metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[[μ-1,4-bis­­(pyridin-4-ylmeth­yl)piperazine][μ-4-(2-carboxyl­atoeth­yl)benzoato]copper(II)] monohydrate], a coordination polymer with twofold inter­penetrated cds topology networks

crossmark logo

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 September 2023; accepted 27 September 2023; online 3 October 2023)

The title compound, {[Cu(C10H8O4)(C16H20N4)]·H2O}n, contains square-planar coordinated CuII ions linked by 4-(carboxyl­atoeth­yl)benzoato (ceb) and 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) ligands into a tri-periodic coordination polymer with twofold inter­penetrating 658 cds topology. Positional crystallographic disorder among the copper atoms, the ethyl­carb­oxy group of the ceb ligands, and the water mol­ecules of crystallization exists in a refined 0.655 (6)/0.345 (6) ratio.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Our group has employed 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) in the generation of divalent metal coordination polymers with intriguing di-periodic and tri-periodic network topologies (Robinson et al., 2015[Robinson, M. E., Mizzi, J. E., Staples, R. J. & LaDuca, R. L. (2015). Cryst. Growth Des. 15, 2260-2271.]). For example, the copper oxalate (ox) bpmp-containing phase {[Cu2(ox)2(bpmp)]·6H2O}n, manifests a unique tri-periodic structure with a (5383)2(5482) self-penetrating network. Use of oxy(bis­)benzoate (oba) with bpmp generated {[Co3(oba)3(bpmp)2]n, which exhibits a highly self-entangled tri-periodic network with 4451767 topology (Martin et al., 2008[Martin, D. P., Staples, R. J. & LaDuca, R. L. (2008). Inorg. Chem. 47, 9754-9756.]). The title compound was isolated during an attempt to prepare a divalent copper coordination polymer containing both bpmp and 4-(carboxyl­atoeth­yl)benzoato (ceb) ligands.

The asymmetric unit of the title compound contains a CuII atom disordered over two positions, a fully deprotonated ceb ligand whose carboxyl­atoethyl group is disordered over two sets of sites, a bpmp ligand, and two disordered water mol­ecules of crystallization. All disordered parts in the crystal structure are present in a refined ratio of 0.655 (6):0.345 (6). The CuII atom is coordinated in an {N2O2} square-planar fashion by two trans-oriented pyridyl N-atom donors from two bpmp ligands, and two trans-oriented carboxyl­ate O-atom donors from two ceb ligands (Fig. 1[link]). Pertinent bond length and angle information for the coordination sphere is listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.900 (9) Cu1—N1ii 2.033 (11)
Cu1—O3i 2.069 (19) Cu1—N4 2.021 (10)
       
O1—Cu1—O3i 177.2 (7) N1ii—Cu1—O3i 82.5 (6)
O1—Cu1—N1ii 95.3 (4) N4—Cu1—O3i 94.5 (6)
O1—Cu1—N4 87.9 (4) N4—Cu1—N1ii 173.1 (6)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (ii) [-x+{\script{7\over 4}}, y+{\script{1\over 4}}, z+{\script{3\over 4}}].
[Figure 1]
Figure 1
Copper coordination environment in the title compound with full ceb and bpmp ligands. Displacement ellipsoids are drawn at the 50% probability level. Color code: Cu, dark blue; O, red; N, light blue; C, black. The minor disorder components are shown in teal. H-atom positions are shown as sticks. Symmetry codes are as listed in Table 1[link].

