organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-{1-[(6R,S)-3,5,5,6,8,8-Hexa­methyl-5,6,7,8-tetra­hydro­naphthalen-2-yl]ethyl­­idene}-N-methyl­hydrazinecarbo­thio­amide

crossmark logo

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima 1000, Campus Universitário, 97105-900 Santa Maria-RS, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s/n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil
*Correspondence e-mail: leandro_bresolin@yahoo.com.br

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 24 November 2023; accepted 26 November 2023; online 30 November 2023)

The reaction between a racemic mixture of (R,S)-fixolide and 4-methyl­thio­semicarbazide in ethanol with a 1:1 stoichiometric ratio and catalysed with HCl, yielded the title compound, C20H31N3S [common name: (R,S)-fixolide 4-methyl­thio­semicarbazone]. There is one crystallographically independent mol­ecule in the asymmetric unit, which is disordered over the aliphatic ring [site-occupancy ratio = 0.667 (13):0.333 (13)]. The disorder includes the chiral C atom, the neighbouring methyl­ene group and the methyl H atoms of the methyl group bonded to the chiral C atom. The maximum deviations from the mean plane through the disordered aliphatic ring amount to 0.328 (6) and −0.334 (6) Å [r.m.s.d. = 0.2061 Å], and −0.3677 (12) and 0.3380 (12) Å [r.m.s.d. = 0.2198 Å] for the two different sites. Both fragments show a half-chair conformation. Additionally, the N—N—C(=S)—N entity is approximately planar, with the maximum deviation from the mean plane through the selected atoms being 0.0135 (18) Å [r.m.s.d. = 0.0100 Å]. The mol­ecule is not planar due to the dihedral angle between the thio­semicarbazone entity and the aromatic ring, which amounts to 51.8 (1)°, and due to the sp3-hybridized carbon atoms of the fixolide fragment. In the crystal, the mol­ecules are connected by H⋯S inter­actions with graph-set motif C(4), forming a mono-periodic hydrogen-bonded ribbon along [100]. The Hirshfeld surface analysis suggests that the major contributions for the crystal cohesion are [(R,S)-isomers considered separately] H⋯H (75.7%), H⋯S/S⋯H (11.6%), H⋯C/C⋯H (8.3% and H⋯N/N⋯H (4.4% for both of them).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The thio­semicarbazone chemistry is essentially inter­disciplinary and these mol­ecules, characterized by the R1R2N—N(H)—C(=S)—NR3R4 functional group, play an important role in a wide range of scientific disciplines, including biochemistry, coordination chemistry and materials science. Originally, thio­semicarbazone derivatives were the major product of a condensation reaction employed in the organic chemistry for the detection of ketones and aldehydes, using thio­semicarbazide as analytical reagent (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]). As a result of the huge structural diversity of ketones and aldehydes, a large number of thio­semicarbazone derivatives can be easily obtained for various applications. One of the earliest reports on the application of the thio­semicarbazones can be traced back to the middle of the 1940s, when these compounds were proved to be effective on Mycobacterium tuberculosis growth inhibition (Domagk et al., 1946[Domagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.]). Until today, the biological activity of thio­semicarbazone derivatives remains one of the most important approaches for this chemistry. Thio­semicarbazone derivatives are well known for their biological properties, e.g., anti­fungal (Bajaj et al., 2021[Bajaj, K., Buchanan, R. M. & Grapperhaus, C. A. (2021). J. Inorg. Biochem. 225, 111620.]), anti­tumoural (Farias et al., 2021[Farias, R. L., Polez, A. M. R., Silva, D. E. S., Zanetti, R. D., Moreira, M. B., Batista, V. S., Reis, B. L., Nascimento-Júnior, N. M., Rocha, F. V., Lima, M. A., Oliveira, A. B., Ellena, J., Scarim, C. B., Zambom, C. R., Brito, L. D., Garrido, S. S., Melo, A. P. L., Bresolin, L., Tirloni, B., Pereira, J. C. M. & Netto, A. V. G. (2021). Mater. Sci. Eng. C, 121, 111815.]; Rocha et al., 2019[Rocha, F. V., Farias, R. L., Lima, M. A., Batista, V. S., Nascimento-Júnior, N. M., Garrido, S. S., Leopoldino, A. M., Goto, R. N., Oliveira, A. B., Beck, J., Landvogt, C., Mauro, A. E. & Netto, A. V. G. (2019). J. Inorg. Biochem. 199, 110725.]; Siqueira et al., 2019[Siqueira, L. R. P. de, de Moraes Gomes, P. A. T., de Lima Ferreira, L. P., de Melo Rêgo, M. J. B. & Leite, A. C. L. (2019). Eur. J. Med. Chem. 170, 237-260.]) and anti-inflammatory pathologies (Kanso et al., 2021[Kanso, F., Khalil, A., Noureddine, H. & El-Makhour, Y. (2021). Int. Immunopharmacol. 96, 107778.]), to cite just a few examples. For instance, thio­semicarbazone coordination compounds also have applications in diagnostic medical imaging and theranostics (Dilworth & Hueting, 2012[Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3-15.]; Parrilha et al., 2022[Parrilha, G. L., dos Santos, R. G. & Beraldo, H. (2022). Coord. Chem. Rev. 458, 214418.]). In addition, thio­semicarbazone complexes are employed as single-mol­ecule precursors in the synthesis of nanostructured materials through thermal decomposition techniques. Thus, CoII, CdII and ZnII complexes are used for the synthesis of CoS and Co9S8 (Pawar & Garje, 2015[Pawar, A. S. & Garje, S. S. (2015). Bull. Mater. Sci. 38, 1843-1850.]), CdS (Pawar et al., 2016[Pawar, A. S., Masikane, S. C., Mlowe, S., Garje, S. S. & Revaprasadu, N. (2016). Eur. J. Inorg. Chem. 2016, 366-372.]) and ZnS (Palve & Garje, 2011[Palve, A. M. & Garje, S. S. (2011). J. Cryst. Growth, 326, 157-162.]) nanoparticles, respectively. For a review of the coordination chemistry of thio­semicarbazones, showing the different bonding modes with diverse metal centres and Lewis acidity, see: Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). Finally, thio­semicarbazone derivatives can act as organic corrosion inhibitors, e.g., as a layer of protection for carbon steel AISI 1020 in a hydro­chloric acid medium (Goulart et al., 2013[Goulart, C. M., Esteves-Souza, A., Martinez-Huitle, C. A., Rodrigues, C. J. F., Maciel, M. A. M. & Echevarria, A. (2013). Corros. Sci. 67, 281-291.]) and for a theoretical study of the corrosion inhibition concerning dimeric thio­semicarbazones, see: Silva & Martínez-Huitle (2021[Silva, Á. R. L. & Martínez-Huitle, C. A. (2021). J. Mol. Liq. 343, 117660.]).

