metal-organic compounds
Poly[[[μ-1,4-bis(pyridin-4-ylmethyl)piperazine][μ-4-(2-carboxylatoethyl)benzoato]copper(II)] monohydrate], a coordination polymer with twofold interpenetrated cds topology networks
aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu
The title compound, {[Cu(C10H8O4)(C16H20N4)]·H2O}n, contains square-planar coordinated CuII ions linked by 4-(carboxylatoethyl)benzoato (ceb) and 1,4-bis(pyridin-4-ylmethyl)piperazine (bpmp) ligands into a tri-periodic coordination polymer with twofold interpenetrating 658 cds topology. Positional crystallographic disorder among the copper atoms, the ethylcarboxy group of the ceb ligands, and the water molecules of crystallization exists in a refined 0.655 (6)/0.345 (6) ratio.
Keywords: crystal structure; copper; coordination polymer; disorder; tri-periodic network.
CCDC reference: 2298035
Structure description
Our group has employed 1,4-bis(pyridin-4-ylmethyl)piperazine (bpmp) in the generation of divalent metal coordination polymers with intriguing di-periodic and tri-periodic network topologies (Robinson et al., 2015). For example, the copper oxalate (ox) bpmp-containing phase {[Cu2(ox)2(bpmp)]·6H2O}n, manifests a unique tri-periodic structure with a (5383)2(5482) self-penetrating network. Use of oxy(bis)benzoate (oba) with bpmp generated {[Co3(oba)3(bpmp)2]n, which exhibits a highly self-entangled tri-periodic network with 4451767 topology (Martin et al., 2008). The title compound was isolated during an attempt to prepare a divalent copper coordination polymer containing both bpmp and 4-(carboxylatoethyl)benzoato (ceb) ligands.
The II atom disordered over two positions, a fully deprotonated ceb ligand whose carboxylatoethyl group is disordered over two sets of sites, a bpmp ligand, and two disordered water molecules of crystallization. All disordered parts in the are present in a refined ratio of 0.655 (6):0.345 (6). The CuII atom is coordinated in an {N2O2} square-planar fashion by two trans-oriented pyridyl N-atom donors from two bpmp ligands, and two trans-oriented carboxylate O-atom donors from two ceb ligands (Fig. 1). Pertinent bond length and angle information for the coordination sphere is listed in Table 1.
of the title compound contains a CuThe ceb ligands bridge adjacent copper atoms in a bis(monodentate) fashion to construct [Cu(ceb)]n mono-periodic chain submotifs arranged parallel to [101] and [01], in which the Cu⋯Cu internuclear distance measures 12.858 (2) Å (Fig. 2). These chain motifs are connected into a [Cu(ceb)(bpmp)]n 658 topology cds (Blatov et al., 2014) coordination polymer tri-periodic network (Fig. 3). The through-ligand Cu⋯Cu internuclear distance across a bpmp ligands measures 16.406 (2) Å. Incipient void space within a single [Cu(ceb)(bpmp)]n network allows interpenetration of an additional network to instill a twofold system of interpenetrated networks in the title compound (Fig. 4). A schematic perspective of the twofold interpenetrated cds topology is depicted in Fig. 5. The water molecules of crystallization lie in small pockets within the twofold interpenetrated coordination polymer networks. While the H atoms of the disordered water molecules of crystallization could not be found or reliably calculated, inferences can be drawn about hydrogen-bonding contacts. The major disorder component water molecule O1W engages in hydrogen-bonding to the ceb major component O3 atom [O⋯O distance = 3.023 (1) Å]. The minor disorder component water molecule O2W is weakly interacting with Cu1A [3.439 (1) Å], and engages in hydrogen-bonding donation to the unligated minor disorder component O4A atom within the ceb ligands (O⋯O distance = 2.856 Å).
Synthesis and crystallization
Cu(NO3)2·2.5H2O (86 mg, 0.37 mmol), 4-(carboxyethyl)benzoic acid (cebH2) (72 mg, 0.37 mmol), 1,4-bis(pyridin-4-ylmethyl)piperazine (bpmp) (99 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml of distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title complex were obtained in 52% yield.