The ceb ligands bridge adjacent copper atoms in a bis­(monodentate) fashion to construct [Cu(ceb)]n mono-periodic chain submotifs arranged parallel to [101] and [[\overline{1}]01], in which the Cu⋯Cu inter­nuclear distance measures 12.858 (2) Å (Fig. 2[link]). These chain motifs are connected into a [Cu(ceb)(bpmp)]n 658 topology cds (Blatov et al., 2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.]) coordination polymer tri-periodic network (Fig. 3[link]). The through-ligand Cu⋯Cu inter­nuclear distance across a bpmp ligands measures 16.406 (2) Å. Incipient void space within a single [Cu(ceb)(bpmp)]n network allows inter­penetration of an additional network to instill a twofold system of inter­penetrated networks in the title compound (Fig. 4[link]). A schematic perspective of the twofold inter­penetrated cds topology is depicted in Fig. 5[link]. The water mol­ecules of crystallization lie in small pockets within the twofold inter­penetrated coordination polymer networks. While the H atoms of the disordered water mol­ecules of crystallization could not be found or reliably calculated, inferences can be drawn about hydrogen-bonding contacts. The major disorder component water mol­ecule O1W engages in hydrogen-bonding to the ceb major component O3 atom [O⋯O distance = 3.023 (1) Å]. The minor disorder component water mol­ecule O2W is weakly inter­acting with Cu1A [3.439 (1) Å], and engages in hydrogen-bonding donation to the unligated minor disorder component O4A atom within the ceb ligands (O⋯O distance = 2.856 Å).

[Figure 2]
Figure 2
[Cu(ceb)]n coordination polymer chain in the title compound. Only the major disordered components within the ceb ligands are shown, and only the major disorder atom Cu1 is shown.
[Figure 3]
Figure 3
A [Cu(ceb)(bpmp)]n cds coordination polymer network in the title compound. The [Cu(ceb)]n coordination polymer chains are depicted in red.
[Figure 4]
Figure 4
Twofold inter­penetration of [Cu(ceb)(bpmp)]n tri-periodic coordination polymer networks in the title compound. Each network is shown in a different color. Unit-cell outlines are shown.
[Figure 5]
Figure 5
Twofold inter­penetration of cds topology networks in the title compound. The Cu atoms are depicted as 4-connected nodes. The rods represent through-ligand contacts between Cu atom nodes.

Synthesis and crystallization

