., 2008[Lynam, J. M., Nixon, T. D. & Whitwood, A. C. (2008). J. Organomet. Chem. 693, 3103-3110.]). Fig. 2[link]a shows the overlay of the two mol­ecules present in the title compound; the root-mean-square deviation (r.m.s.d.) between the two mol­ecules is 0.6828 Å. The non-solvated monoclinic polymorph and the title compound appear to be closely related as both have mol­ecules situated at inversion centers, albeit there are two independent special positions for the title compound versus the one of the reported monoclinic polymorph. Further to this, a comparative overlay of the mol­ecules in the two polymorphs, i.e. each of the two independent mol­ecules of the title compound overlayed with that of the reported monoclinic polymorph (Fig. 2[link]b,c), reveals differences in the orientations of some phenyl rings; r.m.s.d. are 0.3079 Å for overlays of mol­ecule Ru1 of the title compound and that of the monoclinic polymorph, and 0.4154 Å for overlays of mol­ecule Ru2 of the title compound and that of the monoclinic polymorph. The inversion symmetry of all mol­ecules in the triclinic title polymorph and the monoclinic polymorph causes a trans configuration of all ligands in the octa­hedral coordination environment, with the bis-phosphane ligands chelating in equatorial positions and the Cl ligands situated at axial positions. Most noticeable are the bite angles (P—Ru—P)avg. of 71.1° in the title compound, causing a considerable distortion of the ideal octa­hedral environment. Inter­estingly, the methyl­ene backbone is twisted out from the equatorial plane differently for the two mol­ecules [distance of the C atom from the RuP4 plane 0.659 (2) Å, dihedral angle between the P—C—P plane and the equatorial plane 31.31 (10)° for mol­ecule Ru1 and 0.299 (3) Å and 14.00 (10)°, respectively, for mol­ecule Ru2]. This may be due to the different intra- and inter­molecular C—H⋯Cl inter­actions, which consolidate the crystal packing in the title compound (Table 2[link], Fig. 3[link]).

Table 1
Selected geometric parameters (Å, °)

P1—Ru1 2.3623 (12) P4—Ru2 2.3529 (11)
P2—Ru1 2.3573 (9) Cl1—Ru1 2.4426 (10)
P3—Ru2 2.3882 (9) Cl2—Ru2 2.4375 (11)
       
P2i—Ru1—P2 180.0 P4ii—Ru2—P3 108.09 (3)
P2i—Ru1—P1 109.78 (3) P4—Ru2—P3 71.91 (3)
P2—Ru1—P1 70.22 (3) P3ii—Ru2—P3 180.0
P2i—Ru1—Cl1 95.43 (4) P4ii—Ru2—Cl2 85.27 (3)
P2—Ru1—Cl1 84.58 (4) P4—Ru2—Cl2 94.73 (3)
P1—Ru1—Cl1 86.47 (3) P3ii—Ru2—Cl2 82.43 (3)
P1i—Ru1—Cl1 93.53 (3) P3—Ru2—Cl2 97.57 (3)
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x+1, -y+1, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cl1i 0.93 2.75 3.302 (3) 119
C34—H34⋯Cl2iii 0.93 2.91 3.813 (3) 165
C2—H2⋯Cl1 0.93 2.75 3.429 (3) 131
C27—H27⋯Cl2 0.93 2.66 3.506 (3) 152
Symmetry codes: (i) [-x, -y, -z]; (iii) [x, y-1, z].
[Figure 1]
Figure 1
The mol­ecular structures of the two mol­ecules in the title compound. Displacement ellipsoids are drawn at the 50% probability level (H atoms were removed for clarity). Non-labelled atoms are generated by inversion symmetry (symmetry operations: −x, −y, −z for mol­ecule Ru1; −x + 1, −y + 1, −z + 1 for mol­ecule Ru2).
[Figure 2]
Figure 2
(a) Overlay of the two mol­ecules Ru1 (blue) and Ru2 (green) of the title compound; (b) overlay of mol­ecule Ru1 of the title compound (blue) and that of the monoclinic polymorph (red); (c) overlay of mol­ecule Ru2 of the title compound (green) and that of the monoclinic polymorph (red).
