organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-3-(1,3-Di­phenyl-1H-pyrazol-4-yl)-1-(thia­zol-2-yl)prop-2-en-1-one

crossmark logo

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 7 November 2023; accepted 16 November 2023; online 21 November 2023)

In the title mol­ecule, C21H15N3OS, the C5=C6 double bond in the central enone group adopts a trans configuration. The dihedral angle between planes of the thia­zole and pyrazole rings is 6.6 (2)°. In the crystal, pairs of C—H⋯O hydrogen bonds generate inversion dimers and another pair of C—H⋯N hydrogen bonds link the dimers into chains propagating along a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones commonly contain a C6—C3—C6 skeleton, of which C3 represents an α,β-unsaturated carbonyl (enone) group, and the two C6s represent phenyl groups attached to both ends of the enone group. Chalcones, which are secondary metabolites of plants, have been shown to possess diverse biological activities including anti­cancer (Ouyang et al., 2021[Ouyang, Y., Li, J., Chen, X., Fu, X., Sun, S. & Wu, Q. (2021). Biomolecules, 11, 894.]), anti-diabetic (Welday Kahssay et al., 2021[Welday Kahssay, S., Hailu, G. S. & Taye Desta, K. (2021). Drug. Des. Dev. Ther. 15, 3119-3129.]), anti-microbial (Henry et al. 2020[Henry, E. J., Bird, S. J., Gowland, P., Collins, M. & Cassella, J. P. (2020). J. Antibiot. 73, 299-308.]), and anti­viral (Fu et al., 2020[Fu, Y., Liu, D., Zeng, H., Ren, X., Song, B., Hu, D. & Gan, X. (2020). RSC Adv. 10, 24483-24490.]). According to recent studies, heterocycles exhibit better physiological activity than phenyl groups, so research is actively underway to replace the phenyl groups of chalcone with heterocycles (Elkanzi et al., 2022[Elkanzi, N. A. A., Hrichi, H., Alolayan, R. A., Derafa, W., Zahou, F. M. & Bakr, R. B. (2022). ACS Omega, 7, 27769-27786.]). As a continuation of our research program in this area (Jeong et al., 2020[Jeong, M., Jung, E., Lee, Y. H., Seo, J. K., Ahn, S., Koh, D., Lim, Y. & Shin, S. Y. (2020). Int. J. Mol. Sci. 21, 5080.]; Shin et al., 2020[Shin, S. Y., Lee, Y. H., Lim, Y., Lee, H. J., Lee, J. H., Yoo, M., Ahn, S. & Koh, D. (2020). Crystals, 10, 911.]), the title chalcone containing a heterocycle was designed and synthesized.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The trans configuration of the C5=C6 double bond in the central enone group is confirmed by the dihedral angle of C1—C5=C6—C7 of 179.25 (19)°. The title chalcone mol­ecule has a thia­zole ring and a pyrazole ring attached to both sides of the enone group. The dihedral angle between the thia­zole ring (C2/N1/C3/C4/S1) and the pyrazole ring (C7/C8/N2/N3/C9) is 6.6 (2)°, indicating that the two rings are almost in the same plane. The pyrazole ring (C7/C8/N2/ N3/C9) has C10–C15 and C16–C21 phenyl groups attached to atoms C8 and N3, respectively. The C10–C15 and C16–C21 phenyl rings make dihedral angles with the pyrazole ring of 38.6 (1) and 25.0 (2)°, respectively, and the dihedral angle between the phenyl rings is 59.9 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.

In the crystal, pairs of C—H⋯O hydrogen bonds generate inversion dimers with graph-set notation R22 (22) and another pair of C—H⋯N hydrogen bonds link the dimers into chains propagating along [100] (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.94 2.56 3.451 (3) 158
C4—H4⋯N2ii 0.94 2.54 3.473 (3) 172
C13—H13⋯O1iii 0.94 2.41 3.321 (3) 162
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, y, z-1]; (iii) [-x+1, -y+2, -z+1].
[Figure 2]
Figure 2
Part of the crystal structure of the title compound, showing the weak C—H⋯O hydrogen bonds forming R22(22) dimers as blue lines. An additional pair of inter­molecular hydrogen C—H⋯N bonds (yellow lines) link the dimers into a chain.

