organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

A second crystalline modification of 2-{3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclo­pent-2-en-1-yl­­idene}hydrazinecarbo­thio­amide

crossmark logo

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s/n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil, bEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, and cInstitut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
*Correspondence e-mail: adriano@daad-alumni.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 21 November 2023; accepted 24 November 2023; online 30 November 2023)

A second crystalline modification of the title compound, C12H19N3S [common name: cis-jasmone thio­semicarbazone] was crystallized from tetra­hydro­furane at room temperature. There is one crystallographic independent mol­ecule in the asymmetric unit, showing disorder in the cis-jasmone chain [site-occupancy ratio = 0.590 (14):0.410 (14)]. The thio­semicarbazone entity is approximately planar, with the maximum deviation from the mean plane through the N/N/C/S/N atoms being 0.0463 (14) Å [r.m.s.d. = 0.0324 Å], while for the five-membered ring of the jasmone fragment, the maximum deviation from the mean plane through the carbon atoms amounts to 0.0465 (15) Å [r.m.s.d. = 0.0338 Å]. The mol­ecule is not planar due to the dihedral angle between these two fragments, which is 8.93 (1)°, and due to the sp3-hybridized carbon atoms in the jasmone fragment chain. In the crystal, the mol­ecules are connected by N—H⋯S and C—H⋯S inter­actions, with graph-set motifs R22(8) and R21(7), building mono-periodic hydrogen-bonded ribbons along [010]. A Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are H⋯H (67.8%), H⋯S/S⋯H (15.0%), H⋯C/C⋯H (8.5%) and H⋯N/N⋯H (5.6%) [only non-disordered atoms and those with the highest s.o.f. were considered]. This work reports the second crystalline modification of the cis-jasmone thio­semicarbazone structure, the first one being published recently [Orsoni et al. (2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681-8697.]). Int. J. Mol. Sci. 21, 8681–8697] with the crystals obtained in ethanol at 273 K.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The first references to the synthesis of thio­semicarbazone derivatives [R1R2N—N(H)—C(=S)—NR3R4] can be traced back to the beginning of the 1900s (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]) and since the report of Domagk et al. (1946[Domagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.]) on the tuberculostatic effect of some compounds with this functional group, the biological activity of these mol­ecules has been intensively studied, being one of the major approaches for this chemistry (for some examples, see: Acharya et al., 2021[Acharya, P. T., Bhavsar, Z. A., Jethava, D. J., Patel, D. B. & Patel, H. D. (2021). J. Mol. Struct. 1226, 129268.]; Bajaj et al., 2021[Bajaj, K., Buchanan, R. M. & Grapperhaus, C. A. (2021). J. Inorg. Biochem. 225, 111620.]; Kanso et al., 2021[Kanso, F., Khalil, A., Noureddine, H. & El-Makhour, Y. (2021). Int. Immunopharmacol. 96, 107778.]; Siqueira et al., 2019[Siqueira, L. R. P. de, de Moraes Gomes, P. A. T., de Lima Ferreira, L. P., de Melo Rêgo, M. J. B. & Leite, A. C. L. (2019). Eur. J. Med. Chem. 170, 237-260.]). Concerning the cis-jasmone thio­semicarbazone, it has been pointed out that this compound has anti­fungal activity (Orsoni et al., 2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681-8697.]; Jamiołkowska et al., 2022[Jamiołkowska, A., Skwaryło-Bednarz, B., Mielniczuk, E., Bisceglie, F., Pelosi, G., Degola, F., Gałązka, A. & Grzęda, E. (2022). Agronomy 12, 116.]). As part of our studies on the thio­semicarbazone derivatives of natural products, the crystal structure and the Hirshfeld analysis of a new crystalline modification of the cis-jasmone thio­semicarbazone is reported herein.

The first crystalline modification of cis-jasmone thio­semicarbazone (Orsoni et al., 2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681-8697.]) [triclinic, P[\overline{1}], a = 8.164 (5), b = 15.645 (9), c = 16.434 (9) Å, α = 84.723 (1), β = 82.036 (1), γ = 84.632 (1)°] will be designated from now on as the α-modification and α-JATSC. α-JATSC(A), α-JATSC(B) and α-JATSC(C) abbreviations will be used for the three crystallographically independent mol­ecules in the asymmetric unit of the structure. The present work reports the second crystalline modification of the mol­ecule, which will be designated from now on as the β-modification, or β-JATSC.

