organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Retracted: Retracted: 2-{3-Methyl-2-[(2Z)-pent-2-en-1-yl]cyclo­pent-2-en-1-yl­­idene}-N-phenylhydrazinecarbo­thio­amide

crossmark logo

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marcelo Deda Chagas s/n, Campus Universitário, 49107-230 São Cristóvão-SE, Brazil, bEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, and cInstitut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
*Correspondence e-mail: adriano@daad-alumni.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 6 November 2023; accepted 7 November 2023; online 14 November 2023)

The hydro­chloric acid-catalyzed equimolar reaction between cis-jasmone and 4-phenyl­thio­semicarbazide yielded the title compound, C18H23N3S (common name: cis-jasmone 4-phenyl­thio­semicarbazone). Concerning the hydrogen bonding, an N—H⋯N intra­molecular inter­action is observed, forming a ring with graph-set motif S(5). In the crystal, the mol­ecules are connected into centrosymmetric dimers by pairs of N—H⋯S and C—H⋯S inter­actions, forming rings of graph-set motifs R22(8) and R21(7), with the sulfur atoms acting as double acceptors. The thio­semicarbazone entity is approximately planar, with the maximum deviation from the mean plane through the N/N/C/S/N atoms being 0.0376 (9) Å (the r.m.s.d. amounts to 0.0234 Å). The mol­ecule is substantially twisted as indicated by the dihedral angle between the thio­semicarbazone fragment and the phenyl ring, which amounts to 56.1 (5)°, and because of the jasmone fragment, which bears a chain with sp3-hybridized carbon atoms in the structure. The Hirshfeld surface analysis indicates that the major contributions for the crystal cohesion are: H⋯H (65.3%), H⋯C/C⋯H (16.2%), H⋯S/S⋯H (10.9%) and H⋯N/N⋯H (5.5%).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­semicarbazone derivatives (TSCs), which are characterized by the [R1R2C=N—N(H)—C(=S)—NR3R4] functional group, were reported more than a century ago (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]), while the synthesis of jasmone derivatives can be traced back to the early 1930s (Ruzicka & Pfeiffer, 1933[Ruzicka, L. & Pfeiffer, M. (1933). Helv. Chim. Acta, 16, 1208-1214.]). Concerning TSC chemistry, thio­semicarbazone mol­ecules are the major product of the reaction between thio­semi­carbazide derivatives [H2N—N(H)—C(=S)—NR3R4] and aldehydes or ketones [R1R2C=O]. Thio­semicarbazides have been employed as analytical reagents in organic chemistry for the detection of the [R1R2C=O] functional group by a condensation reaction through nucleophilic attack of the [H2N—] thio­semicarbazide fragment on the carbonyl group. Thio­semicarbazone chemistry gained new perspectives in the mid-1940s when some derivatives were pointed out in in vitro essays to be tuberculostatic agents (Domagk et al., 1946[Domagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.]). From these early times, this chemistry evolved into a large class of compounds with a wide range of applications across several scientific disciplines. The facile experimental procedure for the synthesis, combined with the vast structural diversity of the starting materials, i.e., aldehydes and ketones, lead to a large number of TSCs. As a result of their mol­ecular structure and the respective Lewis basicity (nitro­gen atoms, with some more hard character, and the soft sulfur atom), allowing for chemical bonding with different metal centers in diverse modes, e.g., bridging, chelating or terminal, thio­semicarbazones found several applications in coordination chemistry. For the synergetic effect of thio­semicarbazones and metal centers, see: Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). For the application on diagnostic medical imaging of TSC complexes, see: Dilworth & Hueting (2012[Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3-15.]) and for the application of TSC coordination compounds on theranostics, see: Parrilha et al. (2022[Parrilha, G. L., dos Santos, R. G. & Beraldo, H. (2022). Coord. Chem. Rev. 458, 214418.]). For electrocatalytic hydrogen production using a PdII complex with the 4-{bis­[4-(p-meth­oxy­phen­yl)thio­semicarbazone]}-2,3-butane derivative, which is relevant for the energy research today, see: Straistari et al. (2018[Straistari, T., Hardré, R., Massin, J., Attolini, M., Faure, B., Giorgi, M., Réglier, M. & Orio, M. (2018). Eur. J. Inorg. Chem. pp. 2259-2266.]). For biological applications of TSCs and their complexes, see: Singh et al. (2023[Singh, V., Palakkeezhillam, V. N. V., Manakkadan, V., Rasin, P., Valsan, A. K., Kumar, V. S. & Sreekanth, A. (2023). Polyhedron, 245, 116658.]). For the anti­fungal activity and the crystal structure of the non-substituted cis-jasmone thio­semicarbazone, see: Orsoni et al., (2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681-8697.]) and for another report concerning the fungistatic effect of this TSC derivative, see: Jamiołkowska et al. (2022[Jamiołkowska, A., Skwaryło-Bednarz, B., Mielniczuk, E., Bisceglie, F., Pelosi, G., Degola, F., Gałązka, A. & Grzęda, E. (2022). Agronomy 12, 116.]). For the application of thio­semicarbazones complexes as single-mol­ecule precursors in the synthesis of nanostructured metal sulfides, see: Palve & Garje (2011[Palve, A. M. & Garje, S. S. (2011). J. Cryst. Growth, 326, 157-162.]) for ZnS, Pawar et al. (2016[Pawar, A. S., Masikane, S. C., Mlowe, S., Garje, S. S. & Revaprasadu, N. (2016). Eur. J. Inorg. Chem. pp. 366-372.]) for CdS and Pawar & Garje (2015[Pawar, A. S. & Garje, S. S. (2015). Bull. Mater. Sci. 38, 1843-1850.]) for CoS nanocrystalline materials. Regarding the use of a TSC on the formation of palladium nanoparticles for the Suzuki–Miyaura cross-coupling catalytic application, see: Kovala-Demertzi et al. (2008[Kovala-Demertzi, D., Kourkoumelis, N., Derlat, K., Michalak, J., Andreadaki, F. J. & Kostas, I. D. (2008). Inorg. Chim. Acta, 361, 1562-1565.]). Finally, to cite another example of their applications, thio­semicarbazones are employed as corrosion inhibitors. For an experimental and theoretical study regarding the corrosion-inhibitory property of TSCs applied for carbon steel AISI 1020 in a hydro­chloric acid medium, see: Goulart et al. (2013[Goulart, C. M., Esteves-Souza, A., Martinez-Huitle, C. A., Rodrigues, C. J. F., Maciel, M. A. M. & Echevarria, A. (2013). Corros. Sci. 67, 281-291.]). For a theoretical approach of TSC dimers as corrosion inhibitors, see: Silva & Martínez-Huitle (2021[Silva, Á. R. L. & Martínez-Huitle, C. A. (2021). J. Mol. Liq. 343, 117660.]).