Refinement
Crystal data, data collection and structure . All H atoms attached to C were placed in calculated positions and refined with a riding model. The H atoms of the disordered water molecules of crystallization could not be found from difference-Fourier maps, and attempts to use calculated positions did not give chemically reasonable interactions. Disorder of the CuII atoms, water molecules of crystallization and ceb ligands was found and refined in a 0.655 (6):0.345 (6) ratio for all disorder components. EADP commands were used to restrain the atomic displacement parameters for the disordered components. Without these restraints, substantial numbers of non-positive definite ADPs occurred. In addition, DFIX commands were used to restrain bond lengths within the disordered parts of the ceb ligands. Otherwise, unreasonable bond lengths were occurring.
details are summarized in Table 2
|
Structural data
CCDC reference: 2298035
https://doi.org/10.1107/S2414314623008556/wm4198sup1.cif
contains datablocks I, 1R. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623008556/wm4198Isup2.hkl
Data collection: COSMO (Bruker, 2009); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Crystal Maker X (Palmer, 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).[Cu(C10H8O4)(C16H20N4)]·H2O | Dx = 1.305 Mg m−3 |
Mr = 542.08 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Fdd2 | Cell parameters from 6274 reflections |
a = 18.402 (2) Å | θ = 2.4–23.7° |
b = 33.377 (4) Å | µ = 0.83 mm−1 |
c = 17.963 (2) Å | T = 173 K |
V = 11032 (2) Å3 | Block, green |
Z = 16 | 0.20 × 0.14 × 0.12 mm |
F(000) = 4528 |
Bruker APEXII CCD diffractometer | 5083 independent reflections |
Radiation source: sealed tube | 3868 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
Detector resolution: 8.36 pixels mm-1 | θmax = 25.4°, θmin = 1.7° |
ω scans | h = −22→22 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −40→40 |
Tmin = 0.663, Tmax = 0.745 | l = −21→21 |
21363 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.103 | w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.302 | (Δ/σ)max < 0.001 |
S = 1.16 | Δρmax = 2.09 e Å−3 |
5083 reflections | Δρmin = −0.67 e Å−3 |
323 parameters | Absolute structure: Flack x determined using 1453 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
10 restraints | Absolute structure parameter: 0.043 (12) |
Primary atom site location: dual |
Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure was refined by Least Squares using version 2018/3 of XL (Sheldrick, 2015) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.806479 | 0.374469 | 0.839709 | 0.0378 (7) | 0.655 (6) |