[Figure 3]
Figure 3
Packing plot in a view along [100] and selected hydrogen-bonding inter­actions (dashed lines) of the title compound.

Synthesis and crystallization

Bis(di­phenyl­phosphan­yl)methane (30 mg, 0.08 mmol, 2 eq.) was added to a solution of the di­chlorido­(η6-benzene)­ruthenium(II) dimer (20 mg, 0.04 mmol, 1 eq.) in methanol at room temperature for 24 h with continuous stirring. Yellow crystals of the title compound were obtained by slow evaporation of the solvent.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [RuCl2(C25H22P2)2]
Mr 940.70
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 273
a, b, c (Å) 10.261 (5), 11.243 (5), 20.198 (9)
α, β, γ (°) 84.857 (15), 87.185 (16), 72.525 (15)
V3) 2212.8 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.65
Crystal size (mm) 0.21 × 0.11 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.665, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 99624, 10851, 8574
Rint 0.072
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.083, 1.04
No. of reflections 10851
No. of parameters 517
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

trans-Bis[bis(diphenylphosphanyl)methane-κ2P,P']dichloridoruthenium(II) top
Crystal data top
[RuCl2(C25H22P2)2]Z = 2
Mr = 940.70F(000) = 964
Triclinic, P1Dx = 1.412 Mg m3
a = 10.261 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.243 (5) ÅCell parameters from 9422 reflections
c = 20.198 (9) Åθ = 2.3–27.6°
α = 84.857 (15)°µ = 0.65 mm1
β = 87.185 (16)°T = 273 K
γ = 72.525 (15)°Block, yellow
V = 2212.8 (17) Å30.21 × 0.11 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
8574 reflections with I > 2σ(I)
φ and ω scansRint = 0.072
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 1.9°
Tmin = 0.665, Tmax = 0.746h = 1313
99624 measured reflectionsk = 1414
10851 independent reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0316P)2 + 0.9131P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
10851 reflectionsΔρmax = 0.49 e Å3
517 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3350 (2)0.0912 (2)0.09164 (11)0.0366 (5)
C20.3233 (3)0.0078 (3)0.13822 (13)0.0569 (7)
H20.2740010.0878830.1274710.068*
C30.3836 (3)0.0093 (3)0.20113 (14)0.0669 (9)
H30.3737660.0593910.2318790.080*
C40.4571 (3)0.1256 (3)0.21835 (13)0.0604 (8)
H40.4964920.1369790.2606750.072*
C50.4716 (4)0.2241 (3)0.17255 (16)0.0871 (12)
H50.5223250.3036810.1834780.104*
C60.4119 (4)0.2078 (3)0.10953 (15)0.0783 (11)
H60.4237940.2767540.0787900.094*
C70.3442 (2)0.2146 (2)0.03656 (11)0.0390 (5)