As part of our inter­est in this chemistry, we report herein the synthesis, crystal structure and Hirshfeld analysis of the cis-jasmone 4-phenyl­thio­semicarbazone.

For the title compound, the mol­ecular structure matches the asymmetric unit, with all atoms being located in general positions (Fig. 1[link]). The thio­semicarbazone fragment is almost planar, with the maximum deviation from the mean plane through the N1/N2/C12/S1/N3 group being 0.0376 (9) Å for N2 and the r.m.s.d. for the selected atoms amounting to 0.0234 Å. The torsion angles of the N1—N2—C12—S1 and N1—N2—C12—N3 chains amount to 176.3 (1) and −5.2 (2)°. The C1–C5 penta­gonal ring is almost planar, as the maximum deviation from the mean plane through the carbon atoms is 0.0117 (1) Å for C5 and the respective r.m.s.d. amounts to 0.0080 Å. The mol­ecule is not planar because of the dihedral angle between the thio­semicarbazone entity and the phenyl ring, which is 56.1 (5)°, and due to the sp3-hybridized carbon atoms, e.g., C6 and C9 in the jasmone fragment. In addition, an N3—H3⋯N1 intra­molecular hydrogen bond is observed (Fig. 2[link], Table 1[link]), with graph-set motif S(5), which contributes to stabilize the mol­ecular structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯S1i 0.97 2.96 3.4640 (16) 113
N2—H2⋯S1i 0.86 2.72 3.5757 (13) 177
N3—H3⋯N1 0.86 2.11 2.5457 (18) 111
Symmetry code: (i) [-x+1, -y, -z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labeling and displacement ellipsoids drawn at the 40% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of the cis-jasmone 4-phenyl­thio­semicarbazone showing the intra- and inter­molecular hydrogen-bond inter­actions as dashed lines. The mol­ecules are linked into centrosymmetric dimers via pairs of N—H⋯S and C—H⋯S inter­actions, forming graph-set motifs [R_{2}^{2}](8) and [R_{2}^{1}](7). The N—H⋯N intra­molecular inter­actions form rings with graph-set motif S(5). [Symmetry code: (i) −x + 1, −y, −z.]