Cu(NO3)2·2.5H2O (86 mg, 0.37 mmol), 4-(carb­oxy­eth­yl)benzoic acid (cebH2) (72 mg, 0.37 mmol), 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) (99 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml of distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title complex were obtained in 52% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms attached to C were placed in calculated positions and refined with a riding model. The H atoms of the disordered water mol­ecules of crystallization could not be found from difference-Fourier maps, and attempts to use calculated positions did not give chemically reasonable inter­actions. Disorder of the CuII atoms, water mol­ecules of crystallization and ceb ligands was found and refined in a 0.655 (6):0.345 (6) ratio for all disorder components. EADP commands were used to restrain the atomic displacement parameters for the disordered components. Without these restraints, substantial numbers of non-positive definite ADPs occurred. In addition, DFIX commands were used to restrain bond lengths within the disordered parts of the ceb ligands. Otherwise, unreasonable bond lengths were occurring.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C10H8O4)(C16H20N4)]·H2O
Mr 542.08
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 173
a, b, c (Å) 18.402 (2), 33.377 (4), 17.963 (2)
V3) 11032 (2)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.83
Crystal size (mm) 0.20 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.663, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 21363, 5083, 3868
Rint 0.060
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.103, 0.302, 1.16
No. of reflections 5083
No. of parameters 323
No. of restraints 10
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.09, −0.67
Absolute structure Flack x determined using 1453 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.043 (12)
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalMaker X (Palmer, 2020[Palmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Crystal Maker X (Palmer, 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Poly[[[µ-1,4-bis(pyridin-4-ylmethyl)piperazine][µ-4-(2-carboxylatoethyl)benzoato]copper(II)] monohydrate] top
Crystal data top
[Cu(C10H8O4)(C16H20N4)]·H2ODx = 1.305 Mg m3
Mr = 542.08Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 6274 reflections
a = 18.402 (2) Åθ = 2.4–23.7°
b = 33.377 (4) ŵ = 0.83 mm1
c = 17.963 (2) ÅT = 173 K
V = 11032 (2) Å3Block, green
Z = 160.20 × 0.14 × 0.12 mm
F(000) = 4528
Data collection top
Bruker APEXII CCD
diffractometer
5083 independent reflections
Radiation source: sealed tube3868 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 8.36 pixels mm-1θmax = 25.4°, θmin = 1.7°
ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 4040