Synthesis and crystallization

1,3-Diphenyl-1H-pyrazole-4-carbaldehyde (248 mg, 1 mmol) and 1-(thia­zol-2-yl)ethanone (127 mg, 1 mmol) were dissolved in 20 ml of ethanol, then the temperature was set to to 276–277 K using an ice bath. To the cooled reaction mixture was added 1.0 ml of 40% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 20 h.

This mixture was poured into iced water (50 ml) and was acidified (pH = 3) with 3 N HCl solution to give a precipitate. Filtration and washing with water afforded the crude solid of the title compound (232 mg, 65%). Recrystallization of the solid from ethanol solution gave crystals which were suitable for X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H15N3OS
Mr 357.42
Crystal system, space group Monoclinic, P21/c
Temperature (K) 223
a, b, c (Å) 9.3312 (19), 19.124 (4), 9.977 (2)
β (°) 95.453 (7)
V3) 1772.4 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.14 × 0.14 × 0.06
 
Data collection
Diffractometer Bruker PHOTON III M14
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.673, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 39547, 4419, 2775
Rint 0.087
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.02
No. of reflections 4419
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

(E)-3-(1,3-Diphenyl-1H-pyrazol-4-yl)-1-(thiazol-2-yl)prop-2-en-1-one top
Crystal data top
C21H15N3OSF(000) = 744
Mr = 357.42Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.3312 (19) ÅCell parameters from 5689 reflections
b = 19.124 (4) Åθ = 2.2–27.4°
c = 9.977 (2) ŵ = 0.20 mm1
β = 95.453 (7)°T = 223 K
V = 1772.4 (6) Å3Block, colourless
Z = 40.14 × 0.14 × 0.06 mm
Data collection top
Bruker PHOTON III M14
diffractometer
Rint = 0.087
φ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1212
Tmin = 0.673, Tmax = 0.746k = 2525
39547 measured reflectionsl = 1313
4419 independent reflections1 standard reflections every 1 reflections
2775 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.6998P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4419 reflectionsΔρmax = 0.23 e Å3
235 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2731 (2)0.79486 (10)0.16701 (19)0.0354 (5)
C20.1738 (2)0.75669 (10)0.06690 (19)0.0341 (4)
C30.0728 (2)0.67220 (12)0.0560 (2)0.0479 (6)
H30.05730.62580.08520.058*
C40.0034 (2)0.72640 (12)0.1141 (2)0.0507 (6)
H40.07600.72230.18580.061*
C50.3616 (2)0.75244 (11)0.26503 (19)0.0344 (4)
H50.35270.70350.26260.041*
C60.4552 (2)0.78221 (11)0.35826 (19)0.0351 (5)
H60.46250.83120.35740.042*
C70.5459 (2)0.74495 (10)0.45999 (19)0.0334 (4)
C80.6387 (2)0.77245 (10)0.56977 (18)0.0310 (4)
C90.5630 (2)0.67337 (11)0.4714 (2)0.0381 (5)
H90.51680.63960.41410.046*
C100.6660 (2)0.84560 (10)0.61250 (19)0.0319 (4)
C110.5555 (2)0.89512 (11)0.6078 (2)0.0377 (5)
H110.46130.88230.57540.045*
C120.5843 (2)0.96321 (11)0.6506 (2)0.0439 (5)
H120.50950.99630.64620.053*
C130.7219 (3)0.98278 (11)0.6996 (2)0.0469 (6)
H130.74081.02900.72810.056*