In the crystal, the mol­ecules are connected into centrosymmetric dimers by pairs of N2—H2⋯S1i inter­actions, which form rings of graph-set motif [R_{2}^{2}](8) and pairs of N2—H2⋯S1i/C2—H2B⋯S1i inter­actions, where rings of graph-set motif [R_{2}^{1}](7) are observed (Fig. 2[link], Table 1[link]). As a feature of the dimeric structure, the sulfur atoms act as double acceptors and three rings with inter­molecular hydrogen bonding are observed. No other strong inter­molecular inter­actions can be suggested for the title compound due to the non-polar organic periphery and the steric effects of the phenyl ring and of the cis-jasmone fragment. Only weak inter­actions, i.e., London dispersion forces, can be proposed. The crystal packing resembles a zigzag motif when viewed along [010] (Fig. 3[link]).

[Figure 3]
Figure 3
Crystal structure section of the title compound viewed along [010]. The hydrogen-bonding inter­molecular inter­actions are drawn as dashed lines. The crystal structure resembles a zigzag motif when viewed from this direction.

For the title compound, the Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]), the graphical representations and the two-dimensional Hirshfeld surface fingerprint (HSFP) were evaluated with the Crystal Explorer software (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth, Australia.]). The graphical representation of the Hirshfeld surface (dnorm) is represented using a ball-and-stick model with transparency. In red, the locations of the strongest inter­molecular contacts, i.e, the regions around the H2 and S1 atoms (Fig. 4[link]) are indicated. These atoms are those involved in the H⋯S inter­actions showed in the previous figures (Figs. 2[link] and 3[link]). The contributions to the crystal packing are shown as two-dimensional Hirshfeld surface fingerprint plots (HSFP) with cyan dots. The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface contacts (in Å). The major contributions to the crystal packing amount to (a) H⋯H = 65.3%, (b) H⋯C/C⋯H = 16.2%, (c) H⋯S/S⋯H = 10.9% and (d) H ⋯N/N⋯H = 5.5% (Fig. 5[link]).

[Figure 4]
Figure 4
Hirshfeld surface graphical representation (dnorm) for the title compound. The mol­ecule is drawn using a ball-and-stick model, the surface is drawn with transparency and the regions with strongest inter­molecular inter­actions are shown in red and labeled. The figure is simplified for clarity. [dnorm range: −0.227 to 1.380.]
[Figure 5]
Figure 5
The Hirshfeld surface two-dimensional fingerprint plot (HSFP) for the title compound showing the inter­molecular contacts in detail (cyan dots). The major contributions to the crystal cohesion amount to (a) H⋯H = 65.3%, (b) H⋯C/C⋯H = 16.2%, (c) H⋯S/S⋯H = 10.9% and (d) H ⋯N/N⋯H = 5.5%. The di (x-axis) and the de (y-axis) values are the closest inter­nal and external distances from given points on the Hirshfeld surface (in Å).