For the title compound, the β-crystalline modification of the cis-jasmone thio­semicarbazone, there is one mol­ecule with all atoms in general positions in the asymmetric unit, which shows disorder in the cis-jasmone chain [s.o.f. = 0.590 (14):0.410 (14)]. The atoms with the higher s.o.f. are A-labelled and those with the lower, B-labelled (Fig. 1[link]). The thio­semicarbazone (TSC) entity is approximately planar, with the maximum deviation from the mean plane through the N1/N2/C12/S1/N3 atoms being 0.0463 (14) Å for N2 (r.m.s.d. = 0.0324 Å). The TSC entity is attached to the C1–C5 five-membered ring of the jasmone fragment, which is also almost planar, with the maximum deviation from the mean plane through the C atoms being 0.0465 (15) Å for C2 (r.m.sd. = 0.0338 Å). The mol­ecule is not planar due the dihedral angle between these two entities, 8.93 (1)°, and due to the sp3-hybridized carbon atoms in the jasmone fragment. In addition, the torsion angles for the N1/N2/C12/S1 and N1/N2/C12/N3 chains are 174.04 (15) and −4.8 (3)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 40% probability level. Disordered atoms are drawn with 30% transparency and labelled H8A, C9A and C10A [s.o.f. = 0.590 (14)] and H8B, C9B and C10B [s.o.f. = 0.410 (14)]. All H atoms are drawn in ball and stick mode.

In the crystal, the mol­ecules are connected by pairs of N—H⋯S inter­actions, forming rings with R22(8) graph-set motif, and by pairs of N—H⋯S/C—H⋯S inter­actions, where rings of graph-set motif R21(7) are observed (Fig. 2[link], Table 1[link]). The N1, N3 and C2 atoms act as hydrogen-bond donors and the S1 atoms act as hydrogen-bond acceptors, connecting the mol­ecules into mono-periodic hydrogen-bonded ribbons along [010] (Fig. 3[link]). No other strong inter­molecular inter­actions are observed for the title compound, possibly due to the non-polar organic periphery of the cis-jasmone fragment, and only weak inter­actions, i.e., London dispersion forces can be suggested.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯S1i 0.90 (3) 2.53 (3) 3.4142 (19) 166 (2)
N3—H3⋯S1ii 0.85 (3) 2.48 (3) 3.325 (2) 173 (3)
C2—H2B⋯S1i 1.00 (2) 2.93 (2) 3.436 (2) 112.2 (16)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular structure of the β-crystalline modification of the cis-jasmone thio­semicarbazone showing the inter­molecular hydrogen-bonding inter­actions as dashed lines. The mol­ecules are linked via pairs of N—H⋯S and C—H⋯S inter­actions, forming graph-set motifs of R22(8) and R21(7). Disorder is not shown for clarity. [Symmetry codes: (i) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}].]
[Figure 3]
Figure 3
Graphical representation of the N—H⋯S and C—H⋯S inter­molecular inter­actions in the title compound viewed along [100]. The inter­actions are drawn as dashed lines and connect the mol­ecules along [010] with graph-set motifs of R22(8) and R21(7), forming a mono-periodic hydrogen-bonded ribbon. Disorder is not shown for clarity.

In the Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]), the graphical representations and the two-dimensional Hirshfeld surface fingerprint (HSFP) were evaluated with Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia.]). The Hirshfeld surface analysis of the title compound considering the A-labelled atoms [s.o.f. = 0.590 (14)] indicates that the most relevant inter­molecular inter­actions for crystal cohesion are the following: H⋯H = 67.8%, (b) H⋯S/S⋯H = 15.0%, (c) H⋯C/C⋯H = 8.5% and (d) H ⋯N/N⋯H = 5.6%. For comparison, the contributions for the structure with the B-labelled atoms [s.o.f. = 0.410 (14)] amount to (a) H⋯H = 68.3%, (b) H⋯S/S⋯H = 15.0%, (c) H⋯C/C⋯H = 8.2% and (d) H ⋯N/N⋯H = 5.5%. Since no considerable differences between the values were observed, the evaluations and graphics were performed for the structure with the A-labelled atoms only. The graphical representation of the Hirshfeld surface (dnorm) is drawn in a figure with two separate opposite side-views of the mol­ecule with transparency and using a ball-and-stick model. The locations of the strongest inter­molecular contacts, i.e, the regions around the H1, H3 and S1 atoms (Fig. 4[link]) are indicated in red. These atoms are those involved in the H⋯S inter­actions shown in the previous figures (Figs. 2[link] and 3[link]). The contributions to the crystal packing are shown as two-dimensional Hirshfeld surface fingerprint plots (HSFP) with cyan dots (Fig. 5[link]). The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface (in Å).