Cu1A | 0.782809 | 0.355850 | 0.867081 | 0.071 (2) | 0.345 (6) |
O1 | 0.7211 (5) | 0.3854 (3) | 0.7838 (5) | 0.053 (2) | |
O2 | 0.6528 (6) | 0.3441 (3) | 0.8513 (6) | 0.079 (3) | |
O3 | 0.4000 (12) | 0.3655 (6) | 0.4014 (10) | 0.088 (4) | 0.655 (6) |
O3A | 0.370 (2) | 0.3444 (12) | 0.419 (2) | 0.088 (4) | 0.345 (6) |
O4 | 0.3248 (11) | 0.3281 (5) | 0.4602 (10) | 0.088 (4) | 0.655 (6) |
O4A | 0.451 (2) | 0.3931 (10) | 0.3855 (18) | 0.088 (4) | 0.345 (6) |
N1 | 0.9577 (7) | 0.1703 (5) | 0.1629 (7) | 0.078 (4) | |
N2 | 0.9419 (5) | 0.2410 (3) | 0.4075 (6) | 0.051 (2) | |
N3 | 0.8684 (5) | 0.2411 (3) | 0.5484 (5) | 0.046 (2) | |
N4 | 0.8194 (6) | 0.3245 (4) | 0.7776 (6) | 0.058 (3) | |
C1 | 0.9248 (10) | 0.2050 (5) | 0.1521 (9) | 0.074 (4) | |
H1 | 0.900203 | 0.210212 | 0.106574 | 0.088* | |
C2 | 0.9265 (9) | 0.2326 (5) | 0.2055 (9) | 0.070 (4) | |
H2 | 0.906546 | 0.258284 | 0.195517 | 0.084* | |
C3 | 0.9915 (7) | 0.1599 (5) | 0.2295 (11) | 0.079 (5) | |
H3 | 1.013403 | 0.134424 | 0.236456 | 0.094* | |
C4 | 0.9914 (7) | 0.1895 (5) | 0.2867 (9) | 0.069 (4) | |
H4 | 1.015475 | 0.184756 | 0.332659 | 0.083* | |
C5 | 0.9556 (7) | 0.2256 (4) | 0.2739 (7) | 0.053 (3) | |
C6 | 0.9558 (9) | 0.2571 (4) | 0.3357 (8) | 0.067 (4) | |
H6A | 1.003685 | 0.270645 | 0.336310 | 0.081* | |
H6B | 0.918493 | 0.277600 | 0.324424 | 0.081* | |
C7 | 0.9589 (7) | 0.2698 (4) | 0.4645 (8) | 0.061 (3) | |
H7A | 0.929828 | 0.294407 | 0.456150 | 0.074* | |
H7B | 1.010880 | 0.277178 | 0.461018 | 0.074* | |
C8 | 0.8663 (6) | 0.2286 (4) | 0.4167 (7) | 0.049 (3) | |
H8A | 0.854272 | 0.208393 | 0.378374 | 0.059* | |
H8B | 0.834349 | 0.252099 | 0.408708 | 0.059* | |
C9 | 0.9438 (7) | 0.2544 (4) | 0.5390 (8) | 0.059 (3) | |
H9A | 0.976725 | 0.231599 | 0.549256 | 0.071* | |
H9B | 0.954363 | 0.275613 | 0.576011 | 0.071* | |
C10 | 0.8514 (7) | 0.2116 (4) | 0.4913 (7) | 0.056 (3) | |
H10A | 0.799549 | 0.203841 | 0.494876 | 0.067* | |
H10B | 0.881259 | 0.187256 | 0.498941 | 0.067* | |
C11 | 0.8537 (8) | 0.2266 (4) | 0.6223 (7) | 0.060 (3) | |
H11A | 0.893912 | 0.208966 | 0.638657 | 0.072* | |
H11B | 0.808423 | 0.210611 | 0.621971 | 0.072* | |
C12 | 0.8457 (7) | 0.2614 (4) | 0.6771 (7) | 0.049 (3) | |
C13 | 0.8341 (8) | 0.2998 (4) | 0.6543 (8) | 0.062 (3) | |
H13 | 0.834361 | 0.305650 | 0.602549 | 0.074* | |
C14 | 0.8217 (7) | 0.3309 (4) | 0.7051 (8) | 0.059 (3) | |
H14 | 0.814630 | 0.357323 | 0.686816 | 0.071* | |
C15 | 0.8435 (7) | 0.2544 (4) | 0.7534 (8) | 0.059 (3) | |
H15 | 0.850119 | 0.228228 | 0.772971 | 0.070* | |
C16 | 0.8312 (7) | 0.2870 (5) | 0.8004 (8) | 0.063 (4) | |