Tmin = 0.663, Tmax = 0.745l = 2121
21363 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.103 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.302(Δ/σ)max < 0.001
S = 1.16Δρmax = 2.09 e Å3
5083 reflectionsΔρmin = 0.67 e Å3
323 parametersAbsolute structure: Flack x determined using 1453 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
10 restraintsAbsolute structure parameter: 0.043 (12)
Primary atom site location: dual
Special details top

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was refined by Least Squares using version 2018/3 of XL (Sheldrick, 2015) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.8064790.3744690.8397090.0378 (7)0.655 (6)
Cu1A0.7828090.3558500.8670810.071 (2)0.345 (6)
O10.7211 (5)0.3854 (3)0.7838 (5)0.053 (2)
O20.6528 (6)0.3441 (3)0.8513 (6)0.079 (3)
O30.4000 (12)0.3655 (6)0.4014 (10)0.088 (4)0.655 (6)
O3A0.370 (2)0.3444 (12)0.419 (2)0.088 (4)0.345 (6)
O40.3248 (11)0.3281 (5)0.4602 (10)0.088 (4)0.655 (6)
O4A0.451 (2)0.3931 (10)0.3855 (18)0.088 (4)0.345 (6)
N10.9577 (7)0.1703 (5)0.1629 (7)0.078 (4)
N20.9419 (5)0.2410 (3)0.4075 (6)0.051 (2)
N30.8684 (5)0.2411 (3)0.5484 (5)0.046 (2)
N40.8194 (6)0.3245 (4)0.7776 (6)0.058 (3)
C10.9248 (10)0.2050 (5)0.1521 (9)0.074 (4)
H10.9002030.2102120.1065740.088*
C20.9265 (9)0.2326 (5)0.2055 (9)0.070 (4)
H20.9065460.2582840.1955170.084*
C30.9915 (7)0.1599 (5)0.2295 (11)0.079 (5)
H31.0134030.1344240.2364560.094*
C40.9914 (7)0.1895 (5)0.2867 (9)0.069 (4)
H41.0154750.1847560.3326590.083*
C50.9556 (7)0.2256 (4)0.2739 (7)0.053 (3)
C60.9558 (9)0.2571 (4)0.3357 (8)0.067 (4)
H6A1.0036850.2706450.3363100.081*
H6B0.9184930.2776000.3244240.081*
C70.9589 (7)0.2698 (4)0.4645 (8)0.061 (3)
H7A0.9298280.2944070.4561500.074*
H7B1.0108800.2771780.4610180.074*
C80.8663 (6)0.2286 (4)0.4167 (7)0.049 (3)
H8A0.8542720.2083930.3783740.059*
H8B0.8343490.2520990.4087080.059*
C90.9438 (7)0.2544 (4)0.5390 (8)0.059 (3)
H9A0.9767250.2315990.5492560.071*
H9B0.9543630.2756130.5760110.071*
C100.8514 (7)0.2116 (4)0.4913 (7)0.056 (3)
H10A0.7995490.2038410.4948760.067*
H10B0.8812590.1872560.4989410.067*
C110.8537 (8)0.2266 (4)0.6223 (7)0.060 (3)
H11A0.8939120.2089660.6386570.072*
H11B0.8084230.2106110.6219710.072*
C120.8457 (7)0.2614 (4)0.6771 (7)0.049 (3)
C130.8341 (8)0.2998 (4)0.6543 (8)0.062 (3)
H130.8343610.3056500.6025490.074*
C140.8217 (7)0.3309 (4)0.7051 (8)0.059 (3)
H140.8146300.3573230.6868160.071*
C150.8435 (7)0.2544 (4)0.7534 (8)0.059 (3)
H150.8501190.2282280.7729710.070*
C160.8312 (7)0.2870 (5)0.8004 (8)0.063 (4)
H160.8311580.2821480.8525390.076*
C170.6648 (9)0.3661 (4)0.7970 (7)0.055 (3)