C80.3086 (3)0.3249 (2)0.04008 (14)0.0511 (6)
H80.2264790.3252820.0227240.061*
C90.3955 (3)0.4347 (3)0.06947 (16)0.0652 (8)
H90.3710100.5082270.0720610.078*
C100.5178 (4)0.4348 (3)0.09479 (16)0.0738 (10)
H100.5756320.5083730.1146090.089*
C110.5544 (4)0.3268 (3)0.09079 (17)0.0769 (10)
H110.6375790.3274980.1074700.092*
C120.4686 (3)0.2169 (3)0.06214 (14)0.0590 (7)
H120.4940850.1438850.0598980.071*
C130.0449 (2)0.2538 (2)0.09219 (12)0.0405 (5)
C140.1073 (3)0.3397 (2)0.06425 (13)0.0533 (7)
H140.1847440.3136850.0370360.064*
C150.0550 (4)0.4655 (3)0.07660 (15)0.0617 (8)
H150.0971240.5227880.0568680.074*
C160.0561 (3)0.5053 (3)0.11686 (17)0.0665 (9)
H160.0902330.5893510.1248200.080*
C170.1177 (3)0.4208 (3)0.1457 (2)0.0769 (10)
H170.1930030.4474500.1741310.092*
C180.0685 (3)0.2951 (3)0.13295 (18)0.0666 (9)
H180.1125360.2387410.1520630.080*
C190.1400 (2)0.0176 (2)0.16260 (11)0.0383 (5)
C200.0376 (3)0.0158 (2)0.20019 (13)0.0499 (6)
H200.0444920.0103210.1807070.060*
C210.0576 (3)0.0575 (3)0.26715 (14)0.0600 (8)
H210.0123100.0775460.2923160.072*
C220.1797 (4)0.0694 (3)0.29637 (14)0.0653 (8)
H220.1926900.0980710.3409070.078*
C230.2815 (4)0.0387 (4)0.25948 (15)0.0763 (10)
H230.3644970.0470610.2788360.092*
C240.2617 (3)0.0051 (3)0.19290 (13)0.0612 (8)
H240.3317040.0263060.1683950.073*
C250.2659 (2)0.0574 (2)0.02992 (11)0.0381 (5)
H25A0.3447110.0323170.0582880.046*
H25B0.2702350.1269840.0012780.046*
C260.3245 (2)0.4602 (2)0.34333 (10)0.0354 (5)
C270.3270 (3)0.5749 (2)0.31347 (11)0.0431 (5)
H270.3668580.6244370.3350220.052*
C280.2698 (3)0.6171 (3)0.25075 (12)0.0519 (6)
H280.2736640.6936870.2305690.062*
C290.2082 (3)0.5459 (3)0.21908 (13)0.0556 (7)
H290.1705460.5743640.1775570.067*
C300.2021 (3)0.4322 (3)0.24871 (13)0.0588 (7)
H300.1589780.3847510.2275600.071*
C310.2609 (3)0.3886 (3)0.31052 (13)0.0498 (6)
H310.2578270.3113980.3300990.060*
C320.4930 (2)0.2365 (2)0.40974 (11)0.0358 (5)
C330.4360 (3)0.1384 (2)0.42135 (13)0.0501 (6)
H330.3462000.1541060.4371520.060*
C340.5131 (4)0.0167 (3)0.40936 (14)0.0647 (9)
H340.4741940.0482490.4169680.078*
C350.6441 (4)0.0074 (3)0.38673 (16)0.0728 (10)
H350.6948710.0887570.3788230.087*
C360.7023 (3)0.0881 (3)0.37543 (17)0.0733 (9)
H360.7924470.0712830.3601080.088*
C370.6264 (3)0.2098 (3)0.38689 (14)0.0544 (7)
H370.6662690.2740910.3790180.065*
C380.1356 (2)0.6455 (2)0.53378 (11)0.0360 (5)
C390.1005 (3)0.7093 (2)0.47162 (13)0.0479 (6)
H390.1466870.6759090.4335900.057*
C400.0029 (3)0.8220 (3)0.46614 (16)0.0612 (8)
H400.0260560.8633160.4244320.073*
