metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[bis­­(O-ethyl­hy­droxy­laminium) [di-μ-chlorido-di­chlorido­cadmate(II)]]

crossmark logo

aFaculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650050, People's Republic of China
*Correspondence e-mail: huangbo@ynnu.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 September 2023; accepted 13 October 2023; online 19 October 2023)

The title compound, {(CH3CH2ONH3)2[CdCl4]}n, consists of bilayers of organic CH3CH2ONH3+ cations and infinite [CdCl4]n2n inorganic layers. It can be described as an organic–inorganic hybrid layered perovskite. In the crystal structure, the CdII cation is situated at an inversion center and is coordinated by six chloride ions, forming a slightly distorted octa­hedral coordination polyhedron. By corner-sharing of the [CdCl6] octa­hedra, infinite [CdCl4]n2n inorganic layers are formed, extending parallel to (100). The inorganic layers alternate with bilayers of CH3CH2ONH3+ cations, whereby the connection of the cationic and anionic layers is achieved through N—H⋯Cl hydrogen bonds and Coulombic inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a class of mol­ecular materials with the advantages of low density, mechanical flexibility, and being easy to process into thin films, organic–inorganic hybrid layered perovskite compounds have attracted a lot of attention on account of their outstanding ferroelectric, multiferroic, and semiconducting performance (Huang et al., 2018[Huang, B., Zhang, J.-Y., Huang, R.-K., Chen, M.-K., Xue, W., Zhang, W.-X., Zeng, M.-H. & Chen, X.-M. (2018). Chem. Sci. 9, 7413-7418.]). However, it is hard to predict and design advanced materials with specific performance. One reason is the lack of understanding as to why a particular crystal structure forms (Sun et al., 2020[Sun, B., Liu, X.-F., Li, X.-Y., Cao, Y., Yan, Z., Fu, L., Tang, N., Wang, Q., Shao, X., Yang, D. & Zhang, H.-L. (2020). Angew. Chem. Int. Ed. 59, 203-208.]). In this regard, it is fundamentally important to search for and study new examples of such organic–inorganic hybrid layered perovskite compounds (Yang et al., 2022[Yang, Y., Ji, J., Feng, J., Chen, S., Bellaiche, L. & Xiang, H. (2022). J. Am. Chem. Soc. 144, 14907-14914.]). Herein, we report the synthesis and crystal structure of the title compound, (CH3CH2ONH3)+2[CdCl4]2–, based on O-ethyl­hydroxyl­ammonium cations and tetra­chlorido­cadmate anions.

The asymmetric unit contains one CdII cation, two chloride anions and one O-ethyl­hydroxyl­ammonium cation. The CdII cation is situated at an inversion center (Wyckoff site b) and is distorted octa­hedrally coordinated by six chloride anions (Fig. 1[link]). Two medium and two long equatorial Cd—Cl1 bonds [2.6798 (5) and 2.7416 (5) Å, respectively], and two shorter axial Cd—Cl2 bonds [2.5384 (5) Å] are present.

[Figure 1]
Figure 1
A part of the crystal structure of the title compound showing the coordination around the CdII cation, and the N—H⋯Cl hydrogen-bonding inter­actions (dotted lines) between the cation and the anionic layer. Displacement ellipsoids are drawn at the 50% probability level.

The structure of the title compound can be described as an organic–inorganic hybrid layered perovskite with general formula A2MX4 (A = monovalent organic cation, M = divalent metal cation, X = halide anion). By corner-sharing of the [CdCl6] octa­hedra, infinite inorganic [CdCl4]n2n layers are formed, extending parallel to (100) (Fig. 2[link]). Neighboring inorganic layers alternate with bilayers of organic CH3CH2ONH3+ cations along [100] (Fig. 3[link]). The CH3CH2ONH3+ cation is N—H⋯Cl hydrogen-bonded to three [CdCl6] octa­hedra with two hydrogen bonds to the axial Cl ligand, and one hydrogen bond to an equatorial ligand (Fig. 1[link], Table 1[link]). The cohesion between the inverted cations in the organic bilayer is achieved through van der Waals forces.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.89 2.38 3.259 (2) 169
N1—H1B⋯Cl2i 0.89 2.31 3.1810 (18) 167
N1—H1C⋯Cl2ii 0.89 2.34 3.166 (2) 155
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) [-x+1, -y, -z+3].
[Figure 2]
Figure 2
The organic cations and the anionic [CdCl4]2– layer (polyhedral representation) in the title compound, in a view along [100].
[Figure 3]
Figure 3
The stacking of (100) layers of organic cations in bilayers and anionic [CdCl4]2– layers (polyhedral representation) along [100], in a view along [010].