C180.6035 (6)0.3684 (3)0.7386 (6)0.043 (2)
C190.6201 (8)0.3838 (4)0.6685 (7)0.055 (3)
H190.6680760.3925140.6575700.066*
C200.5663 (8)0.3861 (4)0.6146 (7)0.059 (3)
H200.5789160.3960540.5667850.071*
C210.5332 (6)0.3562 (4)0.7537 (7)0.051 (3)
H210.5204790.3455760.8009710.062*
C220.4800 (7)0.3602 (4)0.6954 (9)0.063 (4)
H220.4314410.3521850.7052910.076*
C230.4960 (8)0.3749 (4)0.6272 (8)0.060 (4)
C240.4367 (17)0.3761 (11)0.5699 (16)0.088 (4)0.655 (6)
H24A0.4411080.4011240.5406290.105*0.655 (6)
H24B0.3890280.3765350.5954360.105*0.655 (6)
C24A0.453 (3)0.380 (2)0.556 (2)0.088 (4)0.345 (6)
H24C0.4026450.3720370.5658920.105*0.345 (6)
H24D0.4525450.4092880.5443200.105*0.345 (6)
C250.4394 (16)0.3405 (8)0.5174 (14)0.088 (4)0.655 (6)
H25A0.4885690.3385040.4954290.105*0.655 (6)
H25B0.4300050.3156340.5458620.105*0.655 (6)
C25A0.479 (3)0.3584 (18)0.488 (2)0.088 (4)0.345 (6)
H25C0.5283350.3678740.4739800.105*0.345 (6)
H25D0.4820430.3292950.4984690.105*0.345 (6)
C260.3852 (12)0.3442 (7)0.4572 (13)0.088 (4)0.655 (6)
C26A0.427 (2)0.3660 (13)0.427 (2)0.088 (4)0.345 (6)
O1W0.5305 (11)0.4190 (7)0.4251 (10)0.102 (6)0.655 (6)
O2W0.880 (2)0.4185 (14)0.7522 (18)0.102 (6)0.345 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0397 (11)0.0405 (11)0.0334 (11)0.0099 (8)0.0117 (8)0.0126 (8)
Cu1A0.073 (4)0.087 (5)0.054 (3)0.030 (3)0.025 (3)0.030 (3)
O10.052 (5)0.058 (5)0.050 (5)0.000 (4)0.012 (4)0.008 (4)
O20.092 (7)0.095 (7)0.048 (6)0.024 (6)0.013 (5)0.015 (5)
O30.101 (8)0.092 (7)0.071 (6)0.052 (6)0.046 (6)0.035 (5)
O3A0.101 (8)0.092 (7)0.071 (6)0.052 (6)0.046 (6)0.035 (5)
O40.101 (8)0.092 (7)0.071 (6)0.052 (6)0.046 (6)0.035 (5)
O4A0.101 (8)0.092 (7)0.071 (6)0.052 (6)0.046 (6)0.035 (5)
N10.071 (8)0.115 (11)0.048 (7)0.047 (8)0.023 (6)0.049 (7)
N20.061 (6)0.047 (5)0.045 (5)0.007 (4)0.009 (4)0.017 (4)
N30.046 (5)0.041 (5)0.052 (5)0.002 (4)0.005 (4)0.015 (4)
N40.053 (6)0.075 (7)0.046 (6)0.023 (5)0.012 (5)0.023 (5)
C10.091 (11)0.076 (10)0.054 (8)0.018 (9)0.004 (7)0.011 (8)
C20.065 (8)0.076 (9)0.070 (10)0.009 (7)0.000 (7)0.004 (8)
C30.040 (6)0.080 (9)0.116 (14)0.008 (6)0.023 (8)0.048 (10)
C40.056 (7)0.081 (9)0.070 (9)0.002 (7)0.000 (7)0.045 (8)
C50.061 (7)0.048 (6)0.049 (7)0.001 (5)0.014 (6)0.019 (5)
C60.088 (10)0.051 (7)0.063 (9)0.001 (6)0.021 (7)0.016 (6)
C70.057 (7)0.060 (8)0.067 (9)0.013 (6)0.014 (6)0.026 (6)
C80.048 (6)0.052 (6)0.048 (6)0.009 (5)0.007 (5)0.018 (5)
C90.059 (7)0.057 (7)0.062 (8)0.003 (6)0.004 (6)0.031 (6)
C100.052 (7)0.058 (7)0.057 (7)0.011 (6)0.006 (6)0.029 (6)
C110.072 (9)0.060 (8)0.048 (7)0.002 (6)0.013 (6)0.020 (6)