C410.0713 (3)0.8731 (3)0.52173 (18)0.0639 (8)
H410.1407490.9485780.5176610.077*
C420.0370 (3)0.8124 (3)0.58373 (16)0.0606 (8)
H420.0823730.8478150.6214870.073*
C430.0650 (3)0.6987 (2)0.58991 (14)0.0480 (6)
H430.0864540.6576350.6318010.058*
C440.2435 (2)0.4289 (2)0.62126 (11)0.0387 (5)
C450.1282 (3)0.3879 (3)0.62890 (14)0.0562 (7)
H450.0703760.3997960.5932810.067*
C460.0982 (4)0.3308 (3)0.68751 (18)0.0786 (11)
H460.0194500.3057980.6917470.094*
C470.1828 (5)0.3100 (3)0.73989 (19)0.0947 (15)
H470.1621930.2700750.7795790.114*
C480.2989 (5)0.3480 (4)0.73431 (16)0.0967 (14)
H480.3576690.3321190.7698330.116*
C490.3284 (3)0.4109 (3)0.67465 (13)0.0650 (8)
H490.4044210.4400220.6711940.078*
C500.2543 (2)0.3965 (2)0.48070 (11)0.0368 (5)
H50A0.2616370.3133770.5011220.044*
H50B0.1679600.4304950.4582810.044*
P10.24044 (6)0.07535 (5)0.01129 (3)0.03232 (12)
P20.10162 (6)0.08777 (5)0.07737 (3)0.03266 (12)
P30.40258 (6)0.39950 (5)0.42502 (3)0.02984 (12)
P40.28068 (6)0.50279 (5)0.54122 (3)0.03042 (12)
Cl10.01479 (6)0.17901 (5)0.07470 (3)0.04094 (13)
Cl20.42550 (6)0.71029 (5)0.44483 (3)0.03774 (12)
Ru10.0000000.0000000.0000000.02905 (6)
Ru20.5000000.5000000.5000000.02626 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0352 (12)0.0391 (12)0.0350 (11)0.0106 (10)0.0004 (9)0.0016 (9)
C20.0528 (16)0.0485 (15)0.0529 (15)0.0044 (12)0.0132 (13)0.0080 (12)
C30.0637 (19)0.070 (2)0.0488 (15)0.0018 (16)0.0118 (14)0.0176 (14)
C40.0621 (18)0.075 (2)0.0422 (14)0.0184 (16)0.0144 (13)0.0087 (14)
C50.131 (3)0.0533 (19)0.0632 (19)0.012 (2)0.045 (2)0.0116 (15)
C60.116 (3)0.0436 (16)0.0585 (17)0.0058 (17)0.0352 (19)0.0013 (13)
C70.0372 (12)0.0372 (12)0.0347 (11)0.0011 (10)0.0028 (9)0.0016 (9)
C80.0405 (14)0.0420 (14)0.0638 (16)0.0052 (11)0.0059 (12)0.0038 (12)
C90.064 (2)0.0419 (15)0.077 (2)0.0039 (14)0.0117 (16)0.0098 (14)
C100.074 (2)0.059 (2)0.0662 (19)0.0114 (17)0.0164 (17)0.0121 (15)
C110.068 (2)0.069 (2)0.080 (2)0.0028 (17)0.0368 (18)0.0011 (18)
C120.0553 (17)0.0492 (16)0.0672 (18)0.0062 (13)0.0228 (14)0.0015 (13)
C130.0448 (14)0.0334 (12)0.0441 (12)0.0103 (10)0.0084 (11)0.0082 (10)
C140.0717 (19)0.0393 (14)0.0538 (15)0.0231 (13)0.0008 (14)0.0077 (12)
C150.090 (2)0.0400 (15)0.0640 (18)0.0303 (15)0.0173 (17)0.0013 (13)
C160.072 (2)0.0369 (15)0.087 (2)0.0048 (14)0.0267 (18)0.0146 (15)
C170.060 (2)0.0483 (17)0.116 (3)0.0013 (15)0.0073 (19)0.0279 (18)
C180.0529 (17)0.0387 (15)0.106 (3)0.0092 (13)0.0121 (17)0.0152 (15)
C190.0438 (13)0.0348 (12)0.0360 (11)0.0103 (10)0.0002 (10)0.0055 (9)