[Figure 4]
Figure 4
Two opposite side-views in separate figures of the Hirshfeld surface graphical representation (dnorm) for the title compound. The surface is drawn with transparency, the mol­ecule is drawn in ball and stick mode and the disorder is not shown for clarity. The regions with strongest inter­molecular inter­actions are shown in red. (dnorm range: −0.404 to 1.518.)
[Figure 5]
Figure 5
The Hirshfeld surface two-dimensional fingerprint plots for the title compound, showing the contacts in detail (cyan dots). The major contributions of the inter­actions to the crystal cohesion amount to (a) H⋯H = 67.8%, (b) H⋯S/S⋯H = 15.0%, (c) H⋯C/C⋯H= 8.5% and (d) H⋯N/N⋯H = 5.6%. The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface (in Å). Regarding the disorder, only the atoms with the highest s.o.f. were considered.

The crystal structure of the α-crystalline modification of the cis-jasmone thio­semicarbazone was reported recently (Orsoni et al., 2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681-8697.]). As already mentioned above, the α-modification has three crystallographically independent mol­ecules in the asymmetric unit, namely α-JATSC(A), α-JATSC(B) and α-JATSC(C). In the crystal, the mol­ecules are connected by pairs of N—H⋯S inter­actions, with graph-set motif R22(8), into mono-periodic hydrogen-bonded ribbons along [100] (Fig. 6[link]). The α-modification contains two crystallographically different strands. Within one of the strands, inversion centres are located at the centroids of every eight-membered C2H2N2S2 ring, while the other strand has no inter­nal symmetry. The β-modification has only one independent strand that has no inter­nal symmetry. For a comparison of selected geometric parameters of the α- and β-modifications of cis-jasmone thio­semicarbazone, see Table 2[link]. The crystal structures of non-substituted thio­semicarbazones attached to non-polar organic groups have been studied by our group, such as the structures of the (−)-menthone (Oliveira et al., 2014[Oliveira, A. B. de, Beck, J., Daniels, J., Farias, R. L. de & Godoy Netto, A. V. (2014). Acta Cryst. E70, o903-o904.]) and the tetra­lone thio­semicarbazone derivatives (Oliveira et al., 2012[Oliveira, A. B. de, Silva, C. S., Feitosa, B. R. S., Näther, C. & Jess, I. (2012). Acta Cryst. E68, o2581.], 2017[Oliveira, A. B. de, Beck, J., Landvogt, C., Farias, R. L. de & Feitoza, B. R. S. (2017). Acta Cryst. E73, 291-295.]). In the structure of the (−)-menthone thio­semicarbazone, the mol­ecules are linked by N—H⋯S inter­molecular inter­actions, forming rings with graph-set motif R22(8), into mono-periodic hydrogen-bonded ribbons along [100]. For the structure of the tetra­lone thio­ssemicarbazone, the mol­ecules are connected by N—H⋯S and C—H⋯S inter­molecular inter­actions along [1[\overline{1}]0], where rings of graph-set motifs R22(8) and R21(7) are observed. The same supra­molecular arrangement was observed for both structures, forming a structural pattern for these entities (Fig. 7[link]). This packing pattern is common for non-substituted thio­semicarbazones attached to non-polar organic entities, as observed in this work (Fig. 3[link]).

Table 2
Selected geometric parameters (Å, °) of the TSC entities for the α- and β-crystalline modifications of the cis-jasmone thio­semicarbazone

α-JATSC(A), α-JATSC(B) and α-JATSC(C) refer to the three crystallographically independent mol­ecules in the α-crystalline modification of cis-jasmone thio­semicarbazone (Orsoni et al., 2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681-8697.]) (Fig. 6[link]). β-JATSC refers to the β-crystalline modification of cis-jasmone thio­semicarbazone reported in this work (Fig. 1[link]).