H16 | 0.831158 | 0.282148 | 0.852539 | 0.076* | |
C17 | 0.6648 (9) | 0.3661 (4) | 0.7970 (7) | 0.055 (3) | |
C18 | 0.6035 (6) | 0.3684 (3) | 0.7386 (6) | 0.043 (2) | |
C19 | 0.6201 (8) | 0.3838 (4) | 0.6685 (7) | 0.055 (3) | |
H19 | 0.668076 | 0.392514 | 0.657570 | 0.066* | |
C20 | 0.5663 (8) | 0.3861 (4) | 0.6146 (7) | 0.059 (3) | |
H20 | 0.578916 | 0.396054 | 0.566785 | 0.071* | |
C21 | 0.5332 (6) | 0.3562 (4) | 0.7537 (7) | 0.051 (3) | |
H21 | 0.520479 | 0.345576 | 0.800971 | 0.062* | |
C22 | 0.4800 (7) | 0.3602 (4) | 0.6954 (9) | 0.063 (4) | |
H22 | 0.431441 | 0.352185 | 0.705291 | 0.076* | |
C23 | 0.4960 (8) | 0.3749 (4) | 0.6272 (8) | 0.060 (4) | |
C24 | 0.4367 (17) | 0.3761 (11) | 0.5699 (16) | 0.088 (4) | 0.655 (6) |
H24A | 0.441108 | 0.401124 | 0.540629 | 0.105* | 0.655 (6) |
H24B | 0.389028 | 0.376535 | 0.595436 | 0.105* | 0.655 (6) |
C24A | 0.453 (3) | 0.380 (2) | 0.556 (2) | 0.088 (4) | 0.345 (6) |
H24C | 0.402645 | 0.372037 | 0.565892 | 0.105* | 0.345 (6) |
H24D | 0.452545 | 0.409288 | 0.544320 | 0.105* | 0.345 (6) |
C25 | 0.4394 (16) | 0.3405 (8) | 0.5174 (14) | 0.088 (4) | 0.655 (6) |
H25A | 0.488569 | 0.338504 | 0.495429 | 0.105* | 0.655 (6) |
H25B | 0.430005 | 0.315634 | 0.545862 | 0.105* | 0.655 (6) |
C25A | 0.479 (3) | 0.3584 (18) | 0.488 (2) | 0.088 (4) | 0.345 (6) |
H25C | 0.528335 | 0.367874 | 0.473980 | 0.105* | 0.345 (6) |
H25D | 0.482043 | 0.329295 | 0.498469 | 0.105* | 0.345 (6) |
C26 | 0.3852 (12) | 0.3442 (7) | 0.4572 (13) | 0.088 (4) | 0.655 (6) |
C26A | 0.427 (2) | 0.3660 (13) | 0.427 (2) | 0.088 (4) | 0.345 (6) |
O1W | 0.5305 (11) | 0.4190 (7) | 0.4251 (10) | 0.102 (6) | 0.655 (6) |
O2W | 0.880 (2) | 0.4185 (14) | 0.7522 (18) | 0.102 (6) | 0.345 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0397 (11) | 0.0405 (11) | 0.0334 (11) | 0.0099 (8) | −0.0117 (8) | −0.0126 (8) |
Cu1A | 0.073 (4) | 0.087 (5) | 0.054 (3) | 0.030 (3) | −0.025 (3) | −0.030 (3) |
O1 | 0.052 (5) | 0.058 (5) | 0.050 (5) | 0.000 (4) | −0.012 (4) | −0.008 (4) |
O2 | 0.092 (7) | 0.095 (7) | 0.048 (6) | 0.024 (6) | −0.013 (5) | 0.015 (5) |
O3 | 0.101 (8) | 0.092 (7) | 0.071 (6) | 0.052 (6) | −0.046 (6) | −0.035 (5) |
O3A | 0.101 (8) | 0.092 (7) | 0.071 (6) | 0.052 (6) | −0.046 (6) | −0.035 (5) |
O4 | 0.101 (8) | 0.092 (7) | 0.071 (6) | 0.052 (6) | −0.046 (6) | −0.035 (5) |
O4A | 0.101 (8) | 0.092 (7) | 0.071 (6) | 0.052 (6) | −0.046 (6) | −0.035 (5) |
N1 | 0.071 (8) | 0.115 (11) | 0.048 (7) | −0.047 (8) | 0.023 (6) | −0.049 (7) |
N2 | 0.061 (6) | 0.047 (5) | 0.045 (5) | −0.007 (4) | 0.009 (4) | −0.017 (4) |
N3 | 0.046 (5) | 0.041 (5) | 0.052 (5) | −0.002 (4) | 0.005 (4) | −0.015 (4) |