C200.0508 (15)0.0503 (15)0.0486 (14)0.0159 (12)0.0009 (12)0.0018 (12)
C210.075 (2)0.0557 (17)0.0475 (15)0.0205 (15)0.0135 (15)0.0010 (13)
C220.091 (2)0.0616 (19)0.0383 (14)0.0152 (17)0.0021 (15)0.0011 (13)
C230.073 (2)0.107 (3)0.0519 (17)0.031 (2)0.0180 (16)0.0018 (18)
C240.0567 (18)0.088 (2)0.0451 (14)0.0320 (16)0.0075 (13)0.0009 (14)
C250.0364 (12)0.0382 (12)0.0413 (12)0.0137 (10)0.0010 (10)0.0041 (10)
C260.0303 (11)0.0437 (13)0.0319 (10)0.0081 (9)0.0046 (9)0.0082 (9)
C270.0464 (14)0.0449 (14)0.0394 (12)0.0139 (11)0.0052 (11)0.0066 (10)
C280.0587 (17)0.0541 (16)0.0403 (13)0.0136 (13)0.0071 (12)0.0019 (11)
C290.0530 (16)0.0711 (19)0.0381 (13)0.0099 (14)0.0122 (12)0.0043 (13)
C300.0605 (18)0.073 (2)0.0493 (15)0.0239 (15)0.0194 (13)0.0145 (14)
C310.0535 (16)0.0523 (15)0.0484 (14)0.0203 (13)0.0157 (12)0.0057 (12)
C320.0388 (12)0.0335 (11)0.0347 (11)0.0077 (9)0.0073 (9)0.0084 (9)
C330.0634 (17)0.0399 (13)0.0488 (14)0.0172 (12)0.0001 (13)0.0069 (11)
C340.102 (3)0.0374 (14)0.0540 (16)0.0188 (16)0.0147 (17)0.0020 (12)
C350.086 (2)0.0451 (17)0.070 (2)0.0146 (16)0.0247 (18)0.0207 (15)
C360.0490 (17)0.069 (2)0.092 (2)0.0055 (15)0.0052 (16)0.0332 (18)
C370.0438 (15)0.0531 (16)0.0671 (17)0.0100 (12)0.0006 (13)0.0255 (13)
C380.0271 (11)0.0360 (12)0.0471 (12)0.0115 (9)0.0015 (9)0.0075 (10)
C390.0362 (13)0.0530 (15)0.0521 (14)0.0105 (11)0.0027 (11)0.0006 (12)
C400.0413 (15)0.0557 (17)0.079 (2)0.0077 (13)0.0069 (14)0.0149 (15)
C410.0394 (15)0.0412 (15)0.106 (3)0.0059 (12)0.0016 (16)0.0015 (16)
C420.0470 (16)0.0516 (16)0.082 (2)0.0097 (13)0.0118 (15)0.0253 (16)
C430.0430 (14)0.0439 (14)0.0562 (15)0.0097 (11)0.0026 (12)0.0129 (12)
C440.0390 (12)0.0374 (12)0.0365 (11)0.0075 (10)0.0071 (10)0.0042 (9)
C450.0570 (17)0.0560 (16)0.0604 (16)0.0260 (14)0.0141 (14)0.0054 (13)
C460.097 (3)0.0551 (19)0.082 (2)0.0276 (18)0.049 (2)0.0074 (17)
C470.131 (4)0.065 (2)0.065 (2)0.006 (2)0.053 (2)0.0077 (17)
C480.112 (3)0.112 (3)0.0382 (16)0.006 (3)0.0014 (19)0.0040 (18)
C490.0579 (18)0.091 (2)0.0390 (13)0.0112 (16)0.0033 (13)0.0053 (14)
C500.0337 (12)0.0424 (12)0.0398 (11)0.0178 (10)0.0023 (9)0.0113 (10)
P10.0305 (3)0.0294 (3)0.0349 (3)0.0063 (2)0.0006 (2)0.0012 (2)
P20.0336 (3)0.0294 (3)0.0359 (3)0.0102 (2)0.0008 (2)0.0045 (2)
P30.0291 (3)0.0318 (3)0.0302 (3)0.0100 (2)0.0023 (2)0.0067 (2)
P40.0276 (3)0.0332 (3)0.0318 (3)0.0104 (2)0.0005 (2)0.0055 (2)
Cl10.0424 (3)0.0307 (3)0.0474 (3)0.0097 (2)0.0013 (2)0.0033 (2)
Cl20.0449 (3)0.0307 (3)0.0378 (3)0.0114 (2)0.0061 (2)0.0006 (2)