  Bond length N=N N—C C=S
Compound        
α-JATSC(A)   1.383 (5) 1.305 (5) 1.695 (5)
α-JATSC(B)   1.384 (5) 1.349 (5) 1.701 (5)
α-JATSC(C)   1.400 (5) 1.341 (5) 1.689 (5)
β-JATSC   1.388 (2) 1.345 (3) 1.698 (2)
         
  Atom chain 1 Torsion angle Atom chain 2 Torsion angle
α-JATSC(A) N3A—N2A—C1A—S1A −179.4 (3) N3A—N2A—C1A—N1A 0.0 (6)
α-JATSC(B) N3B—N2B—C1B—S1B 180.0 (3) N3B—N2B—C1B—N1B 0.2 (6)
α-JATSC(C) N3C—N2C—C1C–S1C 177.4 (3) N3C—N2C—C1C—N1C −1.8 (6)
β-JATSC N1—N2—C12—S1 174.04 (15) N1—N2—C12—N3 −4.8 (3)
[Figure 6]
Figure 6
Crystal structure section of the α-cis-jasmone thio­semicarbazone (Orsoni et al., 2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681-8697.]) viewed along [001]. Selected atoms of the TSC entities are labelled to indicate the three crystallographically independent mol­ecules [α-JATSC(A); α-JATSC(B); α-JATSC(C)]. The N—H⋯S inter­molecular inter­actions, forming rings with graph-set motif R22(8), are drawn as dashed lines and connect the mol­ecules into mono-periodic H-bonded ribbons along [100].
[Figure 7]
Figure 7
(a) (−)-Menthone thio­semicarbazone (Oliveira et al., 2014[Oliveira, A. B. de, Beck, J., Daniels, J., Farias, R. L. de & Godoy Netto, A. V. (2014). Acta Cryst. E70, o903-o904.]) and (b) tetra­lone thio­semicarbazone (Oliveira et al., 2012[Oliveira, A. B. de, Silva, C. S., Feitosa, B. R. S., Näther, C. & Jess, I. (2012). Acta Cryst. E68, o2581.]) graphical representations of the mono-periodic hydrogen-bonded ribbons structures along [100] and [1[\overline{1}]0], respectively. The mol­ecules are connected by H⋯S inter­molecular inter­actions drawn as dashed lines. The atoms of the TSC entities and one C—H donor in general positions are labelled. This packing pattern is common for non-substituted thio­semicarbazones attached to non-polar organic entities.

Synthesis and crystallization

The starting materials are commercially available and were used without further purification. The synthesis of cis-jasmone thio­semicarbazone was adapted from previously reported procedures (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]; Oliveira et al., 2017[Oliveira, A. B. de, Beck, J., Landvogt, C., Farias, R. L. de & Feitoza, B. R. S. (2017). Acta Cryst. E73, 291-295.]; Orsoni et al., 2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681-8697.]). The mixture of ethano­lic solutions of cis-jasmone (8 mmol in 50 ml) and thio­semicarbazide (8 mmol in 50 ml), was catalysed with HCl and refluxed for 8 h. After cooling, the precipitated product was filtered off and washed with cold ethanol. Colourless single crystals suitable for X-ray diffraction were obtained from tetra­hydro­furan solution by slow evaporation of the solvent at room temperature. The template effect of the crystallization solvent and the temperature can be suggested as factors for the formation of the new crystalline modification of the cis-jasmone thio­semicarbazone, since the α-crystalline modification was crystallized from ethanol solution at 273 K (Orsoni et al., 2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681-8697.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The mol­ecule of title compound shows disorder over the chain of the cis-jasmone fragment, namely the H8, C9 and C10 atoms (Fig. 1[link]), which are A-labelled for the atoms with the higher s.o.f. value and B-labelled for the lower [site-occupancy ratio = 0.590 (14):0.410 (14)]. H atoms attached to the C2, C3, C6, C7, C11, N2 and N3 atoms were located in the difference Fourier map. The one bonded to N2 was refined freely, and those bonded to C2, C3, C6, C7, C11, and N3 were refined freely using the same isotropic displacement parameter for the atoms bonded to the same parent atom. The remaining hydrogen atoms were located in a difference-Fourier map, but were positioned with idealized geometry and refined isotropically using a riding model (HFIX command). Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Thus, for the C10AH3 and C10BH3 fragments, with Uiso(H) = 1.5 Ueq(C), the C—H bond lengths were set to 0.96 Å. For the H atoms attached to the C8 atom and to the C9A and C9B atoms, with Uiso(H) = 1.2 Ueq(C), the C—H bond lengths were set to 0.93 and 0.97 Å, respectively.