As part of our inter­est in this chemistry, we report herein the synthesis, crystal structure and Hirshfeld analysis of the title (R,S)-fixolide 4-methyl­thio­semicarbazone compound. The mol­ecular structure matches the asymmetric unit, which is disordered over the aliphatic ring, with the site-occupancy ratio being 0.667 (13):0.333 (13) for the A- and B-labelled atoms, respectively (Fig. 1[link]). A racemic mixture of fixolide was employed as starting material. As the disorder includes the C10 chiral centre, with C10A—H10A and C10B—HB bonds in opposite directions, (R)- and (S)-isomers are observed. The C9 atom was also split over two positions into C9A and C9B, with the same respective occupancy ratio. The C18 atom is itself not disordered, but the H atoms attached to the carbon atom of this methyl group were refined as disordered to get the best orientations for the C—H bonds, since it is bonded to the sp3-hybridized C10A and C10B atoms. The displacement ellipsoids for C16, C17, C19 and C20 are prolate-like, but no disorder was suggested by the data analysis.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 40% probability level. Disordered carbon atoms are drawn with 30% transparency and labelled C9A/C10A (R)-isomer [s.o.f. = 0.667 (13)] and C9B/C10B for the (S)-isomer [s.o.f. = 0.333 (13)].

The maximum deviations from the mean plane through the C7/C8/C9A/C10A/C11/C12 atoms amounts to 0.328 (6) Å for C9A and −0.334 (6) Å for C10A (r.m.s.d. = 0.2061 Å). The torsion angle for the C8/C9A/C10A/C11 atom chain is −65.3 (7)° and the aliphatic ring adopts a half-chair conformation. Considering the C7/C8/C9B/C10B/C11/C12 entity, the deviations amount to −0.3677 (12) Å for C9B and 0.3380 (12) Å for C10B (r.m.s.d. = 0.2198 Å) and the torsion angle for the C8/C9B/C10B/C11 chain is 70.2 (14)°, which also resembles a half-chair conformation for the ring.

Concerning the thio­semicarbazone entity, the torsion angles for the N3/N2/C2/N1 and the N3/N2/C2/S1 atom chains amount to 1.2 (4) and −178.1 (2)°, respectively. The maximum deviation from the mean plane through the N3/N2/C2/S1/N1 atoms is 0.0135 (18) Å for N2 (r.m.s.d. = 0.0100 Å), thus, the fragment is approximately planar. The mol­ecule of the title compound is not planar due to the sp3-hybridized C atoms of the apliphatic ring and due to the dihedral angle between the mean plane through the N3/N2/C2/S1/N1 atoms and the mean plane through the aromatic ring of the fixolide fragment, which amounts to 51.8 (1)°.

In the crystal, the mol­ecules are connected by N—H⋯S inter­actions, with graph-set motif C(4), forming a mono-periodic hydrogen-bonded ribbon along [100] (Fig. 2[link], Table 1[link]). The mol­ecular arrangement resembles a zigzag or a herringbone motif when viewed along [100] (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.87 3.445 (3) 126
Symmetry code: (i) x+1, y, z.
[Figure 2]
Figure 2
Graphical representation of the H⋯S inter­molecular inter­actions for the title compound viewed along [010]. The inter­actions are drawn as dashed lines, with graph-set motif C(4), and connect the mol­ecules into a mono-periodic hydrogen-bonded ribbon along [100]. Only the major occupied sites are drawn for clarity. [Symmetry codes: (i) x + 1, y, z; (ii) x − 1, y, z.]
[Figure 3]
Figure 3
Section of the crystal packing of the title compound. The arrangement of the mol­ecules shows a zigzag or a herringbone motif when viewed along [100]. Only the major occupied sites are drawn for clarity.

The Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]), the graphical representations and the two-dimensional Hirshfeld surface fingerprint plots for the title compound were performed using CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia.]). The Hirshfeld surface analysis of the crystal structure indicates that the most relevant inter­molecular inter­actions for crystal cohesion are H⋯H (75.7%), H⋯S/S⋯H (11.6%), H⋯C/C⋯H (8.3% and H⋯N/N⋯H (4.4%). The graphics of the Hirshfeld surface of the title compound are represented with transparency in two opposite side-views and separate figures for clarity (Fig. 4[link]). The locations of the strongest inter­molecular contacts are indicated in red, i.e, the regions around the H1 and S1 atoms. These atoms are those involved in the H⋯S inter­actions shown in a previous figure (Fig. 2[link]) and in Table 1[link].

[Figure 4]
Figure 4
Two opposite side-views in separate figures of the Hirshfeld surface graphical representation (dnorm) for the title compound. The surface is drawn with transparency and simplified for clarity. The regions with strongest inter­molecular inter­actions are shown in red. (dnorm range: −0.142 to 1.510.)

Although the Hirshfeld surface graphical representation shows, in red, locations of inter­molecular contacts involving H atoms attached to C atoms, no C—H⋯H—C inter­molecular inter­actions can be assigned. The fixolide fragment is a non-polar organic periphery and only weak inter­molecular inter­actions, e.g., London dispersion forces, can be considered. The contribution of H⋯H inter­molecular inter­actions in the supra­molecular arrangement of crystal structures has been studied (Almeida et al., 2017[Almeida, L. R. de, Carvalho, P. S. Jr, Napolitano, H. B., Oliveira, S. S., Camargo, A. J., Figueredo, A. S., de Aquino, G. L. B. & Carvalho-Silva, V. H. (2017). Cryst. Growth Des. 17, 5145-5153.]), but this is not the focus of the present work. The crystal structure of the title compound is disordered, the H atoms were placed geometrically, the R-factor amounts to 0.079 and no additional experiment for the inter­molecular inter­actions was performed, so it is not recommended to assure such contacts here. Additionally, no short H⋯H inter­molecular distances were observed.

The contributions to the crystal packing are shown as two-dimensional Hirshfeld surface fingerprint plots with cyan dots (Fig. 5[link]). The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface (in Å).

[Figure 5]
Figure 5
The Hirshfeld surface two-dimensional fingerprint plot for the the title compound showing the (a) H⋯H (75.7%), (b) H⋯S/S⋯H (11.6%), (c) H⋯C/C⋯H (8.3%) and (d) H⋯N/N⋯H (4.4%) contacts in detail (cyan dots) and the contributions of the inter­actions for the crystal packing. The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface (in Å).

To the best of our knowledge and from using database tools such as SciFinder (Chemical Abstracts Service, 2023[Chemical Abstracts Service (2023). Columbus, Ohio, USA (accessed via SciFinder on November 18, 2023).]) and the Cambridge Structural Database (CSD, accessed via WebCSD on November 18, 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), this work represents the first report on the synthesis, crystal structure and Hirshfeld analysis of the fixolide 4-methyl­thio­semicarbazone mol­ecule. Thus, two crystal structures with similarities to the title compound were selected for comparison.

The first selected example is the crystal structure of the tetra­lone 4-ethyl­thio­semicarbazone (Oliveira et al., 2017[Oliveira, A. B. de, Beck, J., Landvogt, C., Farias, R. L. de & Feitoza, B. R. S. (2017). Acta Cryst. E73, 291-295.]). There are two mol­ecules with atoms in general positions forming the asymmetric unit, one of them being disordered over the ethyl fragment. In the crystal, the mol­ecules are linked by H⋯S inter­actions along [100], with graph-set motif C(4), and forming a mono-periodic hydrogen-bonded ribbon (Fig. 6[link]), as observed to the title compound (Fig. 2[link]). The tetra­lone entity consists of one aliphatic and one aromatic ring, and for the non-polar organic periphery are suggested weak inter­molecular inter­actions only, since even ππ inter­actions are not present in the structure.

[Figure 6]
Figure 6
Graphical representation of the H⋯S inter­molecular inter­actions for the tetra­lone 4-ethyl­thio­semicarbazone structure (Oliveira et al., 2017[Oliveira, A. B. de, Beck, J., Landvogt, C., Farias, R. L. de & Feitoza, B. R. S. (2017). Acta Cryst. E73, 291-295.]) viewed along [0[\overline{1}]0]. The inter­actions are drawn as dashed lines and link the mol­ecules along [100] with graph-set motif C(4), forming a mono-periodic hydrogen-bonded ribbon. Disordered atoms are drawn with 40% transparency. [Symmetry codes: (a) x + 1, y, z; (b) x − 1, y, z.]

The second example is the crystal structure of a (R,S)-fixolide carb­oxy­lic acid derivative (Kuhlich et al., 2010[Kuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.]). For this structure, only one crystallographic independent mol­ecule is observed in the asymmetric unit, which shows disorder over the aliphatic ring and two methyl groups (Fig. 7[link]). The chiral centre is disordered, C10A and C10B, and two isomers are observed, namely the (R)- and (S)-forms. For the synthesis, a racemic mixture of fixolide was used as starting material. For the (R,S)-fixolide carb­oxy­lic acid derivative, the s.o.f. ratio amounts to 0.683 (4):0.317 (4). The torsion angles of the C9/C10A/C11A/C12 and the C9/C10B/C11B/C12 atom chains amount to −67.0 (3) and 71.8 (6)°, respectively, being similar to the selected chains of the title compound (Table 2[link]).