C140.8320 (2)0.93384 (12)0.7065 (2)0.0469 (5)
H140.92560.94660.74100.056*
C150.8040 (2)0.86618 (11)0.6625 (2)0.0390 (5)
H150.87950.83350.66650.047*
C160.7007 (2)0.59418 (10)0.6352 (2)0.0343 (4)
C170.6949 (2)0.53556 (11)0.5536 (2)0.0469 (6)
H170.66460.53960.46140.056*
C180.7338 (3)0.47096 (11)0.6082 (2)0.0508 (6)
H180.72970.43110.55280.061*
C190.7785 (2)0.46486 (11)0.7432 (2)0.0460 (5)
H190.80410.42090.78040.055*
C200.7852 (2)0.52363 (11)0.8236 (2)0.0430 (5)
H200.81690.51950.91550.052*
C210.7461 (2)0.58883 (10)0.7711 (2)0.0368 (5)
H210.75020.62860.82680.044*
N10.17339 (18)0.68897 (9)0.04742 (17)0.0402 (4)
N20.70582 (17)0.72116 (8)0.64143 (16)0.0331 (4)
N30.65750 (17)0.66057 (8)0.57930 (16)0.0346 (4)
O10.27593 (18)0.85888 (7)0.16369 (15)0.0524 (4)
S10.05109 (6)0.80275 (3)0.03886 (6)0.04908 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0378 (11)0.0392 (12)0.0279 (10)0.0014 (9)0.0039 (9)0.0013 (8)
C20.0328 (10)0.0415 (11)0.0265 (10)0.0015 (8)0.0045 (8)0.0049 (8)
C30.0501 (13)0.0512 (13)0.0395 (13)0.0160 (11)0.0110 (10)0.0025 (10)
C40.0437 (13)0.0643 (15)0.0406 (13)0.0163 (11)0.0145 (10)0.0100 (11)
C50.0363 (10)0.0367 (11)0.0287 (10)0.0006 (8)0.0046 (8)0.0002 (8)
C60.0366 (11)0.0390 (11)0.0287 (10)0.0005 (8)0.0028 (9)0.0028 (8)
C70.0315 (10)0.0399 (11)0.0273 (10)0.0008 (8)0.0053 (8)0.0000 (8)
C80.0284 (9)0.0375 (11)0.0265 (10)0.0008 (8)0.0006 (8)0.0003 (8)
C90.0387 (11)0.0428 (12)0.0304 (11)0.0017 (9)0.0091 (9)0.0023 (9)
C100.0329 (10)0.0375 (11)0.0243 (9)0.0009 (8)0.0031 (8)0.0022 (8)
C110.0333 (11)0.0452 (12)0.0332 (11)0.0022 (9)0.0037 (9)0.0018 (9)
C120.0494 (13)0.0415 (12)0.0405 (12)0.0103 (10)0.0022 (10)0.0027 (10)
C130.0605 (15)0.0383 (12)0.0414 (13)0.0072 (10)0.0023 (11)0.0039 (10)
C140.0422 (12)0.0509 (13)0.0455 (13)0.0087 (10)0.0063 (10)0.0054 (11)
C150.0339 (11)0.0428 (12)0.0387 (12)0.0018 (9)0.0054 (9)0.0006 (9)
C160.0319 (10)0.0370 (11)0.0329 (11)0.0023 (8)0.0027 (8)0.0000 (8)
C170.0585 (14)0.0443 (13)0.0355 (12)0.0063 (11)0.0076 (11)0.0071 (10)
C180.0562 (14)0.0394 (12)0.0549 (15)0.0064 (11)0.0044 (12)0.0097 (11)
C190.0418 (12)0.0362 (12)0.0584 (15)0.0019 (9)0.0039 (11)0.0052 (10)
C200.0422 (12)0.0475 (13)0.0375 (12)0.0017 (10)0.0058 (10)0.0091 (10)
C210.0383 (11)0.0391 (11)0.0317 (11)0.0005 (9)0.0034 (9)0.0016 (9)
N10.0417 (10)0.0415 (10)0.0350 (10)0.0047 (8)0.0079 (8)0.0026 (8)
N20.0339 (9)0.0344 (9)0.0294 (9)0.0003 (7)0.0051 (7)0.0020 (7)
N30.0372 (9)0.0365 (9)0.0284 (9)0.0006 (7)0.0064 (7)0.0031 (7)
O10.0707 (11)0.0368 (9)0.0453 (9)0.0022 (7)0.0176 (8)0.0020 (7)
S10.0457 (3)0.0520 (4)0.0454 (3)0.0003 (3)0.0178 (3)0.0110 (3)
Geometric parameters (Å, º) top
C1—O11.225 (2)C11—C121.389 (3)
C1—C51.464 (3)C11—H110.9400
C1—C21.488 (3)C12—C131.381 (3)
C2—N11.310 (3)C12—H120.9400
C2—S11.7235 (19)C13—C141.387 (3)
C3—C41.356 (3)C13—H130.9400
C3—N11.366 (3)C14—C151.383 (3)
C3—H30.9400C14—H140.9400
C4—S11.698 (2)C15—H150.9400
C4—H40.9400C16—C171.383 (3)