Table 3
Experimental details

Crystal data
Chemical formula C12H19N3S
Mr 237.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 15.0159 (7), 8.0595 (3), 10.8243 (5)
β (°) 94.372 (3)
V3) 1306.15 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.17 × 0.14 × 0.05
 
Data collection
Diffractometer Enraf–Nonius FR590 Kappa CCD
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.922, 0.998
No. of measured, independent and observed [I > 2σ(I)] reflections 24176, 3002, 2241
Rint 0.083
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 1.09
No. of reflections 3002
No. of parameters 212
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.59, −0.45
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Structural data


Computing details top

2-{3-Methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene}hydrazinecarbothioamide top
Crystal data top
C12H19N3SF(000) = 512
Mr = 237.36Dx = 1.207 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.0159 (7) ÅCell parameters from 60208 reflections
b = 8.0595 (3) Åθ = 2.9–27.5°
c = 10.8243 (5) ŵ = 0.23 mm1
β = 94.372 (3)°T = 123 K
V = 1306.15 (10) Å3Plate, colourless
Z = 40.17 × 0.14 × 0.05 mm
Data collection top
Enraf–Nonius FR590 Kappa CCD
diffractometer
3002 independent reflections
Radiation source: sealed X-ray tube, Enraf Nonius FR5902241 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.083
Detector resolution: 9 pixels mm-1θmax = 27.6°, θmin = 3.2°
CCD rotation images, thick slices, κ–goniostat scansh = 1919
Absorption correction: multi-scan
(Blessing, 1995)
k = 1010
Tmin = 0.922, Tmax = 0.998l = 1314
24176 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: mixed
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.069P)2 + 0.7307P]
where P = (Fo2 + 2Fc2)/3
3002 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.49279 (4)0.38063 (6)0.29692 (5)0.02576 (19)
N10.35988 (12)0.5052 (2)0.01509 (16)0.0239 (4)
N20.40985 (12)0.5194 (2)0.09773 (17)0.0235 (4)
H10.4271 (17)0.617 (3)0.133 (2)0.030 (7)*
N30.42480 (14)0.2376 (2)0.09074 (19)0.0275 (5)
H20.3988 (18)0.242 (4)0.016 (3)0.039 (5)*
H30.4455 (19)0.149 (4)0.126 (3)0.039 (5)*
C10.32864 (14)0.6392 (3)0.0662 (2)0.0224 (5)
C20.33976 (16)0.8181 (3)0.0266 (2)0.0251 (5)
H2A0.3276 (15)0.833 (3)0.065 (2)0.024 (4)*
H2B0.4031 (17)0.853 (3)0.036 (2)0.024 (4)*
C30.27458 (17)0.9129 (3)0.1170 (2)0.0295 (5)
H3A0.3041 (16)1.002 (4)0.156 (2)0.035 (5)*
H3B0.2234 (17)0.961 (3)0.074 (2)0.035 (5)*
C40.24066 (15)0.7858 (3)0.2109 (2)0.0269 (5)
C50.27121 (15)0.6322 (3)0.1810 (2)0.0253 (5)
C60.25021 (17)0.4704 (3)0.2465 (2)0.0299 (5)
H6A0.3013 (19)0.413 (4)0.246 (3)0.039 (5)*
H6B0.2284 (17)0.490 (3)0.337 (3)0.039 (5)*
C70.18173 (18)0.3701 (3)0.1851 (2)0.0349 (6)
H70.1977 (18)0.347 (3)0.097 (3)0.041 (8)*
C80.1055 (2)0.3144 (4)0.2354 (3)0.0520 (8)
H8A0.0777770.2333930.1906730.062*0.590 (14)
H8B0.0598080.2921550.1844930.062*0.410 (14)
C9A0.0569 (4)0.3651 (9)0.3570 (6)0.0381 (17)0.590 (14)