Synthesis and crystallization

An aqueous solution (15 ml) containing stoichiometric qu­anti­ties of O-ethyl­hydroxyl­ammonium (5 mmol), CdCl2 (2.5 mmol), and hydro­chloric acid (5 mmol) was stirred for 15 min. The clear solution was allowed to stand at room temperature for slow evaporation. About one week later, colorless, plate-shaped crystals of (CH3CH2ONH3)2[CdCl4] were obtained in about 83% yield based on Cd.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C2H8NO)2[CdCl4]
Mr 378.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 11.7058 (8), 7.2365 (5), 7.6864 (5)
β (°) 96.374 (2)
V3) 647.08 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.49
Crystal size (mm) 0.30 × 0.30 × 0.10
 
Data collection
Diffractometer Oxford Diffraction, Xcalibur, Eos, Gemini CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.450, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6115, 1462, 1401
Rint 0.052
(sin θ/λ)max−1) 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 1.07
No. of reflections 1462
No. of parameters 63
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.39, −0.86
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[bis(O-ethylhydroxylaminium) [di-µ-chlorido-dichloridocadmate(II)]] top
Crystal data top
(C2H8NO)2[CdCl4]F(000) = 372
Mr = 378.39Dx = 1.942 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7058 (8) ÅCell parameters from 6460 reflections
b = 7.2365 (5) Åθ = 3.3–27.5°
c = 7.6864 (5) ŵ = 2.49 mm1
β = 96.374 (2)°T = 150 K
V = 647.08 (8) Å3Plate, colourless
Z = 20.30 × 0.30 × 0.10 mm
Data collection top
Oxford Diffraction, Xcalibur, Eos, Gemini CCD
diffractometer
1401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 27.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 1515
Tmin = 0.450, Tmax = 1.000k = 99
6115 measured reflectionsl = 99
1462 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0147P)2 + 0.3935P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1462 reflectionsΔρmax = 1.39 e Å3
63 parametersΔρmin = 0.86 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were generated by geometrical considerations and constrained to their idealized positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.5000000.0000001.0000000.01349 (9)
Cl10.47138 (4)0.20056 (6)1.29465 (6)0.01647 (12)
Cl20.71450 (4)0.05786 (7)1.06269 (6)0.01747 (12)
O10.18746 (12)0.0684 (2)1.49656 (18)0.0207 (3)
N10.29792 (17)0.0137 (2)1.5301 (3)0.0197 (4)
H1A0.3487890.0530521.4793070.024*
H1B0.2957780.1279491.4869720.024*
H1C0.3184150.0176701.6450680.024*
C10.15465 (18)0.0791 (3)1.3096 (3)0.0221 (4)
H1D0.1470580.0436421.2589340.026*
H1E0.2117070.1470401.2530940.026*
C20.04102 (19)0.1784 (4)1.2877 (3)0.0285 (5)