C120.053 (6)0.050 (6)0.045 (6)0.006 (5)0.001 (5)0.015 (5)
C130.074 (9)0.060 (8)0.051 (7)0.018 (6)0.011 (6)0.021 (6)
C140.060 (7)0.058 (7)0.059 (8)0.011 (6)0.013 (6)0.031 (6)
C150.057 (7)0.054 (7)0.065 (9)0.000 (6)0.000 (6)0.016 (6)
C160.050 (7)0.095 (11)0.044 (7)0.012 (7)0.015 (5)0.024 (7)
C170.087 (10)0.048 (6)0.030 (6)0.023 (6)0.001 (6)0.010 (5)
C180.053 (6)0.039 (5)0.036 (6)0.013 (5)0.011 (5)0.008 (4)
C190.063 (8)0.064 (7)0.039 (6)0.004 (6)0.008 (6)0.005 (5)
C200.078 (10)0.063 (7)0.037 (6)0.014 (6)0.019 (6)0.001 (5)
C210.047 (6)0.055 (7)0.052 (7)0.004 (5)0.003 (5)0.001 (5)
C220.043 (6)0.072 (8)0.074 (9)0.012 (6)0.006 (6)0.027 (7)
C230.062 (8)0.061 (8)0.056 (8)0.023 (6)0.029 (6)0.025 (6)
C240.101 (8)0.092 (7)0.071 (6)0.052 (6)0.046 (6)0.035 (5)
C24A0.101 (8)0.092 (7)0.071 (6)0.052 (6)0.046 (6)0.035 (5)
C250.101 (8)0.092 (7)0.071 (6)0.052 (6)0.046 (6)0.035 (5)
C25A0.101 (8)0.092 (7)0.071 (6)0.052 (6)0.046 (6)0.035 (5)
C260.101 (8)0.092 (7)0.071 (6)0.052 (6)0.046 (6)0.035 (5)
C26A0.101 (8)0.092 (7)0.071 (6)0.052 (6)0.046 (6)0.035 (5)
O1W0.087 (11)0.154 (16)0.065 (9)0.046 (10)0.019 (8)0.021 (10)
O2W0.087 (11)0.154 (16)0.065 (9)0.046 (10)0.019 (8)0.021 (10)
Geometric parameters (Å, º) top
Cu1—O11.900 (9)C8—C101.481 (18)
Cu1—O3i2.069 (19)C9—H9A0.9900
Cu1—N1ii2.033 (11)C9—H9B0.9900
Cu1—N42.021 (10)C10—H10A0.9900
Cu1A—O12.121 (9)C10—H10B0.9900
Cu1A—O3Ai1.89 (3)C11—H11A0.9900
Cu1A—N1ii2.309 (15)C11—H11B0.9900
Cu1A—N42.033 (10)C11—C121.529 (16)
Cu1A—C172.534 (15)C12—C131.362 (18)
O1—C171.241 (19)C12—C151.392 (19)
O2—C171.243 (16)C13—H130.9500
O3—C261.26 (2)C13—C141.400 (17)
O3A—C26A1.29 (3)C14—H140.9500
O4—C261.24 (2)C15—H150.9500
O4A—C26A1.25 (3)C15—C161.395 (18)
N1—C11.32 (2)C16—H160.9500
N1—C31.39 (3)C17—C181.541 (17)
N2—C61.420 (17)C18—C191.394 (17)
N2—C71.441 (16)C18—C211.383 (17)
N2—C81.461 (16)C19—H190.9500
N3—C91.467 (16)C19—C201.386 (18)
N3—C101.457 (13)C20—H200.9500
N3—C111.438 (16)C20—C231.37 (2)
N4—C141.321 (19)C21—H210.9500
N4—C161.33 (2)C21—C221.441 (19)
C1—H10.9500C22—H220.9500
C1—C21.33 (2)C22—C231.35 (2)
C2—H20.9500C23—C241.50 (2)
C2—C51.36 (2)C23—C24A1.51 (3)
C3—H30.9500C24—H24A0.9900
C3—C41.426 (19)C24—H24B0.9900
C4—H40.9500C24—C251.52 (2)
C4—C51.39 (2)C24A—H24C0.9900
C5—C61.531 (17)C24A—H24D0.9900
C6—H6A0.9900C24A—C25A1.50 (3)
C6—H6B0.9900C25—H25A0.9900
C7—H7A0.9900C25—H25B0.9900
C7—H7B0.9900C25—C261.48 (2)
C7—C91.46 (2)C25A—H25C0.9900
C8—H8A0.9900C25A—H25D0.9900
C8—H8B0.9900C25A—C26A1.48 (3)
O1—Cu1—O3i177.2 (7)C8—C10—H10B109.7
O1—Cu1—N1ii95.3 (4)H10A—C10—H10B108.2
O1—Cu1—N487.9 (4)N3—C11—H11A109.5
N1ii—Cu1—O3i82.5 (6)N3—C11—H11B109.5