Ru10.02943 (13)0.02389 (12)0.03301 (12)0.00670 (9)0.00029 (9)0.00270 (9)
Ru20.02574 (12)0.02694 (12)0.02692 (11)0.00852 (9)0.00124 (9)0.00377 (9)
Geometric parameters (Å, º) top
C1—C21.371 (3)C27—C281.405 (3)
C1—C61.381 (4)C27—H270.9300
C1—P11.844 (2)C28—C291.373 (4)
C2—C31.389 (4)C28—H280.9300
C2—H20.9300C29—C301.379 (4)
C3—C41.365 (4)C29—H290.9300
C3—H30.9300C30—C311.396 (3)
C4—C51.355 (4)C30—H300.9300
C4—H40.9300C31—H310.9300
C5—C61.388 (4)C32—C371.376 (4)
C5—H50.9300C32—C331.393 (3)
C6—H60.9300C32—P31.835 (2)
C7—C81.389 (3)C33—C341.395 (4)
C7—C121.393 (4)C33—H330.9300
C7—P11.829 (2)C34—C351.354 (5)
C8—C91.389 (4)C34—H340.9300
C8—H80.9300C35—C361.374 (5)
C9—C101.378 (5)C35—H350.9300
C9—H90.9300C36—C371.390 (4)
C10—C111.370 (5)C36—H360.9300
C10—H100.9300C37—H370.9300
C11—C121.380 (4)C38—C391.396 (3)
C11—H110.9300C38—C431.396 (3)
C12—H120.9300C38—P41.832 (2)
C13—C181.377 (4)C39—C401.387 (4)
C13—C141.379 (3)C39—H390.9300
C13—P21.829 (2)C40—C411.371 (4)
C14—C151.394 (4)C40—H400.9300
C14—H140.9300C41—C421.380 (4)
C15—C161.353 (4)C41—H410.9300
C15—H150.9300C42—C431.387 (4)
C16—C171.365 (5)C42—H420.9300
C16—H160.9300C43—H430.9300
C17—C181.395 (4)C44—C491.382 (4)
C17—H170.9300C44—C451.389 (4)
C18—H180.9300C44—P41.827 (2)
C19—C241.382 (4)C45—C461.362 (4)
C19—C201.389 (3)C45—H450.9300
C19—P21.838 (2)C46—C471.361 (6)
C20—C211.395 (4)C46—H460.9300
C20—H200.9300C47—C481.377 (6)
C21—C221.376 (4)C47—H470.9300
C21—H210.9300C48—C491.408 (4)
C22—C231.363 (4)C48—H480.9300
C22—H220.9300C49—H490.9300
C23—C241.393 (4)C50—P31.854 (2)
C23—H230.9300C50—P41.866 (2)
C24—H240.9300C50—H50A0.9700
C25—P21.852 (2)C50—H50B0.9700
C25—P11.862 (2)P1—Ru12.3623 (12)
C25—H25A0.9700P2—Ru12.3573 (9)
C25—H25B0.9700P3—Ru22.3882 (9)
C26—C271.381 (3)P4—Ru22.3529 (11)
C26—C311.402 (3)Cl1—Ru12.4426 (10)
C26—P31.852 (2)Cl2—Ru22.4375 (11)
C2—C1—C6117.1 (2)C34—C35—C36120.1 (3)
C2—C1—P1122.55 (18)C34—C35—H35119.9
C6—C1—P1120.11 (19)C36—C35—H35119.9
C1—C2—C3121.3 (3)C35—C36—C37120.0 (3)
C1—C2—H2119.3C35—C36—H36120.0
C3—C2—H2119.3C37—C36—H36120.0
C4—C3—C2120.8 (3)C32—C37—C36120.8 (3)
C4—C3—H3119.6C32—C37—H37119.6
C2—C3—H3119.6C36—C37—H37119.6
C5—C4—C3118.7 (3)C39—C38—C43118.3 (2)
C5—C4—H4120.7C39—C38—P4120.19 (18)
C3—C4—H4120.7C43—C38—P4121.31 (19)
C4—C5—C6120.9 (3)C40—C39—C38120.5 (3)
C4—C5—H5119.5C40—C39—H39119.8
C6—C5—H5119.5C38—C39—H39119.8
C1—C6—C5121.2 (3)C41—C40—C39120.5 (3)
C1—C6—H6119.4C41—C40—H40119.7
C5—C6—H6119.4C39—C40—H40119.7
C8—C7—C12118.8 (2)C40—C41—C42120.0 (3)
C8—C7—P1119.9 (2)C40—C41—H41120.0
