inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Rerefinement of the crystal structure of α-ThBr4

crossmark logo

aAG Fluorchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
*Correspondence e-mail: f.kraus@uni-marburg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 September 2023; accepted 11 October 2023; online 17 October 2023)

Single crystals of α-ThBr4, thorium(IV) tetra­bromide, were obtained as a side product from the reaction of CuBr with β-ThBr4 at 753 K. In the crystal structure, the Th atom (site symmetry [\overline{4}]..) is surrounded by eight Br atoms in the form of a tetra­gonal-disphenoidal coordination polyhedron. The connectivity of these polyhedra is 3[ThBr4/2Br4/2]. In comparison with the previous crystal structure refinement [Mason et al. (1974[Mason, J. T., Jha, M. C., Bailey, D. M. & Chiotti, P. (1974). J. Less-Common Met. 35, 331-338.]). J. Less-Common Met. 35, 331–338], the current rerefinement resulted in much higher preciscion of the lattice parameters and the atomic coordinates.

3D view (loading...)
[Scheme 3D1]

Structure description

A crystal of ThBr4 in its α-modification was isolated as a side product from the reaction of β-ThBr4 with CuBr at 753 K.

The crystal structure of α-ThBr4 has been described only once, from a single-crystal X-ray diffraction study at room temperature (Mason et al., 1974[Mason, J. T., Jha, M. C., Bailey, D. M. & Chiotti, P. (1974). J. Less-Common Met. 35, 331-338.]), where the authors refer to this modification also as the low-temperature polymorph. They reported the transition temperature at 699 ± 5 K and the crystal structure of α-ThBr4 was assigned to the α-ThCl4 structure type in the space group I41/a (No. 88, tI20). A comparison of the structural parameters of the original crystal structure refinement and of the current rerefinement is given in Table 1[link].

Table 1
Comparison of structural parameters of α-ThBr4 resulting from the current and previous crystal structure refinements

  This work Mason et al. (1974[Mason, J. T., Jha, M. C., Bailey, D. M. & Chiotti, P. (1974). J. Less-Common Met. 35, 331-338.])
a (Å) 6.7068 (2) 6.737 (1)
c (Å) 13.5792 (6) 13.601 (3)
x, y, z Th 0, 1/4, 1/8 0, 1/4, 1/8
x, y, z Br 0.33880 (6), 0.47423 (6), 0.20021 (3) 0.3378 (6), 0.4727 (7), 0.1998 (3)

Fig. 1[link] shows the crystal structure based on the current X-ray diffraction data. There is one Th atom (multiplicity 4, Wyckoff letter a, site symmetry [\overline{4}]..) and one Br atom (16f, site symmetry 1) in the asymmetric unit. The Th atom is surrounded by eight Br atoms to form a tetra­gonal-disphenoidal coordination polyhedron. The Th—Br bond lengths of 4 × 2.9100 (4) Å and 4 × 3.0107 (4) Å are in good agreement with previously reported values of 2.909 and 3.020 Å (no s.u. values or temperature given; Mason et al., 1974[Mason, J. T., Jha, M. C., Bailey, D. M. & Chiotti, P. (1974). J. Less-Common Met. 35, 331-338.]), but different compared to those in β-ThBr4 (space group I41/amd), with values of 2.85 and 3.12 Å (no s.u. values or temperature given; Brown et al., 1973[Brown, D., Hall, T. L. & Moseley, P. T. (1973). J. Chem. Soc. Dalton Trans. pp. 686-691.]). Each Br atom bridges two Th atoms, which results in edge-sharing polyhedra to form the crystal structure. The connection motif of α-ThBr4 is similar to that in β-ThBr4. Although the two polymorphs differ considerably with respect to the two pairs of Th—Br distances, the connectivities in both structures can be described with the Niggli formula 3[ThBr4/2Br4/2]. The closest Th⋯Th distance of 4.77179 (12) Å in α-ThBr4 is shorter compared to β-ThBr4, with a value of 4.8774 Å (Brown et al., 1973[Brown, D., Hall, T. L. & Moseley, P. T. (1973). J. Chem. Soc. Dalton Trans. pp. 686-691.]). In the crystal structure of α-ThBr4, each Th atom is surrounded by eight other Th atoms in the shape of an irreg­ular polyhedron, with Th⋯Th distances of 4 × 4.77179 (12) Å and 4 × 6.70680 (19) Å.

[Figure 1]
Figure 1
Crystal structure of α-ThBr4 in a projection along [010]. Displacement ellipsoids are drawn at the 90% probability level.

Synthesis and crystallization

All work was carried under an argon atmosphere (5.0, Praxair) using a fine-vacuum line and a glove-box (MBraun). Silica ampoules were flame-dried under dynamic fine vacuum (10−3 mbar; 1 bar = 105 Pa) at least three times before use. Aluminium bromide (Alfa Aesar, 98%) was sublimed in vacuo before use; β-ThBr4 was prepared according to a literature protocol (Deubner et al., 2017[Deubner, H. L., Rudel, S. S. & Kraus, F. (2017). Z. Anorg. Allg. Chem. 643, 2005-2010.]).