Table 2
Selected torsion angles (°) for the disordered fixolide 4-methyl­thio­semicarbazone and the fixolide carb­oxy­lic acid derivatives

Compound Isomer Chiral atom (s.o.f.) Atom chain Torsion angle
C20H31N3Sa R C10A [0.667 (13)] C8—C9A—C10A—C11 −65.3 (7)
C20H31N3Sa S C10B [0.333 (13)] C8—C9B—C10B—C11 70.2 (14)
C17H24O2b R C10A [0.683 (4)] C9—C10A—C11A—C12 −67.0 (3)
C17H24O2b S C10B [0.317 (4)] C9—C10B—C11B—C12 71.8 (6)
Notes: (a) (R,S)-Fixolide 4-methyl­thio­semicarbazone, reported in this work (Fig. 1[link]); (b) (R,S)-fixolide carb­oxy­lic acid derivative (Kuhlich et al., 2010[Kuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.]) (Fig. 7[link]).
[Figure 7]
Figure 7
The mol­ecular structure of the (R,S)-fixolide carb­oxy­lic acid derivative, showing the atom labelling and displacement ellipsoids drawn at the 40% probability level (Kuhlich et al., 2010[Kuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.]). Disordered atoms are drawn with 40% transparency and labelled C10A, C11A, C14A and C15A for the (R)-isomer [s.o.f. = 0.683 (4)] and C10B, C11B, C14B and C15B for the (S)-isomer [s.o.f. = 0.317 (4)].

Synthesis and crystallization

The starting materials were commercially available and were used without further purification. The synthesis of the title compound was adapted from previously reported procedures (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]; Oliveira et al., 2017[Oliveira, A. B. de, Beck, J., Landvogt, C., Farias, R. L. de & Feitoza, B. R. S. (2017). Acta Cryst. E73, 291-295.]). A mixture of the racemic fixolide (5 mmol) and 4-methyl­thio­semicarbazide (5 mmol) in ethanol (80 ml), catalysed with HCl, was stirred and refluxed for 8 h. After cooling at room temperature, a colourless crystalline solid precipitated, was filtered off and washed with cold ethanol. The crystalline solid was dissolved in warm ethanol and single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent at room temperature. The site-occupancy ratio of the disordered atoms refined to 0.667 (13):0.333 (13).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The crystallographically independent mol­ecule is disordered over the aliphatic ring (C9A, C9B, C10A and C10B) (Fig. 1[link]). The s.o.f. for the A-labelled atoms amounts to 0.667 (13), while for the B-labelled atoms it is 0.333 (13). Although the displacement ellipsoids of C16, C17, C19 and C20 are prolate-like in comparison with the ellipsoids of other methyl groups, e.g., C1, C4, C15 and C18, no additional disorder was indicated by the data analysis.

Table 3
Experimental details

Crystal data
Chemical formula C20H31N3S
Mr 345.54
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 5.867 (3), 11.790 (4), 27.983 (9)
β (°) 94.907 (14)
V3) 1928.7 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.21 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 area detector diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.690, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 31284, 4822, 3250
Rint 0.092
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.201, 1.06
No. of reflections 4822
No. of parameters 243
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.70, −0.43
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

The hydrogen atoms attached to carbon and nitro­gen atoms were positioned with idealized geometry and constrained to ride on their parent atoms. To get the best orientations for the C—H bonds of the C18H3 group, which is bonded to the C10A and C10B atoms, the methyl hydrogen atoms were split into two positions, located geometrically and refined using a riding model [Uiso(H) = 1.5Ueq(C); C—H bonds lengths set to 0.96 Å]. The other methyl groups were allowed to rotate but not to tip to best fit the experimental electron density and the same C—H bond lengths value was set, also with Uiso(H) = 1.5Ueq(C). The Uiso(H) = 1.2Ueq(C) relation was employed for the other C—H bonds and, for the phenyl ring H atoms, the C—H bond lengths were set to 0.93 Å. For the disordered –CH2– fragment (C9A and C9B), the C—H bond-length value was set to 0.97 Å and for the disordered tertiary C atoms (C10A and C10B), the C—H bond lengths amount to 0.98 Å. Finally, the N—H bond lengths, with Uiso(H) = 1.2Ueq(N), were set to 0.86 Å.