To the best of our knowledge and from using database tools such as SciFinder (Chemical Abstracts Service, 2023[Chemical Abstracts Service (2023). Columbus, Ohio, USA (accessed via SciFinder on October 27, 2023).]) and the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), only the crystal structure of the non-substituted cis-jasmone thio­semicarbazone has been reported (Orsoni et al., 2020[Orsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681-8697.]). The terminal group of the thio­semicarbazones plays an essential role in the inter­molecular inter­actions and the supra­molecular arrangement, e.g., the non-substituted form, which shows the NH2 terminal group, leads to the building of mono-periodic hydrogen-bonded ribbons, while a phenyl ring attached to the terminal nitro­gen atom leads to the formation of discrete dimeric units (Oliveira et al., 2017[Oliveira, A. B. de, Beck, J., Landvogt, C., Farias, R. L. de & Feitoza, B. R. S. (2017). Acta Cryst. E73, 291-295.]). This mol­ecular architecture is specially observed for compounds with a non-polar organic periphery and therefore, the tetra­lone 4-phenyl­thio­semicarbazone derivative (Oliveira et al., 2014[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, o205.]) was chosen for comparison with the title compound. As for the structure of the cis-jasmone 4-phenyl­thio­semi­carbazone, an N3—H2N⋯N2 intra­molecular inter­action is observed, with graph-set motif S(5), and the thio­semicarbazone mol­ecules are linked into centrosymmetric dimers via pairs of N1—H1N⋯S1#1 and C3—H3A⋯S1#1 inter­actions, forming hydrogen-bonded rings with graph-set motifs of [R_{2}^{2}](8) and [R_{2}^{1}](7). The sulfur atoms also act as double acceptors and, indeed, the intra and inter­molecular hydrogen bonding in the structure of the tetra­lone 4-phenyl­thio­semicarbazone are quite similar to those of the title compound (for the dimeric structure and the symmetry code, see Fig. 6[link]; for a structural comparison with the compound of this work, see: Fig. 2[link]). In the crystal, viewed along [001], the tetra­lone 4-phenyl­thio­semicarbazone shows a also zigzag motif, resembling the packing structure of the title compound (Fig. 7[link]).

[Figure 6]
Figure 6
The mol­ecular structure of the reference compound, tetra­lone 4-phenyl­thio­semicarbazone (Oliveira et al., 2014[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, o205.]), showing the intra- and inter­molecular hydrogen-bond inter­actions drawn as dashed lines, which are quite similar to the title compound (Fig. 2[link]). The mol­ecules are linked into centrosymmetric dimers via pairs of N—H⋯S and C—H⋯S inter­actions, forming graph-set motifs of [R_{2}^{2}](8) and [R_{2}^{1}](7). The N—H⋯N intra­molecular inter­actions, which form rings with graph-set motif S(5), are also observed. [Symmetry code: (#1) −x + 1, −y, −z + 1.]
[Figure 7]
Figure 7
Crystal structure section of the comparison compound, tetra­lone 4-phenyl­thio­semicarbazone (Oliveira et al., 2014[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, o205.]), viewed along [001]. For this view, a zigzag motif of the discrete dimeric units can be suggested. It resembles the packing structure of the title compound (Fig. 3[link]). Only the inter­molecular N—H⋯S inter­actions are shown for clarity, drawn as dashed lines.

Synthesis and crystallization

The starting materials are commercially available and were used without further purification. The synthesis was adapted from previously reported procedures (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602-2606.]; Oliveira et al., 2014[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, o205.]). The hydro­chloric acid-catalyzed reaction between cis-jasmone (8 mmol) and 4-phenyl­thio­semicarbazide (8 mmol) in ethanol (80 ml) was refluxed for 6 h. After cooling and filtering, the title compound was obtained as precipitate, filtered off and washed with cold ethanol. Colorless single crystals suitable for X-ray diffraction were obtained in tetra­hydro­furan by slow evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H23N3S
Mr 313.45
Crystal system, space group Monoclinic, P21/n
Temperature (K) 123
a, b, c (Å) 13.6565 (3), 5.8286 (2), 20.6721 (6)
β (°) 92.751 (2)
V3) 1643.57 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.22 × 0.13 × 0.05
 
Data collection
Diffractometer Enraf–Nonius FR590 Kappa CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 26959, 3751, 2857
Rint 0.064
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.095, 1.06
No. of reflections 3751
No. of parameters 202
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.25
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth, Australia.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Structural data