C5—C61.341 (3)C16—C211.386 (3)
C5—H50.9400C16—N31.429 (2)
C6—C71.446 (3)C17—C181.384 (3)
C6—H60.9400C17—H170.9400
C7—C91.382 (3)C18—C191.377 (3)
C7—C81.430 (2)C18—H180.9400
C8—N21.334 (2)C19—C201.379 (3)
C8—C101.478 (3)C19—H190.9400
C9—N31.348 (2)C20—C211.388 (3)
C9—H90.9400C20—H200.9400
C10—C151.393 (3)C21—H210.9400
C10—C111.397 (3)N2—N31.370 (2)
O1—C1—C5124.01 (18)C11—C12—H12119.7
O1—C1—C2119.07 (17)C12—C13—C14119.6 (2)
C5—C1—C2116.91 (17)C12—C13—H13120.2
N1—C2—C1125.29 (17)C14—C13—H13120.2
N1—C2—S1114.98 (14)C15—C14—C13119.9 (2)
C1—C2—S1119.70 (15)C15—C14—H14120.0
C4—C3—N1116.0 (2)C13—C14—H14120.0
C4—C3—H3122.0C14—C15—C10121.2 (2)
N1—C3—H3122.0C14—C15—H15119.4
C3—C4—S1110.21 (17)C10—C15—H15119.4
C3—C4—H4124.9C17—C16—C21120.48 (19)
S1—C4—H4124.9C17—C16—N3119.78 (18)
C6—C5—C1121.15 (19)C21—C16—N3119.73 (17)
C6—C5—H5119.4C16—C17—C18119.9 (2)
C1—C5—H5119.4C16—C17—H17120.1
C5—C6—C7125.23 (19)C18—C17—H17120.1
C5—C6—H6117.4C19—C18—C17120.2 (2)
C7—C6—H6117.4C19—C18—H18119.9
C9—C7—C8104.15 (16)C17—C18—H18119.9
C9—C7—C6126.98 (18)C18—C19—C20119.5 (2)
C8—C7—C6128.87 (18)C18—C19—H19120.2
N2—C8—C7111.06 (17)C20—C19—H19120.2
N2—C8—C10118.81 (16)C19—C20—C21121.1 (2)
C7—C8—C10130.13 (17)C19—C20—H20119.4
N3—C9—C7107.91 (17)C21—C20—H20119.4
N3—C9—H9126.0C16—C21—C20118.71 (19)
C7—C9—H9126.0C16—C21—H21120.6
C15—C10—C11118.33 (18)C20—C21—H21120.6
C15—C10—C8119.95 (17)C2—N1—C3109.66 (18)
C11—C10—C8121.69 (17)C8—N2—N3105.17 (15)
C12—C11—C10120.31 (19)C9—N3—N2111.72 (16)
C12—C11—H11119.8C9—N3—C16127.74 (16)
C10—C11—H11119.8N2—N3—C16120.41 (15)
C13—C12—C11120.6 (2)C4—S1—C289.14 (10)
C13—C12—H12119.7
O1—C1—C2—N1170.4 (2)C11—C10—C15—C140.1 (3)
C5—C1—C2—N110.0 (3)C8—C10—C15—C14178.33 (19)
O1—C1—C2—S17.2 (3)C21—C16—C17—C180.4 (3)
C5—C1—C2—S1172.39 (15)N3—C16—C17—C18178.6 (2)
N1—C3—C4—S10.3 (3)C16—C17—C18—C190.1 (4)
O1—C1—C5—C61.0 (3)C17—C18—C19—C200.5 (4)
C2—C1—C5—C6179.36 (19)C18—C19—C20—C210.8 (3)
C1—C5—C6—C7179.25 (19)C17—C16—C21—C200.1 (3)
C5—C6—C7—C96.8 (3)N3—C16—C21—C20178.92 (18)
C5—C6—C7—C8173.9 (2)C19—C20—C21—C160.5 (3)
C9—C7—C8—N20.1 (2)C1—C2—N1—C3177.27 (19)
C6—C7—C8—N2179.51 (19)S1—C2—N1—C30.4 (2)
C9—C7—C8—C10179.0 (2)C4—C3—N1—C20.5 (3)
C6—C7—C8—C101.5 (3)C7—C8—N2—N30.0 (2)
C8—C7—C9—N30.2 (2)C10—C8—N2—N3179.03 (16)
C6—C7—C9—N3179.63 (19)C7—C9—N3—N20.2 (2)
N2—C8—C10—C1538.3 (3)C7—C9—N3—C16175.49 (18)
C7—C8—C10—C15142.9 (2)C8—N2—N3—C90.2 (2)
N2—C8—C10—C11139.93 (19)C8—N2—N3—C16175.91 (17)
C7—C8—C10—C1138.9 (3)C17—C16—N3—C926.8 (3)
C15—C10—C11—C120.8 (3)C21—C16—N3—C9152.2 (2)
C8—C10—C11—C12179.01 (18)C17—C16—N3—N2157.79 (19)
C10—C11—C12—C130.6 (3)C21—C16—N3—N223.2 (3)
C11—C12—C13—C140.2 (3)C3—C4—S1—C20.04 (19)
C12—C13—C14—C150.9 (3)N1—C2—S1—C40.24 (17)
C13—C14—C15—C100.8 (3)C1—C2—S1—C4177.61 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.942.563.451 (3)158
C4—H4···N2ii0.942.543.473 (3)172
C13—H13···O1iii0.942.413.321 (3)162
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z1; (iii) x+1, y+2, z+1.
 