Structural data


Computing details top

2-{1-[(6R,S)-3,5,5,6,8,8-Hexamethyl-5,6,7,8-tetrahydronaphthalen-2-yl]ethylidene}-N-methylhydrazinecarbothioamide top
Crystal data top
C20H31N3SF(000) = 752
Mr = 345.54Dx = 1.190 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.867 (3) ÅCell parameters from 9284 reflections
b = 11.790 (4) Åθ = 2.3–28.0°
c = 27.983 (9) ŵ = 0.17 mm1
β = 94.907 (14)°T = 100 K
V = 1928.7 (12) Å3Block, colorless
Z = 40.21 × 0.20 × 0.15 mm
Data collection top
Bruker D8 Venture Photon 100 area detector
diffractometer
3250 reflections with I > 2σ(I)
Radiation source: microfocus X-ray tube, Bruker D8 VentureRint = 0.092
φ and ω scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 77
Tmin = 0.690, Tmax = 0.746k = 1515
31284 measured reflectionsl = 3734
4822 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.201 w = 1/[σ2(Fo2) + (0.0692P)2 + 4.1581P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4822 reflectionsΔρmax = 0.70 e Å3
243 parametersΔρmin = 0.43 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4228 (6)0.8742 (3)0.34890 (11)0.0297 (7)
H1A0.3171780.8376020.3257200.044*
H1B0.5723630.8748030.3374390.044*
H1C0.3737140.9506780.3537350.044*
C20.2556 (5)0.8079 (2)0.42119 (10)0.0201 (6)
C30.5694 (5)0.6639 (2)0.51451 (10)0.0189 (6)
C40.7938 (5)0.6024 (3)0.52273 (11)0.0246 (7)
H4A0.7676660.5272180.5342090.037*
H4B0.8921590.6427320.5460980.037*
H4C0.8649550.5981240.4931420.037*
C50.4408 (5)0.6874 (2)0.55703 (10)0.0174 (6)
C60.3814 (5)0.5991 (2)0.58617 (10)0.0173 (6)
H60.4208070.5256340.5780210.021*
C70.2647 (5)0.6151 (2)0.62739 (10)0.0161 (6)
C80.2060 (5)0.5121 (2)0.65701 (10)0.0198 (6)
C9A0.1338 (12)0.5514 (4)0.7065 (2)0.0204 (15)0.667 (13)
H9A10.0671640.4875920.7222610.025*0.667 (13)
H9A20.2690150.5750480.7264000.025*0.667 (13)
C10A0.0367 (13)0.6481 (4)0.7029 (2)0.0188 (13)0.667 (13)
H10A0.1659100.6263130.6802290.023*0.667 (13)
C9B0.018 (2)0.5468 (8)0.6880 (4)0.022 (3)0.333 (13)
H9B10.0113790.4848380.7093890.026*0.333 (13)
H9B20.1211290.5608220.6675650.026*0.333 (13)
C10B0.079 (3)0.6527 (9)0.7176 (4)0.021 (3)0.333 (13)
H10B0.2274320.6445110.7361630.025*0.333 (13)
C180.1252 (7)0.6661 (3)0.75207 (12)0.0351 (9)
H18A0.2335920.7272130.7503330.053*0.667 (13)
H18B0.1980660.5979470.7617830.053*0.667 (13)
H18C0.0005130.6843040.7750240.053*0.667 (13)
H18D0.0981570.7317690.7720110.053*0.333 (13)
H18E0.2678370.6745530.7329000.053*0.333 (13)
H18F0.1313390.5998340.7718760.053*0.333 (13)
C110.0770 (5)0.7569 (2)0.68317 (10)0.0206 (6)
C120.2048 (5)0.7260 (2)0.63909 (10)0.0181 (6)
C130.2671 (5)0.8150 (2)0.60974 (10)0.0211 (6)
H130.2261730.8883770.6176830.025*
C140.3863 (5)0.7999 (2)0.56956 (11)0.0208 (6)
C150.4612 (6)0.9020 (3)0.54276 (12)0.0299 (7)
H15A0.5741840.8796350.5217210.045*
H15B0.5256240.9572930.5651780.045*
H15C0.3317520.9340860.5242490.045*
C160.4184 (6)0.4431 (3)0.67218 (16)0.0464 (11)
H16A0.4846910.4155780.6442080.070*
H16B0.3776180.3800930.6914270.070*
H16C0.5273030.4900840.6905110.070*
C170.0399 (8)0.4351 (3)0.62847 (14)0.0493 (11)
H17A0.0965160.4765860.6183340.074*
H17B0.0016980.3722120.6480870.074*
H17C0.1087890.4073830.6008310.074*
C190.2376 (7)0.8235 (4)0.71795 (14)0.0469 (11)
H19A0.1609600.8422180.7458760.070*
H19B0.2829930.8919750.7027970.070*
H19C0.3705190.7785820.7272030.070*
C200.1305 (6)0.8300 (4)0.66802 (14)0.0421 (10)
H20A0.2355030.7876620.6467230.063*
H20B0.0822840.8966320.6519080.063*
H20C0.2046010.8519760.6958830.063*
N10.4303 (4)0.8132 (2)0.39367 (9)0.0217 (5)
H10.5545200.7782000.4032010.026*
N20.2951 (4)0.7419 (2)0.46157 (9)0.0215 (5)
H20.1900950.7330730.4808920.026*
N30.5059 (4)0.6897 (2)0.47075 (9)0.0196 (5)