Computing details top

2-{3-Methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-ylidene}-N-phenylhydrazinecarbothioamide top
Crystal data top
C18H23N3SF(000) = 672
Mr = 313.45Dx = 1.267 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.6565 (3) ÅCell parameters from 63134 reflections
b = 5.8286 (2) Åθ = 2.9–27.5°
c = 20.6721 (6) ŵ = 0.20 mm1
β = 92.751 (2)°T = 123 K
V = 1643.57 (8) Å3Fragment, colourless
Z = 40.22 × 0.13 × 0.05 mm
Data collection top
Enraf–Nonius FR590 Kappa CCD
diffractometer
2857 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, Enraf–Nonius FR590Rint = 0.064
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD rotation images, thick slices, κ–goniostat scansh = 1717
26959 measured reflectionsk = 77
3751 independent reflectionsl = 2626
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.7368P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.28 e Å3
3751 reflectionsΔρmin = 0.25 e Å3
202 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0053 (9)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. An absorption correction was not performed, as the crystal data analysis suggested that the absorption effects were not significant for the structure refinement. Hydrogen atoms were located in a difference-Fourier map, but were positioned with idealized geometry and refined isotropically using a riding model (HFIX command). Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Thus, for the methyl H atoms [Uiso(H) = 1.5 Ueq(C)], the C—H bond lengths were set to 0.96 Å. The other C—H bond lengths were also set according to the H atom neighbourhood [Uiso(H) = 1.2 Ueq(C)]. For the phenyl H atoms and for the other H atoms attached to sp2-hybridized carbon atoms (C7 and C8), the C—H bond lengths were set 0.93 Å. For the H atoms of the —CH2— fragments (C2, C3, C6 and C9), the C—H bond lengths were set to 0.97 Å. Finally, the N—H bond lengths [Uiso(H) = 1.2 Ueq(N)] were set to 0.86 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38987 (11)0.5560 (3)0.10461 (7)0.0182 (3)
C20.45778 (11)0.4298 (3)0.14766 (8)0.0207 (3)
H2A0.4369000.2720270.1540500.025*
H2B0.5244850.4310890.1292770.025*
C30.45002 (12)0.5646 (3)0.21191 (8)0.0239 (4)
H3A0.5133930.6256650.2223950.029*
H3B0.4258720.4667840.2471390.029*
C40.37868 (11)0.7559 (3)0.20041 (8)0.0205 (3)
C50.34692 (11)0.7526 (3)0.13988 (7)0.0189 (3)
C60.27920 (11)0.9155 (3)0.10790 (8)0.0220 (3)
H6A0.2745081.0556340.1331790.026*
H6B0.3074360.9546900.0653780.026*
C70.17720 (12)0.8219 (3)0.10048 (8)0.0255 (4)
H70.1658220.6701530.1125770.031*
C80.10260 (12)0.9383 (3)0.07815 (9)0.0277 (4)
H80.0437000.8593850.0757990.033*
C90.10293 (12)1.1834 (3)0.05628 (9)0.0275 (4)
H9A0.1593871.2608610.0728460.033*
H9B0.1091261.1882080.0093570.033*
C100.01004 (13)1.3102 (3)0.07920 (10)0.0337 (4)
H10A0.0060581.3156500.1256700.051*