Funding information

The author acknowledge financial support from the Basic Science Research Program (award No. NRF-2021R1F1A1052699).

References

First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElkanzi, N. A. A., Hrichi, H., Alolayan, R. A., Derafa, W., Zahou, F. M. & Bakr, R. B. (2022). ACS Omega, 7, 27769–27786.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFu, Y., Liu, D., Zeng, H., Ren, X., Song, B., Hu, D. & Gan, X. (2020). RSC Adv. 10, 24483–24490.  CrossRef CAS Google Scholar
First citationHenry, E. J., Bird, S. J., Gowland, P., Collins, M. & Cassella, J. P. (2020). J. Antibiot. 73, 299–308.  CrossRef CAS Google Scholar
First citationJeong, M., Jung, E., Lee, Y. H., Seo, J. K., Ahn, S., Koh, D., Lim, Y. & Shin, S. Y. (2020). Int. J. Mol. Sci. 21, 5080.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationOuyang, Y., Li, J., Chen, X., Fu, X., Sun, S. & Wu, Q. (2021). Biomolecules, 11, 894.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, S. Y., Lee, Y. H., Lim, Y., Lee, H. J., Lee, J. H., Yoo, M., Ahn, S. & Koh, D. (2020). Crystals, 10, 911.  Web of Science CSD CrossRef Google Scholar
First citationWelday Kahssay, S., Hailu, G. S. & Taye Desta, K. (2021). Drug. Des. Dev. Ther. 15, 3119–3129.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146