H9A10.0140330.4516960.3428630.046*0.590 (14)
H9A20.0992140.4082170.4123570.046*0.590 (14)
C10A0.0088 (6)0.2146 (8)0.4159 (9)0.0420 (18)0.590 (14)
H10A0.0344130.1746910.3620020.063*0.590 (14)
H10B0.0209210.2457950.4940840.063*0.590 (14)
H10C0.0514000.1286240.4284930.063*0.590 (14)
C110.17972 (19)0.8356 (4)0.3194 (3)0.0371 (6)
H11A0.161 (2)0.743 (4)0.376 (3)0.051 (5)*
H11B0.125 (2)0.877 (4)0.291 (3)0.051 (5)*
H11C0.206 (2)0.916 (4)0.370 (3)0.051 (5)*
C120.43977 (14)0.3783 (2)0.1527 (2)0.0221 (4)
C9B0.0882 (7)0.2831 (15)0.3810 (7)0.043 (3)0.410 (14)
H9B10.1080840.1722340.4001260.052*0.410 (14)
H9B20.1206140.3625440.4277660.052*0.410 (14)
C10B0.0104 (10)0.290 (3)0.4108 (15)0.090 (6)0.410 (14)
H10D0.0348710.3813090.3670630.135*0.410 (14)
H10E0.0228410.3062450.4983600.135*0.410 (14)
H10F0.0370610.1885150.3862660.135*0.410 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0399 (4)0.0149 (3)0.0215 (3)0.0017 (2)0.0048 (2)0.0004 (2)
N10.0299 (10)0.0203 (9)0.0208 (9)0.0005 (8)0.0020 (7)0.0003 (7)
N20.0330 (10)0.0148 (9)0.0215 (9)0.0010 (7)0.0045 (8)0.0010 (7)
N30.0414 (12)0.0160 (9)0.0241 (11)0.0025 (8)0.0047 (9)0.0005 (8)
C10.0252 (11)0.0207 (11)0.0215 (11)0.0015 (8)0.0023 (8)0.0016 (9)
C20.0298 (12)0.0174 (10)0.0275 (12)0.0013 (9)0.0023 (9)0.0026 (9)
C30.0343 (13)0.0249 (12)0.0289 (12)0.0053 (10)0.0004 (10)0.0040 (10)
C40.0252 (11)0.0303 (12)0.0250 (11)0.0026 (9)0.0014 (9)0.0039 (10)
C50.0265 (11)0.0266 (11)0.0226 (11)0.0005 (9)0.0009 (9)0.0002 (9)
C60.0339 (13)0.0299 (12)0.0253 (12)0.0003 (10)0.0026 (10)0.0028 (10)
C70.0506 (16)0.0272 (13)0.0261 (13)0.0051 (11)0.0020 (11)0.0040 (10)
C80.0579 (19)0.0569 (18)0.0405 (16)0.0247 (15)0.0007 (14)0.0123 (15)
C9A0.032 (3)0.033 (3)0.048 (3)0.003 (2)0.003 (2)0.004 (3)
C10A0.041 (4)0.038 (3)0.046 (4)0.006 (2)0.007 (3)0.003 (3)
C110.0353 (15)0.0436 (15)0.0316 (14)0.0105 (12)0.0024 (11)0.0053 (12)
C120.0258 (11)0.0156 (10)0.0249 (11)0.0009 (8)0.0019 (9)0.0006 (9)
C9B0.047 (5)0.046 (5)0.037 (4)0.004 (4)0.003 (3)0.005 (3)
C10B0.047 (7)0.173 (19)0.050 (6)0.012 (10)0.001 (5)0.021 (11)
Geometric parameters (Å, º) top
S1—C121.698 (2)C7—C81.308 (4)
N1—C11.285 (3)C7—H70.98 (3)
N1—N21.388 (2)C8—C9A1.512 (6)
N2—C121.345 (3)C8—C9B1.598 (8)
N2—H10.90 (3)C8—H8A0.9300
N3—C121.328 (3)C8—H8B0.9300
N3—H20.87 (3)C9A—C10A1.526 (10)
N3—H30.85 (3)C9A—H9A10.9700
C1—C51.458 (3)C9A—H9A20.9700
C1—C21.510 (3)C10A—H10A0.9600
C2—C31.534 (3)C10A—H10B0.9600
C2—H2A1.03 (2)C10A—H10C0.9600
C2—H2B1.00 (2)C11—H11A1.00 (3)
C3—C41.504 (3)C11—H11B0.96 (3)
C3—H3A0.96 (3)C11—H11C0.95 (3)
C3—H3B1.00 (3)C9B—C10B1.49 (2)
C4—C51.351 (3)C9B—H9B10.9700
C4—C111.489 (3)C9B—H9B20.9700
C5—C61.506 (3)C10B—H10D0.9600
C6—C71.502 (4)C10B—H10E0.9600
C6—H6A0.90 (3)C10B—H10F0.9600
C6—H6B1.02 (3)
C1—N1—N2117.67 (18)C7—C8—C9B122.4 (4)
C12—N2—N1117.32 (18)C7—C8—H8A115.9
C12—N2—H1118.2 (16)C9A—C8—H8A115.9
N1—N2—H1124.3 (16)C7—C8—H8B118.8
C12—N3—H2118.8 (19)C9B—C8—H8B118.8