H10B0.0117331.4636450.0622780.051*
H10C0.0461911.2313430.0641020.051*
C110.35163 (13)0.9202 (3)0.25364 (8)0.0266 (4)
H11A0.3040181.0272550.2390680.040*
H11B0.3244430.8373260.2903970.040*
H11C0.4090311.0018120.2657010.040*
C120.36853 (11)0.2620 (3)0.04217 (7)0.0182 (3)
C130.24371 (11)0.3876 (3)0.11856 (7)0.0189 (3)
C140.18756 (11)0.1912 (3)0.12727 (8)0.0214 (3)
H140.1908440.0686710.0986470.026*
C150.12685 (11)0.1804 (3)0.17895 (8)0.0235 (4)
H150.0889490.0501780.1848380.028*
C160.12210 (11)0.3623 (3)0.22203 (8)0.0241 (4)
H160.0811980.3537300.2566490.029*
C170.17823 (12)0.5562 (3)0.21342 (8)0.0232 (4)
H170.1754810.6775980.2424740.028*
C180.23886 (11)0.5702 (3)0.16133 (8)0.0215 (3)
H180.2760030.7014430.1552250.026*
N10.36550 (9)0.5130 (2)0.04654 (6)0.0189 (3)
N20.40538 (9)0.3219 (2)0.01525 (6)0.0195 (3)
H20.4516940.2443070.0316120.023*
N30.30211 (9)0.4113 (2)0.06367 (6)0.0201 (3)
H30.2940260.5356580.0416530.024*
S10.40757 (3)0.02358 (7)0.08139 (2)0.02292 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0171 (8)0.0187 (8)0.0187 (8)0.0025 (6)0.0011 (6)0.0009 (6)
C20.0207 (8)0.0204 (8)0.0210 (8)0.0008 (6)0.0031 (6)0.0008 (6)
C30.0267 (9)0.0242 (8)0.0212 (8)0.0006 (7)0.0063 (7)0.0007 (7)
C40.0193 (8)0.0204 (8)0.0216 (8)0.0030 (6)0.0006 (6)0.0015 (6)
C50.0180 (8)0.0174 (8)0.0212 (8)0.0024 (6)0.0015 (6)0.0003 (6)
C60.0231 (8)0.0177 (8)0.0254 (9)0.0008 (6)0.0037 (7)0.0001 (7)
C70.0259 (9)0.0192 (8)0.0318 (10)0.0013 (7)0.0047 (7)0.0009 (7)
C80.0236 (9)0.0238 (9)0.0361 (10)0.0022 (7)0.0053 (7)0.0004 (7)
C90.0272 (9)0.0252 (9)0.0302 (9)0.0012 (7)0.0027 (7)0.0026 (7)
C100.0309 (10)0.0251 (9)0.0452 (12)0.0030 (7)0.0022 (8)0.0007 (8)
C110.0294 (9)0.0271 (9)0.0231 (9)0.0017 (7)0.0006 (7)0.0048 (7)
C120.0192 (8)0.0180 (8)0.0174 (8)0.0028 (6)0.0003 (6)0.0013 (6)
C130.0180 (8)0.0207 (8)0.0181 (8)0.0030 (6)0.0019 (6)0.0030 (6)
C140.0234 (8)0.0204 (8)0.0205 (8)0.0004 (6)0.0010 (7)0.0003 (6)
C150.0213 (8)0.0239 (8)0.0255 (9)0.0034 (7)0.0032 (7)0.0051 (7)
C160.0203 (8)0.0317 (9)0.0207 (8)0.0034 (7)0.0042 (7)0.0043 (7)
C170.0239 (8)0.0244 (9)0.0216 (8)0.0048 (7)0.0026 (7)0.0026 (6)
C180.0214 (8)0.0199 (8)0.0234 (8)0.0004 (6)0.0027 (6)0.0010 (6)
N10.0213 (7)0.0165 (6)0.0189 (7)0.0007 (5)0.0010 (5)0.0019 (5)
N20.0216 (7)0.0183 (6)0.0188 (7)0.0029 (5)0.0034 (5)0.0011 (5)
N30.0240 (7)0.0171 (6)0.0195 (7)0.0018 (5)0.0057 (5)0.0036 (5)
S10.0255 (2)0.0203 (2)0.0233 (2)0.00340 (16)0.00521 (16)0.00501 (16)
Geometric parameters (Å, º) top
C1—N11.286 (2)C10—H10B0.9600
C1—C51.466 (2)C10—H10C0.9600
C1—C21.507 (2)C11—H11A0.9600
C2—C31.542 (2)C11—H11B0.9600
C2—H2A0.9700C11—H11C0.9600
C2—H2B0.9700C12—N31.348 (2)
C3—C41.507 (2)C12—N21.357 (2)
C3—H3A0.9700C12—S11.6827 (16)
C3—H3B0.9700C13—C181.387 (2)
C4—C51.344 (2)C13—C141.394 (2)
C4—C111.492 (2)C13—N31.425 (2)
C5—C61.501 (2)C14—C151.385 (2)
C6—C71.511 (2)C14—H140.9300