S10.00559 (14)0.87428 (7)0.41079 (3)0.0293 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0322 (18)0.0341 (18)0.0226 (15)0.0026 (15)0.0019 (13)0.0073 (14)
C20.0222 (15)0.0177 (14)0.0199 (14)0.0027 (11)0.0006 (12)0.0013 (11)
C30.0199 (15)0.0181 (13)0.0190 (14)0.0023 (11)0.0039 (11)0.0011 (11)
C40.0213 (16)0.0292 (16)0.0237 (15)0.0049 (12)0.0040 (12)0.0034 (12)
C50.0164 (14)0.0200 (14)0.0161 (13)0.0018 (11)0.0022 (11)0.0005 (11)
C60.0192 (15)0.0127 (12)0.0203 (14)0.0017 (10)0.0028 (11)0.0001 (10)
C70.0161 (14)0.0136 (12)0.0182 (13)0.0002 (10)0.0006 (11)0.0024 (10)
C80.0246 (16)0.0156 (13)0.0198 (14)0.0001 (11)0.0057 (12)0.0013 (11)
C9A0.029 (3)0.016 (2)0.016 (3)0.002 (2)0.005 (2)0.0001 (18)
C10A0.021 (3)0.023 (2)0.013 (2)0.005 (2)0.002 (2)0.0004 (18)
C9B0.026 (7)0.024 (5)0.015 (5)0.003 (4)0.001 (5)0.004 (4)
C10B0.019 (6)0.033 (5)0.011 (5)0.007 (4)0.001 (4)0.003 (4)
C180.052 (2)0.0295 (17)0.0265 (17)0.0067 (16)0.0211 (16)0.0024 (14)
C110.0246 (16)0.0169 (13)0.0207 (14)0.0022 (12)0.0040 (12)0.0011 (11)
C120.0205 (15)0.0160 (13)0.0174 (14)0.0003 (11)0.0013 (11)0.0019 (10)
C130.0270 (16)0.0141 (13)0.0223 (15)0.0009 (11)0.0020 (12)0.0004 (11)
C140.0233 (16)0.0173 (13)0.0218 (15)0.0020 (12)0.0028 (12)0.0014 (11)
C150.045 (2)0.0150 (14)0.0304 (17)0.0027 (13)0.0087 (15)0.0030 (12)
C160.033 (2)0.037 (2)0.069 (3)0.0020 (16)0.0022 (19)0.035 (2)
C170.063 (3)0.041 (2)0.040 (2)0.033 (2)0.0184 (19)0.0190 (18)
C190.030 (2)0.070 (3)0.041 (2)0.0010 (19)0.0093 (17)0.035 (2)
C200.029 (2)0.067 (3)0.0313 (19)0.0194 (18)0.0073 (15)0.0040 (18)
N10.0247 (14)0.0228 (13)0.0179 (12)0.0035 (10)0.0030 (10)0.0038 (10)
N20.0180 (13)0.0256 (13)0.0214 (13)0.0030 (10)0.0038 (10)0.0040 (10)
N30.0180 (13)0.0214 (12)0.0193 (12)0.0002 (10)0.0009 (10)0.0022 (10)
S10.0228 (4)0.0270 (4)0.0376 (5)0.0034 (3)0.0002 (3)0.0079 (3)
Geometric parameters (Å, º) top
C1—N11.442 (4)C10B—C181.609 (11)
C1—H1A0.9600C10B—H10B0.9800
C1—H1B0.9600C18—H18A0.9600
C1—H1C0.9600C18—H18B0.9600
C2—N11.335 (4)C18—H18C0.9600
C2—N21.376 (4)C18—H18D0.9600
C2—S11.666 (3)C18—H18E0.9600
C3—N31.286 (4)C18—H18F0.9600
C3—C51.489 (4)C11—C191.515 (5)
C3—C41.503 (4)C11—C201.523 (5)
C4—H4A0.9600C11—C121.541 (4)
C4—H4B0.9600C12—C131.400 (4)
C4—H4C0.9600C13—C141.386 (4)
C5—C61.385 (4)C13—H130.9300
C5—C141.416 (4)C14—C151.503 (4)
C6—C71.403 (4)C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C7—C121.400 (4)C15—H15C0.9600
C7—C81.526 (4)C16—H16A0.9600
C8—C171.510 (5)C16—H16B0.9600
C8—C9B1.515 (10)C16—H16C0.9600
C8—C161.518 (5)C17—H17A0.9600
C8—C9A1.554 (5)C17—H17B0.9600
C9A—C10A1.515 (9)C17—H17C0.9600
C9A—H9A10.9700C19—H19A0.9600
C9A—H9A20.9700C19—H19B0.9600
C10A—C181.527 (5)C19—H19C0.9600
C10A—C111.568 (6)C20—H20A0.9600
C10A—H10A0.9800C20—H20B0.9600
C9B—C10B1.524 (19)C20—H20C0.9600
C9B—H9B10.9700N1—H10.8600
C9B—H9B20.9700N2—N31.386 (3)
C10B—C111.560 (10)N2—H20.8600
N1—C1—H1A109.5H18A—C18—H18C109.5
N1—C1—H1B109.5H18B—C18—H18C109.5
H1A—C1—H1B109.5C10B—C18—H18D109.5
N1—C1—H1C109.5C10B—C18—H18E109.5
H1A—C1—H1C109.5H18D—C18—H18E109.5
H1B—C1—H1C109.5C10B—C18—H18F109.5
N1—C2—N2114.6 (3)H18D—C18—H18F109.5
N1—C2—S1125.8 (2)H18E—C18—H18F109.5
N2—C2—S1119.6 (2)C19—C11—C20108.9 (3)
N3—C3—C5126.3 (3)C19—C11—C12108.6 (3)
N3—C3—C4116.0 (3)C20—C11—C12110.1 (3)
C5—C3—C4117.7 (2)C19—C11—C10B92.3 (6)
C3—C4—H4A109.5C20—C11—C10B125.6 (6)
C3—C4—H4B109.5C12—C11—C10B109.2 (4)
H4A—C4—H4B109.5C19—C11—C10A117.3 (4)
C3—C4—H4C109.5C20—C11—C10A102.0 (4)
H4A—C4—H4C109.5C12—C11—C10A109.8 (3)
H4B—C4—H4C109.5C7—C12—C13118.6 (3)
C6—C5—C14119.0 (2)C7—C12—C11123.9 (2)
C6—C5—C3120.0 (2)C13—C12—C11117.5 (2)
C14—C5—C3120.9 (2)C14—C13—C12123.7 (3)
C5—C6—C7123.2 (3)C14—C13—H13118.1