N4—Cu1—O3i94.5 (6)N3—C11—C12110.9 (11)
N4—Cu1—N1ii173.1 (6)H11A—C11—H11B108.1
O1—Cu1A—N1ii81.9 (4)C12—C11—H11A109.5
O1—Cu1A—C1729.3 (4)C12—C11—H11B109.5
O3Ai—Cu1A—O1153.4 (16)C13—C12—C11122.5 (12)
O3Ai—Cu1A—N1ii87.0 (11)C13—C12—C15116.7 (11)
O3Ai—Cu1A—N490.2 (11)C15—C12—C11120.6 (11)
O3Ai—Cu1A—C17176.2 (12)C12—C13—H13119.1
N1ii—Cu1A—C1796.6 (4)C12—C13—C14121.8 (13)
N4—Cu1A—O181.9 (4)C14—C13—H13119.1
N4—Cu1A—N1ii137.4 (6)N4—C14—C13121.8 (14)
N4—Cu1A—C1787.8 (4)N4—C14—H14119.1
C17—O1—Cu1119.3 (9)C13—C14—H14119.1
C17—O1—Cu1A94.1 (8)C12—C15—H15121.0
C26—O3—Cu1iii109.1 (18)C16—C15—C12118.0 (13)
Cu1iv—N1—Cu1Aiv22.93 (17)C16—C15—H15121.0
C1—N1—Cu1iv120.4 (12)N4—C16—C15124.8 (13)
C1—N1—Cu1Aiv143.0 (11)N4—C16—H16117.6
C1—N1—C3123.3 (12)C15—C16—H16117.6
C3—N1—Cu1iv115.2 (12)O1—C17—Cu1A56.6 (7)
C3—N1—Cu1Aiv92.4 (11)O1—C17—C18117.0 (11)
C6—N2—C7110.6 (10)O2—C17—Cu1A71.4 (8)
C6—N2—C8112.4 (11)O2—C17—O1127.2 (13)
C7—N2—C8108.3 (9)O2—C17—C18115.7 (13)
C9—N3—C10109.1 (9)C18—C17—Cu1A166.3 (8)
C11—N3—C9112.7 (10)C19—C18—C17118.2 (11)
C11—N3—C10112.5 (10)C21—C18—C17122.4 (11)
C14—N4—Cu1114.5 (10)C21—C18—C19119.3 (11)
C14—N4—Cu1A135.0 (10)C18—C19—H19120.2
C14—N4—C16116.7 (11)C20—C19—C18119.7 (13)
C16—N4—Cu1128.5 (9)C20—C19—H19120.2
C16—N4—Cu1A107.0 (9)C19—C20—H20118.5
N1—C1—H1120.3C23—C20—C19123.1 (13)
N1—C1—C2119.3 (16)C23—C20—H20118.5
C2—C1—H1120.3C18—C21—H21121.1
C1—C2—H2118.6C18—C21—C22117.8 (12)
C1—C2—C5122.8 (15)C22—C21—H21121.1
C5—C2—H2118.6C21—C22—H22118.5
N1—C3—H3121.7C23—C22—C21123.0 (12)
N1—C3—C4116.6 (15)C23—C22—H22118.5
C4—C3—H3121.7C20—C23—C24125 (2)
C3—C4—H4120.7C20—C23—C24A109 (3)
C5—C4—C3118.7 (15)C22—C23—C20117.1 (11)
C5—C4—H4120.7C22—C23—C24118 (2)
C2—C5—C4119.0 (12)C22—C23—C24A134 (3)
C2—C5—C6122.5 (13)C23—C24—H24A109.1
C4—C5—C6118.2 (12)C23—C24—H24B109.1
N2—C6—C5113.4 (11)C23—C24—C25112.4 (18)
N2—C6—H6A108.9H24A—C24—H24B107.9
N2—C6—H6B108.9C25—C24—H24A109.1
C5—C6—H6A108.9C25—C24—H24B109.1
C5—C6—H6B108.9C23—C24A—H24C107.9
H6A—C6—H6B107.7C23—C24A—H24D107.9
N2—C7—H7A109.2H24C—C24A—H24D107.2
N2—C7—H7B109.2C25A—C24A—C23118 (3)
N2—C7—C9112.0 (11)C25A—C24A—H24C107.9
H7A—C7—H7B107.9C25A—C24A—H24D107.9
C9—C7—H7A109.2C24—C25—H25A109.3
C9—C7—H7B109.2C24—C25—H25B109.3
N2—C8—H8A109.0H25A—C25—H25B108.0
N2—C8—H8B109.0C26—C25—C24111.6 (17)
N2—C8—C10112.8 (10)C26—C25—H25A109.3
H8A—C8—H8B107.8C26—C25—H25B109.3
C10—C8—H8A109.0C24A—C25A—H25C110.0
C10—C8—H8B109.0C24A—C25A—H25D110.0
N3—C9—C7113.1 (11)H25C—C25A—H25D108.3
N3—C9—H9A109.0C26A—C25A—C24A109 (3)
N3—C9—H9B109.0C26A—C25A—H25C110.0
C7—C9—H9A109.0C26A—C25A—H25D110.0
C7—C9—H9B109.0O3—C26—C25119 (2)