C6—H6A0.9700C15—C161.388 (2)
C6—H6B0.9700C15—H150.9300
C7—C81.325 (2)C16—C171.382 (2)
C7—H70.9300C16—H160.9300
C8—C91.498 (2)C17—C181.392 (2)
C8—H80.9300C17—H170.9300
C9—C101.524 (2)C18—H180.9300
C9—H9A0.9700N1—N21.3863 (18)
C9—H9B0.9700N2—H20.8600
C10—H10A0.9600N3—H30.8600
N1—C1—C5120.09 (14)C9—C10—H10B109.5
N1—C1—C2130.57 (14)H10A—C10—H10B109.5
C5—C1—C2109.32 (13)C9—C10—H10C109.5
C1—C2—C3103.95 (12)H10A—C10—H10C109.5
C1—C2—H2A111.0H10B—C10—H10C109.5
C3—C2—H2A111.0C4—C11—H11A109.5
C1—C2—H2B111.0C4—C11—H11B109.5
C3—C2—H2B111.0H11A—C11—H11B109.5
H2A—C2—H2B109.0C4—C11—H11C109.5
C4—C3—C2105.03 (13)H11A—C11—H11C109.5
C4—C3—H3A110.7H11B—C11—H11C109.5
C2—C3—H3A110.7N3—C12—N2113.96 (13)
C4—C3—H3B110.7N3—C12—S1125.25 (12)
C2—C3—H3B110.7N2—C12—S1120.78 (12)
H3A—C3—H3B108.8C18—C13—C14120.27 (14)
C5—C4—C11128.03 (15)C18—C13—N3118.60 (14)
C5—C4—C3112.11 (14)C14—C13—N3121.01 (14)
C11—C4—C3119.85 (14)C15—C14—C13119.37 (15)
C4—C5—C1109.55 (14)C15—C14—H14120.3
C4—C5—C6129.38 (15)C13—C14—H14120.3
C1—C5—C6121.06 (14)C14—C15—C16120.55 (15)
C5—C6—C7114.00 (13)C14—C15—H15119.7
C5—C6—H6A108.8C16—C15—H15119.7
C7—C6—H6A108.8C17—C16—C15119.91 (15)
C5—C6—H6B108.8C17—C16—H16120.0
C7—C6—H6B108.8C15—C16—H16120.0
H6A—C6—H6B107.6C16—C17—C18120.12 (15)
C8—C7—C6125.32 (15)C16—C17—H17119.9
C8—C7—H7117.3C18—C17—H17119.9
C6—C7—H7117.3C13—C18—C17119.78 (15)
C7—C8—C9127.02 (16)C13—C18—H18120.1
C7—C8—H8116.5C17—C18—H18120.1
C9—C8—H8116.5C1—N1—N2118.59 (13)
C8—C9—C10112.23 (15)C12—N2—N1117.45 (12)
C8—C9—H9A109.2C12—N2—H2121.3
C10—C9—H9A109.2N1—N2—H2121.3
C8—C9—H9B109.2C12—N3—C13127.68 (13)
C10—C9—H9B109.2C12—N3—H3116.2
H9A—C9—H9B107.9C13—N3—H3116.2
C9—C10—H10A109.5
N1—C1—C2—C3177.17 (16)C18—C13—C14—C150.1 (2)
C5—C1—C2—C31.15 (17)N3—C13—C14—C15175.86 (14)
C1—C2—C3—C40.01 (16)C13—C14—C15—C160.4 (2)
C2—C3—C4—C51.26 (18)C14—C15—C16—C170.1 (2)
C2—C3—C4—C11178.74 (14)C15—C16—C17—C180.5 (2)
C11—C4—C5—C1177.96 (15)C14—C13—C18—C170.5 (2)
C3—C4—C5—C12.03 (18)N3—C13—C18—C17176.55 (14)
C11—C4—C5—C62.6 (3)C16—C17—C18—C130.8 (2)
C3—C4—C5—C6177.45 (15)C5—C1—N1—N2178.18 (13)
N1—C1—C5—C4176.51 (14)C2—C1—N1—N20.0 (2)
C2—C1—C5—C42.01 (18)N3—C12—N2—N15.15 (19)
N1—C1—C5—C64.0 (2)S1—C12—N2—N1176.26 (10)
C2—C1—C5—C6177.53 (13)C1—N1—N2—C12171.07 (14)
C4—C5—C6—C7104.92 (19)N2—C12—N3—C13173.62 (14)
C1—C5—C6—C775.65 (19)S1—C12—N3—C137.9 (2)
C5—C6—C7—C8174.86 (17)C18—C13—N3—C12132.16 (16)
C6—C7—C8—C90.4 (3)C14—C13—N3—C1251.8 (2)
C7—C8—C9—C10138.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···S1i0.972.963.4640 (16)113
N2—H2···S1i0.862.723.5757 (13)177
N3—H3···N10.862.112.5457 (18)111
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support by the State of North Rhine-Westphalia, Germany. ABO is a former DAAD scholarship holder and alumnus of the University of Bonn, Germany, and thanks both of the institutions for the long-time support.