C12—C7—P1120.7 (2)C42—C41—H41120.0
C7—C8—C9120.2 (3)C41—C42—C43120.2 (3)
C7—C8—H8119.9C41—C42—H42119.9
C9—C8—H8119.9C43—C42—H42119.9
C10—C9—C8120.1 (3)C42—C43—C38120.6 (3)
C10—C9—H9119.9C42—C43—H43119.7
C8—C9—H9119.9C38—C43—H43119.7
C11—C10—C9120.1 (3)C49—C44—C45118.7 (2)
C11—C10—H10120.0C49—C44—P4121.6 (2)
C9—C10—H10120.0C45—C44—P4119.7 (2)
C10—C11—C12120.4 (3)C46—C45—C44121.3 (3)
C10—C11—H11119.8C46—C45—H45119.3
C12—C11—H11119.8C44—C45—H45119.3
C11—C12—C7120.5 (3)C47—C46—C45120.4 (4)
C11—C12—H12119.8C47—C46—H46119.8
C7—C12—H12119.8C45—C46—H46119.8
C18—C13—C14118.5 (2)C46—C47—C48120.2 (3)
C18—C13—P2117.6 (2)C46—C47—H47119.9
C14—C13—P2124.0 (2)C48—C47—H47119.9
C13—C14—C15120.3 (3)C47—C48—C49119.8 (4)
C13—C14—H14119.8C47—C48—H48120.1
C15—C14—H14119.8C49—C48—H48120.1
C16—C15—C14120.9 (3)C44—C49—C48119.5 (3)
C16—C15—H15119.5C44—C49—H49120.3
C14—C15—H15119.5C48—C49—H49120.3
C15—C16—C17119.4 (3)P3—C50—P496.88 (10)
C15—C16—H16120.3P3—C50—H50A112.4
C17—C16—H16120.3P4—C50—H50A112.4
C16—C17—C18120.6 (3)P3—C50—H50B112.4
C16—C17—H17119.7P4—C50—H50B112.4
C18—C17—H17119.7H50A—C50—H50B109.9
C13—C18—C17120.3 (3)C7—P1—C1100.18 (10)
C13—C18—H18119.8C7—P1—C25104.13 (11)
C17—C18—H18119.8C1—P1—C25109.64 (10)
C24—C19—C20118.2 (2)C7—P1—Ru1123.18 (8)
C24—C19—P2123.36 (19)C1—P1—Ru1124.30 (8)
C20—C19—P2118.27 (19)C25—P1—Ru193.06 (8)
C19—C20—C21120.1 (3)C13—P2—C19100.37 (11)
C19—C20—H20119.9C13—P2—C25107.50 (11)
C21—C20—H20119.9C19—P2—C25107.39 (11)
C22—C21—C20120.8 (3)C13—P2—Ru1123.41 (8)
C22—C21—H21119.6C19—P2—Ru1122.87 (8)
C20—C21—H21119.6C25—P2—Ru193.46 (8)
C23—C22—C21119.4 (3)C32—P3—C26101.27 (10)
C23—C22—H22120.3C32—P3—C50106.71 (11)
C21—C22—H22120.3C26—P3—C50103.65 (11)
C22—C23—C24120.3 (3)C32—P3—Ru2118.24 (8)
C22—C23—H23119.9C26—P3—Ru2129.47 (8)
C24—C23—H23119.9C50—P3—Ru294.28 (7)
C19—C24—C23121.2 (3)C44—P4—C38101.93 (11)
C19—C24—H24119.4C44—P4—C50102.81 (11)
C23—C24—H24119.4C38—P4—C50106.93 (11)
P2—C25—P193.90 (11)C44—P4—Ru2125.32 (8)
P2—C25—H25A112.9C38—P4—Ru2121.47 (8)
P1—C25—H25A112.9C50—P4—Ru295.10 (7)
P2—C25—H25B112.9P2i—Ru1—P2180.0
P1—C25—H25B112.9P2i—Ru1—P1109.78 (3)
H25A—C25—H25B110.4P2—Ru1—P170.22 (3)
C27—C26—C31118.7 (2)P2i—Ru1—P1i70.21 (3)
C27—C26—P3121.67 (17)P2—Ru1—P1i109.79 (3)
C31—C26—P3119.68 (18)P1—Ru1—P1i180.0
C26—C27—C28120.4 (2)P2i—Ru1—Cl195.43 (4)
C26—C27—H27119.8P2—Ru1—Cl184.58 (4)
C28—C27—H27119.8P1—Ru1—Cl186.47 (3)
C29—C28—C27120.3 (3)P1i—Ru1—Cl193.53 (3)
C29—C28—H28119.8P2i—Ru1—Cl1i84.57 (4)
C27—C28—H28119.8P2—Ru1—Cl1i95.42 (4)