C5—C6—H6118.4C12—C13—H13118.1
C7—C6—H6118.4C13—C14—C5117.5 (3)
C12—C7—C6117.9 (2)C13—C14—C15119.5 (3)
C12—C7—C8122.9 (2)C5—C14—C15123.0 (3)
C6—C7—C8119.2 (2)C14—C15—H15A109.5
C17—C8—C9B89.8 (6)C14—C15—H15B109.5
C17—C8—C16107.6 (3)H15A—C15—H15B109.5
C9B—C8—C16127.2 (6)C14—C15—H15C109.5
C17—C8—C7110.9 (3)H15A—C15—H15C109.5
C9B—C8—C7107.7 (4)H15B—C15—H15C109.5
C16—C8—C7111.1 (3)C8—C16—H16A109.5
C17—C8—C9A116.0 (4)C8—C16—H16B109.5
C16—C8—C9A101.0 (4)H16A—C16—H16B109.5
C7—C8—C9A109.8 (3)C8—C16—H16C109.5
C10A—C9A—C8113.1 (5)H16A—C16—H16C109.5
C10A—C9A—H9A1109.0H16B—C16—H16C109.5
C8—C9A—H9A1109.0C8—C17—H17A109.5
C10A—C9A—H9A2109.0C8—C17—H17B109.5
C8—C9A—H9A2109.0H17A—C17—H17B109.5
H9A1—C9A—H9A2107.8C8—C17—H17C109.5
C9A—C10A—C18108.5 (5)H17A—C17—H17C109.5
C9A—C10A—C11110.0 (5)H17B—C17—H17C109.5
C18—C10A—C11113.1 (4)C11—C19—H19A109.5
C9A—C10A—H10A108.4C11—C19—H19B109.5
C18—C10A—H10A108.4H19A—C19—H19B109.5
C11—C10A—H10A108.4C11—C19—H19C109.5
C8—C9B—C10B112.6 (11)H19A—C19—H19C109.5
C8—C9B—H9B1109.1H19B—C19—H19C109.5
C10B—C9B—H9B1109.1C11—C20—H20A109.5
C8—C9B—H9B2109.1C11—C20—H20B109.5
C10B—C9B—H9B2109.1H20A—C20—H20B109.5
H9B1—C9B—H9B2107.8C11—C20—H20C109.5
C9B—C10B—C11108.7 (10)H20A—C20—H20C109.5
C9B—C10B—C18104.7 (10)H20B—C20—H20C109.5
C11—C10B—C18109.0 (7)C2—N1—C1123.8 (3)
C9B—C10B—H10B111.4C2—N1—H1118.1
C11—C10B—H10B111.4C1—N1—H1118.1
C18—C10B—H10B111.4C2—N2—N3119.3 (2)
C10A—C18—H18A109.5C2—N2—H2120.4
C10A—C18—H18B109.5N3—N2—H2120.4
H18A—C18—H18B109.5C3—N3—N2117.6 (2)
C10A—C18—H18C109.5
N3—C3—C5—C6122.5 (3)C18—C10A—C11—C1943.8 (6)
C4—C3—C5—C656.4 (4)C9A—C10A—C11—C20163.7 (5)
N3—C3—C5—C1460.3 (4)C18—C10A—C11—C2074.9 (5)
C4—C3—C5—C14120.7 (3)C9A—C10A—C11—C1247.0 (6)
C14—C5—C6—C71.4 (4)C18—C10A—C11—C12168.4 (4)
C3—C5—C6—C7178.6 (3)C6—C7—C12—C131.0 (4)
C5—C6—C7—C120.5 (4)C8—C7—C12—C13179.8 (3)
C5—C6—C7—C8179.7 (3)C6—C7—C12—C11179.9 (3)
C12—C7—C8—C17114.7 (4)C8—C7—C12—C110.9 (4)
C6—C7—C8—C1764.4 (4)C19—C11—C12—C7112.6 (3)
C12—C7—C8—C9B17.9 (7)C20—C11—C12—C7128.3 (3)
C6—C7—C8—C9B161.3 (7)C10B—C11—C12—C713.2 (7)
C12—C7—C8—C16125.6 (3)C10A—C11—C12—C716.9 (5)
C6—C7—C8—C1655.2 (4)C19—C11—C12—C1366.3 (4)
C12—C7—C8—C9A14.8 (5)C20—C11—C12—C1352.8 (4)
C6—C7—C8—C9A166.0 (4)C10B—C11—C12—C13165.6 (7)
C17—C8—C9A—C10A79.7 (6)C10A—C11—C12—C13164.3 (4)
C16—C8—C9A—C10A164.3 (5)C7—C12—C13—C140.2 (5)
C7—C8—C9A—C10A47.0 (7)C11—C12—C13—C14178.7 (3)
C8—C9A—C10A—C18170.6 (4)C12—C13—C14—C52.0 (5)
C8—C9A—C10A—C1165.3 (7)C12—C13—C14—C15175.1 (3)
C17—C8—C9B—C10B165.1 (10)C6—C5—C14—C132.5 (4)
C16—C8—C9B—C10B82.6 (10)C3—C5—C14—C13179.7 (3)
C7—C8—C9B—C10B53.2 (12)C6—C5—C14—C15174.5 (3)
C8—C9B—C10B—C1170.2 (14)C3—C5—C14—C152.6 (5)
C8—C9B—C10B—C18173.3 (6)N2—C2—N1—C1177.7 (3)
C9B—C10B—C11—C19156.1 (10)S1—C2—N1—C13.1 (4)
C18—C10B—C11—C1990.3 (8)N1—C2—N2—N31.2 (4)
C9B—C10B—C11—C2088.6 (9)S1—C2—N2—N3178.1 (2)
C18—C10B—C11—C2025.0 (12)C5—C3—N3—N21.8 (4)
C9B—C10B—C11—C1245.5 (12)C4—C3—N3—N2177.2 (2)
C18—C10B—C11—C12159.1 (6)C2—N2—N3—C3155.7 (3)
C9A—C10A—C11—C1977.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.873.445 (3)126
Symmetry code: (i) x+1, y, z.
Selected torsion angles (°) for the disordered fixolide 4-methylthiosemicarbazone and the fixolide carboxylic acid derivatives top
CompoundIsomerChiral atom (s.o.f.)Atom chainTorsion angle
C20H31N3SaRC10A [0.667 (13)]C8—C9A—C10A—C11-65.3 (7)
C20H31N3SaSC10B [0.333 (13)]C8—C9B—C10B—C1170.2 (14)
C17H24O2bRC10A [0.683 (4)]C9—C10A—C11A—C12-67.0 (3)
C17H24O2bSC10B [0.317 (4)]C9—C10B—C11B—C1271.8 (6)
Notes: (a) (R,S)-Fixolide 4-methylthiosemicarbazone, reported in this work (Fig. 1); (b) (R,S)-fixolide carboxylic acid derivative (Kuhlich et al., 2010) (Fig. 7).
 