Funding information

Funding for this research was provided by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES), Finance code 001 .

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChemical Abstracts Service (2023). Columbus, Ohio, USA (accessed via SciFinder on October 27, 2023).  Google Scholar
First citationDilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3–15.  Web of Science CrossRef CAS Google Scholar
First citationDomagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreund, M. & Schander, A. (1902). Ber. Dtsch. Chem. Ges. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationGoulart, C. M., Esteves-Souza, A., Martinez-Huitle, C. A., Rodrigues, C. J. F., Maciel, M. A. M. & Echevarria, A. (2013). Corros. Sci. 67, 281–291.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJamiołkowska, A., Skwaryło-Bednarz, B., Mielniczuk, E., Bisceglie, F., Pelosi, G., Degola, F., Gałązka, A. & Grzęda, E. (2022). Agronomy 12, 116.  Google Scholar
First citationKovala-Demertzi, D., Kourkoumelis, N., Derlat, K., Michalak, J., Andreadaki, F. J. & Kostas, I. D. (2008). Inorg. Chim. Acta, 361, 1562–1565.  CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOliveira, A. B. de, Beck, J., Landvogt, C., Farias, R. L. de & Feitoza, B. R. S. (2017). Acta Cryst. E73, 291–295.  CSD CrossRef IUCr Journals Google Scholar
First citationOliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, o205.  CSD CrossRef IUCr Journals Google Scholar
First citationOrsoni, N., Degola, F., Nerva, L., Bisceglie, F., Spadola, G., Chitarra, W., Terzi, V., Delbono, S., Ghizzoni, R., Morcia, C., Jamiołkowska, A., Mielniczuk, E., Restivo, F. M. & Pelosi, G. (2020). Int. J. Mol. Sci. 21, 8681–8697.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalve, A. M. & Garje, S. S. (2011). J. Cryst. Growth, 326, 157–162.  Web of Science CrossRef CAS Google Scholar
First citationParrilha, G. L., dos Santos, R. G. & Beraldo, H. (2022). Coord. Chem. Rev. 458, 214418.  Web of Science CrossRef Google Scholar
First citationPawar, A. S. & Garje, S. S. (2015). Bull. Mater. Sci. 38, 1843–1850.  Web of Science CrossRef CAS Google Scholar
First citationPawar, A. S., Masikane, S. C., Mlowe, S., Garje, S. S. & Revaprasadu, N. (2016). Eur. J. Inorg. Chem. pp. 366–372.  Web of Science CrossRef Google Scholar
First citationRuzicka, L. & Pfeiffer, M. (1933). Helv. Chim. Acta, 16, 1208–1214.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, Á. R. L. & Martínez-Huitle, C. A. (2021). J. Mol. Liq. 343, 117660.  Web of Science CrossRef Google Scholar
First citationSingh, V., Palakkeezhillam, V. N. V., Manakkadan, V., Rasin, P., Valsan, A. K., Kumar, V. S. & Sreekanth, A. (2023). Polyhedron, 245, 116658.  Web of Science CrossRef Google Scholar
First citationStraistari, T., Hardré, R., Massin, J., Attolini, M., Faure, B., Giorgi, M., Réglier, M. & Orio, M. (2018). Eur. J. Inorg. Chem. pp. 2259–2266.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146