C12—N3—H3116.3 (19)C8—C9A—C10A109.3 (5)
H2—N3—H3125 (3)C8—C9A—H9A1109.8
N1—C1—C5120.47 (19)C10A—C9A—H9A1109.8
N1—C1—C2130.6 (2)C8—C9A—H9A2109.8
C5—C1—C2108.90 (18)C10A—C9A—H9A2109.8
C1—C2—C3104.07 (18)H9A1—C9A—H9A2108.3
C1—C2—H2A111.4 (14)C9A—C10A—H10A109.5
C3—C2—H2A113.8 (13)C9A—C10A—H10B109.5
C1—C2—H2B108.9 (13)H10A—C10A—H10B109.5
C3—C2—H2B111.0 (13)C9A—C10A—H10C109.5
H2A—C2—H2B107.6 (19)H10A—C10A—H10C109.5
C4—C3—C2105.00 (19)H10B—C10A—H10C109.5
C4—C3—H3A110.8 (15)C4—C11—H11A114.3 (18)
C2—C3—H3A111.1 (15)C4—C11—H11B109.3 (18)
C4—C3—H3B110.1 (15)H11A—C11—H11B104 (2)
C2—C3—H3B111.7 (14)C4—C11—H11C112.3 (18)
H3A—C3—H3B108 (2)H11A—C11—H11C105 (3)
C5—C4—C11127.8 (2)H11B—C11—H11C111 (3)
C5—C4—C3111.8 (2)N3—C12—N2117.47 (19)
C11—C4—C3120.4 (2)N3—C12—S1121.54 (17)
C4—C5—C1109.67 (19)N2—C12—S1120.98 (16)
C4—C5—C6128.7 (2)C10B—C9B—C8107.0 (10)
C1—C5—C6121.56 (19)C10B—C9B—H9B1107.9
C7—C6—C5112.6 (2)C8—C9B—H9B1109.0
C7—C6—H6A109.3 (18)C10B—C9B—H9B2113.0
C5—C6—H6A107.2 (18)C8—C9B—H9B2111.1
C7—C6—H6B109.0 (15)H9B1—C9B—H9B2108.7
C5—C6—H6B111.1 (16)C9B—C10B—H10D109.5
H6A—C6—H6B108 (2)C9B—C10B—H10E109.5
C8—C7—C6127.4 (2)H10D—C10B—H10E109.5
C8—C7—H7118.7 (16)C9B—C10B—H10F109.5
C6—C7—H7113.9 (16)H10D—C10B—H10F109.5
C7—C8—C9A128.2 (3)H10E—C10B—H10F109.5
C1—N1—N2—C12177.82 (19)C2—C1—C5—C44.5 (3)
N2—N1—C1—C5176.34 (19)N1—C1—C5—C63.0 (3)
N2—N1—C1—C22.8 (4)C2—C1—C5—C6177.7 (2)
N1—C1—C2—C3171.8 (2)C4—C5—C6—C7100.2 (3)
C5—C1—C2—C37.4 (2)C1—C5—C6—C777.0 (3)
C1—C2—C3—C47.3 (3)C5—C6—C7—C8123.5 (3)
C2—C3—C4—C55.1 (3)C6—C7—C8—C9A14.5 (7)
C2—C3—C4—C11175.9 (2)C6—C7—C8—C9B24.3 (7)
C11—C4—C5—C1179.4 (2)C7—C8—C9A—C10A145.8 (5)
C3—C4—C5—C10.5 (3)N1—N2—C12—N34.8 (3)
C11—C4—C5—C61.9 (4)N1—N2—C12—S1174.04 (15)
C3—C4—C5—C6177.1 (2)C7—C8—C9B—C10B156.7 (12)
N1—C1—C5—C4174.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···S1i0.90 (3)2.53 (3)3.4142 (19)166 (2)
N3—H3···S1ii0.85 (3)2.48 (3)3.325 (2)173 (3)
C2—H2B···S1i1.00 (2)2.93 (2)3.436 (2)112.2 (16)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Selected geometric parameters (Å, °) of the TSC entities for the α- and β-crystalline modifications of the cis-jasmone thiosemicarbazone top
α-JATSC(A), α-JATSC(B) and α-JATSC(C) refer to the three crystallographically independent molecules in the α-crystalline modification of cis-jasmone thiosemicarbazone (Orsoni et al., 2020) (Fig. 6). β-JATSC refers to the β-crystalline modification of cis-jasmone thiosemicarbazone reported in this work (Fig. 1).
Bond lengthNNN—CCS
Compound
α-JATSC(A)1.383 (5)1.305 (5)1.695 (5)
α-JATSC(B)1.384 (5)1.349 (5)1.701 (5)
α-JATSC(C)1.400 (5)1.341 (5)1.689 (5)
β-JATSC1.388 (2)1.345 (3)1.698 (2)
Atom chain 1Torsion angleAtom chain 2Torsion angle
α-JATSC(A)N3A—N2A—C1A—S1A-179.4 (3)N3A—N2A—C1A—N1A0.0 (6)
α-JATSC(B)N3B—N2B—C1B—S1B180.0 (3)N3B—N2B—C1B—N1B0.2 (6)
α-JATSC(C)N3C—N2C—C1C–S1C177.4 (3)N3C—N2C—C1C—N1C-1.8 (6)
β-JATSCN1—N2—C12—S1174.04 (15)N1—N2—C12—N3-4.8 (3)
 