H2A0.0146720.1894351.1653190.043*
H2B0.0500750.2993231.3387060.043*
H2C0.0141900.1097861.3450100.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01489 (13)0.01250 (14)0.01301 (13)0.00030 (6)0.00125 (9)0.00052 (6)
Cl10.0192 (2)0.0145 (2)0.0160 (2)0.00024 (16)0.00327 (18)0.00387 (16)
Cl20.0156 (2)0.0190 (3)0.0181 (2)0.00023 (17)0.00301 (18)0.00076 (18)
O10.0193 (7)0.0255 (8)0.0173 (7)0.0078 (6)0.0025 (6)0.0020 (6)
N10.0178 (9)0.0196 (10)0.0215 (10)0.0015 (6)0.0009 (8)0.0016 (6)
C10.0234 (10)0.0272 (12)0.0155 (10)0.0014 (8)0.0016 (8)0.0021 (8)
C20.0238 (11)0.0329 (13)0.0279 (11)0.0026 (9)0.0006 (9)0.0074 (9)
Geometric parameters (Å, º) top
Cd1—Cl1i2.6798 (5)N1—H1B0.8900
Cd1—Cl12.7416 (5)N1—H1C0.8900
Cd1—Cl1ii2.7416 (5)C1—H1D0.9700
Cd1—Cl1iii2.6798 (5)C1—H1E0.9700
Cd1—Cl2ii2.5384 (5)C1—C21.505 (3)
Cd1—Cl22.5384 (5)C2—H2A0.9600
O1—N11.420 (2)C2—H2B0.9600
O1—C11.448 (2)C2—H2C0.9600
N1—H1A0.8900
Cl1i—Cd1—Cl1iii180.0O1—N1—H1B109.5
Cl1ii—Cd1—Cl1180.0O1—N1—H1C109.5
Cl1iii—Cd1—Cl187.722 (7)H1A—N1—H1B109.5
Cl1iii—Cd1—Cl1ii92.278 (7)H1A—N1—H1C109.5
Cl1i—Cd1—Cl192.279 (7)H1B—N1—H1C109.5
Cl1i—Cd1—Cl1ii87.722 (7)O1—C1—H1D110.6
Cl2—Cd1—Cl1ii92.012 (14)O1—C1—H1E110.6
Cl2ii—Cd1—Cl1i88.007 (15)O1—C1—C2105.70 (17)
Cl2ii—Cd1—Cl1iii91.993 (15)H1D—C1—H1E108.7
Cl2ii—Cd1—Cl1ii87.988 (14)C2—C1—H1D110.6
Cl2—Cd1—Cl1iii88.007 (15)C2—C1—H1E110.6
Cl2—Cd1—Cl1i91.993 (15)C1—C2—H2A109.5
Cl2—Cd1—Cl187.988 (15)C1—C2—H2B109.5
Cl2ii—Cd1—Cl192.012 (15)C1—C2—H2C109.5
Cl2—Cd1—Cl2ii180.00 (2)H2A—C2—H2B109.5
Cd1iv—Cl1—Cd1153.62 (2)H2A—C2—H2C109.5
N1—O1—C1109.78 (15)H2B—C2—H2C109.5
O1—N1—H1A109.5
N1—O1—C1—C2176.40 (17)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z+2; (iii) x+1, y1/2, z+5/2; (iv) x+1, y+1/2, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.892.383.259 (2)169
N1—H1B···Cl2iii0.892.313.1810 (18)167
N1—H1C···Cl2v0.892.343.166 (2)155
Symmetry codes: (iii) x+1, y1/2, z+5/2; (v) x+1, y, z+3.
 

Funding information

Funding for this research was provided by: Science and Technology Planning Project of Yunnan Province (grant No. 202001AU070083).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, B., Zhang, J.-Y., Huang, R.-K., Chen, M.-K., Xue, W., Zhang, W.-X., Zeng, M.-H. & Chen, X.-M. (2018). Chem. Sci. 9, 7413–7418.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, B., Liu, X.-F., Li, X.-Y., Cao, Y., Yan, Z., Fu, L., Tang, N., Wang, Q., Shao, X., Yang, D. & Zhang, H.-L. (2020). Angew. Chem. Int. Ed. 59, 203–208.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Y., Ji, J., Feng, J., Chen, S., Bellaiche, L. & Xiang, H. (2022). J. Am. Chem. Soc. 144, 14907–14914.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146