H9A—C9—H9B107.8O4—C26—O3118 (2)
N3—C10—C8109.7 (10)O4—C26—C25123 (2)
N3—C10—H10A109.7O3A—C26A—C25A121 (4)
N3—C10—H10B109.7O4A—C26A—O3A129 (4)
C8—C10—H10A109.7O4A—C26A—C25A110 (4)
Cu1—O1—C17—O212.4 (17)C7—N2—C8—C1057.7 (13)
Cu1—O1—C17—C18165.4 (7)C8—N2—C6—C571.7 (14)
Cu1iii—O3—C26—O410 (3)C8—N2—C7—C955.2 (15)
Cu1iii—O3—C26—C25167.8 (16)C9—N3—C10—C855.3 (13)
Cu1iv—N1—C1—C2170.7 (11)C9—N3—C11—C1276.4 (13)
Cu1iv—N1—C3—C4169.9 (9)C10—N3—C9—C755.4 (14)
Cu1—N4—C14—C13176.7 (10)C10—N3—C11—C12159.8 (10)
Cu1—N4—C16—C15176.3 (10)C11—N3—C9—C7179.0 (10)
Cu1A—O1—C17—O211.7 (14)C11—N3—C10—C8178.9 (11)
Cu1A—O1—C17—C18166.0 (8)C11—C12—C13—C14175.3 (12)
Cu1Aiii—O3A—C26A—O4A25 (8)C11—C12—C15—C16175.7 (12)
Cu1Aiii—O3A—C26A—C25A159 (3)C12—C13—C14—N41 (2)
Cu1Aiv—N1—C1—C2165.8 (12)C12—C15—C16—N42 (2)
Cu1Aiv—N1—C3—C4171.6 (11)C13—C12—C15—C161.4 (19)
Cu1A—N4—C14—C13164.0 (11)C14—N4—C16—C152 (2)
Cu1A—N4—C16—C15167.4 (11)C15—C12—C13—C141 (2)
Cu1A—C17—C18—C1945 (4)C16—N4—C14—C131 (2)
Cu1A—C17—C18—C21136 (4)C17—C18—C19—C20179.8 (11)
O1—C17—C18—C1914.4 (15)C17—C18—C21—C22179.2 (11)
O1—C17—C18—C21165.1 (10)C18—C19—C20—C231 (2)
O2—C17—C18—C19163.6 (11)C18—C21—C22—C230.6 (19)
O2—C17—C18—C2116.9 (16)C19—C18—C21—C220.3 (17)
N1—C1—C2—C56 (2)C19—C20—C23—C221 (2)
N1—C3—C4—C52.8 (19)C19—C20—C23—C24178.5 (18)
N2—C7—C9—N356.4 (14)C19—C20—C23—C24A178 (3)
N2—C8—C10—N359.1 (13)C20—C23—C24—C2580 (4)
N3—C11—C12—C1316.8 (18)C20—C23—C24A—C25A58 (7)
N3—C11—C12—C15169.2 (11)C21—C18—C19—C200.7 (18)
C1—N1—C3—C42 (2)C21—C22—C23—C200 (2)
C1—C2—C5—C46 (2)C21—C22—C23—C24177.6 (16)
C1—C2—C5—C6178.6 (14)C21—C22—C23—C24A176 (3)
C2—C5—C6—N2140.9 (14)C22—C23—C24—C2598 (3)
C3—N1—C1—C23 (2)C22—C23—C24A—C25A119 (5)
C3—C4—C5—C25 (2)C23—C24—C25—C26174 (3)
C3—C4—C5—C6179.9 (12)C23—C24A—C25A—C26A177 (6)
C4—C5—C6—N244.1 (17)C24—C25—C26—O382 (3)
C6—N2—C7—C9178.9 (12)C24—C25—C26—O496 (3)
C6—N2—C8—C10179.7 (10)C24A—C25A—C26A—O3A85 (7)
C7—N2—C6—C5167.0 (11)C24A—C25A—C26A—O4A98 (6)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+7/4, y+1/4, z+3/4; (iii) x1/2, y, z1/2; (iv) x+7/4, y1/4, z3/4.
 

Funding information

Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.

References

First citationBlatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMartin, D. P., Staples, R. J. & LaDuca, R. L. (2008). Inorg. Chem. 47, 9754–9756.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPalmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRobinson, M. E., Mizzi, J. E., Staples, R. J. & LaDuca, R. L. (2015). Cryst. Growth Des. 15, 2260–2271.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146