Acknowledgements

We gratefully acknowledge financial support by the State of North Rhine-Westphalia, Germany. ABO is a former DAAD scholarship holder and alumnus of the University of Bonn, Germany, and thanks both of the institutions for the long-time support.

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES), Finance code 001.

References

First citationAcharya, P. T., Bhavsar, Z. A., Jethava, D. J., Patel, D. B. & Patel, H. D. (2021). J. Mol. Struct. 1226, 129268.  CrossRef Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBajaj, K., Buchanan, R. M. & Grapperhaus, C. A. (2021). J. Inorg. Biochem. 225, 111620.  CrossRef PubMed Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDomagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJamiołkowska, A., Skwaryło-Bednarz, B., Mielniczuk, E., Bisceglie, F., Pelosi, G., Degola, F., Gałązka, A. & Grzęda, E. (2022). Agronomy 12, 116.  Google Scholar
First citationKanso, F., Khalil, A., Noureddine, H. & El-Makhour, Y. (2021). Int. Immunopharmacol. 96, 107778.  CrossRef PubMed Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOliveira, A. B. de, Beck, J., Daniels, J., Farias, R. L. de & Godoy Netto, A. V. (2014). Acta Cryst. E70, o903–o904.  CrossRef IUCr Journals Google Scholar
First citationOliveira, A. B. de, Beck, J., Landvogt, C., Farias, R. L. de & Feitoza, B. R. S. (2017). Acta Cryst. E73, 291–295.  CSD CrossRef IUCr Journals Google Scholar
First citationOliveira, A. B. de, Silva, C. S., Feitosa, B. R. S., Näther, C. & Jess, I. (2012). Acta Cryst. E68, o2581.  CSD CrossRef IUCr Journals Google Scholar
First citationOrsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681–8697.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiqueira, L. R. P. de, de Moraes Gomes, P. A. T., de Lima Ferreira, L. P., de Melo Rêgo, M. J. B. & Leite, A. C. L. (2019). Eur. J. Med. Chem. 170, 237–260.  PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer 3.1. University of Western Australia, Perth, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146