Acknowledgements

APLM thanks CAPES for the award of a PhD scholarship. The authors thank the Department of Chemistry of the Federal University of Santa Maria/Brazil for the access to the X-ray diffraction facility.

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlmeida, L. R. de, Carvalho, P. S. Jr, Napolitano, H. B., Oliveira, S. S., Camargo, A. J., Figueredo, A. S., de Aquino, G. L. B. & Carvalho-Silva, V. H. (2017). Cryst. Growth Des. 17, 5145–5153.  Google Scholar
First citationBajaj, K., Buchanan, R. M. & Grapperhaus, C. A. (2021). J. Inorg. Biochem. 225, 111620.  CrossRef PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChemical Abstracts Service (2023). Columbus, Ohio, USA (accessed via SciFinder on November 18, 2023).  Google Scholar
First citationDilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3–15.  Web of Science CrossRef CAS Google Scholar
First citationDomagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.  CrossRef Web of Science Google Scholar
First citationFarias, R. L., Polez, A. M. R., Silva, D. E. S., Zanetti, R. D., Moreira, M. B., Batista, V. S., Reis, B. L., Nascimento-Júnior, N. M., Rocha, F. V., Lima, M. A., Oliveira, A. B., Ellena, J., Scarim, C. B., Zambom, C. R., Brito, L. D., Garrido, S. S., Melo, A. P. L., Bresolin, L., Tirloni, B., Pereira, J. C. M. & Netto, A. V. G. (2021). Mater. Sci. Eng. C, 121, 111815.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationGoulart, C. M., Esteves-Souza, A., Martinez-Huitle, C. A., Rodrigues, C. J. F., Maciel, M. A. M. & Echevarria, A. (2013). Corros. Sci. 67, 281–291.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKanso, F., Khalil, A., Noureddine, H. & El-Makhour, Y. (2021). Int. Immunopharmacol. 96, 107778.  CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKuhlich, P., Göstl, R., Metzinger, R., Piechotta, C. & Nehls, I. (2010). Acta Cryst. E66, o2687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationOliveira, A. B. de, Beck, J., Landvogt, C., Farias, R. L. de & Feitoza, B. R. S. (2017). Acta Cryst. E73, 291–295.  CSD CrossRef IUCr Journals Google Scholar
First citationPalve, A. M. & Garje, S. S. (2011). J. Cryst. Growth, 326, 157–162.  Web of Science CrossRef CAS Google Scholar
First citationParrilha, G. L., dos Santos, R. G. & Beraldo, H. (2022). Coord. Chem. Rev. 458, 214418.  Web of Science CrossRef Google Scholar
First citationPawar, A. S. & Garje, S. S. (2015). Bull. Mater. Sci. 38, 1843–1850.  Web of Science CrossRef CAS Google Scholar
First citationPawar, A. S., Masikane, S. C., Mlowe, S., Garje, S. S. & Revaprasadu, N. (2016). Eur. J. Inorg. Chem. 2016, 366–372.  CrossRef CAS Google Scholar
First citationRocha, F. V., Farias, R. L., Lima, M. A., Batista, V. S., Nascimento-Júnior, N. M., Garrido, S. S., Leopoldino, A. M., Goto, R. N., Oliveira, A. B., Beck, J., Landvogt, C., Mauro, A. E. & Netto, A. V. G. (2019). J. Inorg. Biochem. 199, 110725.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, Á. R. L. & Martínez-Huitle, C. A. (2021). J. Mol. Liq. 343, 117660.  Web of Science CrossRef Google Scholar
First citationSiqueira, L. R. P. de, de Moraes Gomes, P. A. T., de Lima Ferreira, L. P., de Melo Rêgo, M. J. B. & Leite, A. C. L. (2019). Eur. J. Med. Chem. 170, 237–260.  PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146