A silica glass ampoule was loaded with β-ThBr4 (149 mg, 0.27 mmol) and CuBr (78 mg, 54 mmol, 2.01 equiv.), and sealed under vacuum. The ampoule was heated in a furnace to 753 K at a rate of 1 K min−1 and kept at this temperature for 480 h for the reaction to take place. Afterwards, it was cooled to 330 K at a rate of 50 K d−1. Several colourless crystals of α-ThBr4 were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula ThBr4
Mr 551.68
Crystal system, space group Tetragonal, I41/a
Temperature (K) 100
a, c (Å) 6.7068 (2), 13.5792 (6)
V3) 610.81 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 50.43
Crystal size (mm) 0.15 × 0.15 × 0.14
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.016, 0.078
No. of measured, independent and observed [I > 2σ(I)] reflections 9305, 463, 463
Rint 0.049
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.053, 1.37
No. of reflections 463
No. of parameters 13
Δρmax, Δρmin (e Å−3) 1.16, −1.72
Computer programs: APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker AXS INC., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2022[Brandenburg, K. (2022). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2022); software used to prepare material for publication: publCIF (Westrip, 2010).

alpha-Thorium(IV) tetrabromide top
Crystal data top
ThBr4Melting point: 200 K
Mr = 551.68Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 9713 reflections
a = 6.7068 (2) Åθ = 3.0–30.6°
c = 13.5792 (6) ŵ = 50.43 mm1
V = 610.81 (5) Å3T = 100 K
Z = 4Block, colorless
F(000) = 9200.15 × 0.14 × 0.14 mm
Dx = 5.999 Mg m3
Data collection top
Bruker D8 QUEST
diffractometer
463 independent reflections
Radiation source: Incoatec Microfocus463 reflections with I > 2σ(I)
Multi layered optics monochromatorRint = 0.049
Detector resolution: 10.42 pixels mm-1θmax = 30.5°, θmin = 5.2°
φ and ω scansh = 99
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 99
Tmin = 0.016, Tmax = 0.078l = 1919
9305 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0219P)2 + 6.5321P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max < 0.001
S = 1.37Δρmax = 1.16 e Å3
463 reflectionsΔρmin = 1.72 e Å3
13 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0052 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Th10.0000000.2500000.1250000.00764 (15)
Br10.33880 (6)0.47423 (6)0.20021 (3)0.00953 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Th10.00844 (17)0.00844 (17)0.00604 (19)0.0000.0000.000
Br10.0101 (2)0.0104 (2)0.0080 (2)0.00131 (13)0.00114 (13)0.00179 (13)
Geometric parameters (Å, º) top
Th1—Br12.9100 (4)Th1—Br1iv3.0107 (4)
Th1—Br1i2.9100 (4)Th1—Br1v3.0107 (4)
Th1—Br1ii2.9100 (4)Th1—Br1vi3.0107 (4)
Th1—Br1iii2.9100 (4)Th1—Br1vii3.0107 (4)
Br1—Th1—Br1i138.907 (16)Br1—Th1—Br1vi72.606 (12)
Br1—Th1—Br1ii97.075 (5)Br1i—Th1—Br1vi75.260 (8)
Br1i—Th1—Br1ii97.075 (5)Br1ii—Th1—Br1vi72.605 (8)
Br1—Th1—Br1iii97.076 (5)Br1iii—Th1—Br1vi148.466 (14)
Br1i—Th1—Br1iii97.075 (5)Br1iv—Th1—Br1vi128.427 (10)
Br1ii—Th1—Br1iii138.907 (16)Br1v—Th1—Br1vi75.934 (16)
Br1—Th1—Br1iv148.466 (14)Br1—Th1—Br1vii72.605 (8)
Br1i—Th1—Br1iv72.605 (8)Br1i—Th1—Br1vii148.466 (14)
Br1ii—Th1—Br1iv72.606 (12)Br1ii—Th1—Br1vii75.260 (8)
Br1iii—Th1—Br1iv75.260 (8)Br1iii—Th1—Br1vii72.606 (12)
Br1—Th1—Br1v75.260 (8)Br1iv—Th1—Br1vii75.934 (16)
Br1i—Th1—Br1v72.606 (12)Br1v—Th1—Br1vii128.427 (10)
Br1ii—Th1—Br1v148.466 (14)Br1vi—Th1—Br1vii128.427 (10)
Br1iii—Th1—Br1v72.605 (8)Th1—Br1—Th1vi107.394 (12)
Br1iv—Th1—Br1v128.427 (10)
Symmetry codes: (i) x, y+1/2, z; (ii) y1/4, x+1/4, z+1/4; (iii) y+1/4, x+1/4, z+1/4; (iv) y+1/4, x1/4, z1/4; (v) x1/2, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) y1/4, x+3/4, z1/4.
Comparison of structural parameters of α-ThBr4 resulting from the current and previous crystal structure refinements top
This workMason et al. (1974)
a (Å)6.7068 (2)6.737 (1)
c (Å)13.5792 (6)13.601 (3)
x, y, z Th0, 1/4, 1/80, 1/4, 1/8
x, y, z Br0.33880 (6), 0.47423 (6), 0.20021 (3)0.3378 (6), 0.4727 (7), 0.1998 (3)
 

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. KR3595/13-1).

References

First citationBrandenburg, K. (2022). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, D., Hall, T. L. & Moseley, P. T. (1973). J. Chem. Soc. Dalton Trans. pp. 686–691.  CrossRef ICSD Web of Science Google Scholar
First citationBruker (2019). APEX3 and SAINT. Bruker AXS INC., Madison, Wisconsin, USA.  Google Scholar
First citationDeubner, H. L., Rudel, S. S. & Kraus, F. (2017). Z. Anorg. Allg. Chem. 643, 2005–2010.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMason, J. T., Jha, M. C., Bailey, D. M. & Chiotti, P. (1974). J. Less-Common Met. 35, 331–338.  CrossRef ICSD CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146