C28—C29—C30120.2 (2)P1—Ru1—Cl1i93.53 (3)
C28—C29—H29119.9P1i—Ru1—Cl1i86.47 (3)
C30—C29—H29119.9Cl1—Ru1—Cl1i180.00 (3)
C29—C30—C31119.8 (3)P4ii—Ru2—P4180.0
C29—C30—H30120.1P4ii—Ru2—P3ii71.90 (3)
C31—C30—H30120.1P4—Ru2—P3ii108.09 (3)
C30—C31—C26120.6 (3)P4ii—Ru2—P3108.09 (3)
C30—C31—H31119.7P4—Ru2—P371.91 (3)
C26—C31—H31119.7P3ii—Ru2—P3180.0
C37—C32—C33118.4 (2)P4ii—Ru2—Cl285.27 (3)
C37—C32—P3117.49 (19)P4—Ru2—Cl294.73 (3)
C33—C32—P3124.08 (19)P3ii—Ru2—Cl282.43 (3)
C32—C33—C34120.2 (3)P3—Ru2—Cl297.57 (3)
C32—C33—H33119.9P4ii—Ru2—Cl2ii94.73 (3)
C34—C33—H33119.9P4—Ru2—Cl2ii85.27 (3)
C35—C34—C33120.4 (3)P3ii—Ru2—Cl2ii97.57 (4)
C35—C34—H34119.8P3—Ru2—Cl2ii82.43 (4)
C33—C34—H34119.8Cl2—Ru2—Cl2ii180.00 (4)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl1i0.932.753.302 (3)119
C34—H34···Cl2iii0.932.913.813 (3)165
C2—H2···Cl10.932.753.429 (3)131
C27—H27···Cl20.932.663.506 (3)152
Symmetry codes: (i) x, y, z; (iii) x, y1, z.
 

Acknowledgements

Special thanks are to Dr B. Vatsha at the Department of Chemical Sciences, University of Johannesburg, South Africa, for collecting the X-ray diffraction data.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 120842).

References

First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakravarty, A. R., Cotton, F. A. & Schwotzer, W. (1984). Inorg. Chim. Acta, 84, 179–185.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFigueira, J., Rodrigues, J. & Rissanen, K. (2006). Acta Cryst. E62, m3594–m3596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLevina, A., Mitra, A. & Lay, P. A. (2009). Metallomics, 1, 458–470.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLynam, J. M., Nixon, T. D. & Whitwood, A. C. (2008). J. Organomet. Chem. 693, 3103–3110.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaha, S., Averkiev, B. & Sues, P. E. (2022). Organometallics, 41, 2879–2890.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTai, C. C., Pitts, J., Linehan, J. C., Main, A. D., Munshi, P. & Jessop, P. G. (2002). Inorg. Chem. 41, 1606–1614.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTreigerman, Z. & Sasson, Y. (2017). ChemistrySelect, 2, 5816–5823.  Web of Science CSD CrossRef CAS Google Scholar
First citationWesselbaum, S., vom Stein, T., Klankermayer, J. & Leitner, W. (2012). Angew. Chem. Int. Ed. 51, 7499–7502.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYounus, H. A., Su, W., Ahmad, N., Chen, S. & Verpoort, F. (2015). Adv. Synth. Catal. 357, 283–330.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146