N4 | 0.053 (6) | 0.075 (7) | 0.046 (6) | 0.023 (5) | −0.012 (5) | −0.023 (5) |
C1 | 0.091 (11) | 0.076 (10) | 0.054 (8) | −0.018 (9) | 0.004 (7) | −0.011 (8) |
C2 | 0.065 (8) | 0.076 (9) | 0.070 (10) | −0.009 (7) | 0.000 (7) | 0.004 (8) |
C3 | 0.040 (6) | 0.080 (9) | 0.116 (14) | −0.008 (6) | 0.023 (8) | −0.048 (10) |
C4 | 0.056 (7) | 0.081 (9) | 0.070 (9) | 0.002 (7) | 0.000 (7) | −0.045 (8) |
C5 | 0.061 (7) | 0.048 (6) | 0.049 (7) | −0.001 (5) | 0.014 (6) | −0.019 (5) |
C6 | 0.088 (10) | 0.051 (7) | 0.063 (9) | −0.001 (6) | 0.021 (7) | −0.016 (6) |
C7 | 0.057 (7) | 0.060 (8) | 0.067 (9) | −0.013 (6) | 0.014 (6) | −0.026 (6) |
C8 | 0.048 (6) | 0.052 (6) | 0.048 (6) | −0.009 (5) | −0.007 (5) | −0.018 (5) |
C9 | 0.059 (7) | 0.057 (7) | 0.062 (8) | −0.003 (6) | 0.004 (6) | −0.031 (6) |
C10 | 0.052 (7) | 0.058 (7) | 0.057 (7) | −0.011 (6) | 0.006 (6) | −0.029 (6) |
C11 | 0.072 (9) | 0.060 (8) | 0.048 (7) | −0.002 (6) | 0.013 (6) | −0.020 (6) |
C12 | 0.053 (6) | 0.050 (6) | 0.045 (6) | 0.006 (5) | −0.001 (5) | −0.015 (5) |
C13 | 0.074 (9) | 0.060 (8) | 0.051 (7) | 0.018 (6) | −0.011 (6) | −0.021 (6) |
C14 | 0.060 (7) | 0.058 (7) | 0.059 (8) | 0.011 (6) | −0.013 (6) | −0.031 (6) |
C15 | 0.057 (7) | 0.054 (7) | 0.065 (9) | 0.000 (6) | 0.000 (6) | −0.016 (6) |
C16 | 0.050 (7) | 0.095 (11) | 0.044 (7) | 0.012 (7) | −0.015 (5) | −0.024 (7) |
C17 | 0.087 (10) | 0.048 (6) | 0.030 (6) | 0.023 (6) | 0.001 (6) | −0.010 (5) |
C18 | 0.053 (6) | 0.039 (5) | 0.036 (6) | 0.013 (5) | −0.011 (5) | −0.008 (4) |
C19 | 0.063 (8) | 0.064 (7) | 0.039 (6) | −0.004 (6) | −0.008 (6) | −0.005 (5) |
C20 | 0.078 (10) | 0.063 (7) | 0.037 (6) | 0.014 (6) | −0.019 (6) | 0.001 (5) |
C21 | 0.047 (6) | 0.055 (7) | 0.052 (7) | −0.004 (5) | 0.003 (5) | 0.001 (5) |
C22 | 0.043 (6) | 0.072 (8) | 0.074 (9) | −0.012 (6) | −0.006 (6) | −0.027 (7) |
C23 | 0.062 (8) | 0.061 (8) | 0.056 (8) | 0.023 (6) | −0.029 (6) | −0.025 (6) |
C24 | 0.101 (8) | 0.092 (7) | 0.071 (6) | 0.052 (6) | −0.046 (6) | −0.035 (5) |
C24A | 0.101 (8) | 0.092 (7) | 0.071 (6) | 0.052 (6) | −0.046 (6) | −0.035 (5) |
C25 | 0.101 (8) | 0.092 (7) | 0.071 (6) | 0.052 (6) | −0.046 (6) | −0.035 (5) |
C25A | 0.101 (8) | 0.092 (7) | 0.071 (6) | 0.052 (6) | −0.046 (6) | −0.035 (5) |
C26 | 0.101 (8) | 0.092 (7) | 0.071 (6) | 0.052 (6) | −0.046 (6) | −0.035 (5) |
C26A | 0.101 (8) | 0.092 (7) | 0.071 (6) | 0.052 (6) | −0.046 (6) | −0.035 (5) |
O1W | 0.087 (11) | 0.154 (16) | 0.065 (9) | 0.046 (10) | −0.019 (8) | −0.021 (10) |
O2W | 0.087 (11) | 0.154 (16) | 0.065 (9) | 0.046 (10) | −0.019 (8) | −0.021 (10) |
Cu1—O1 | 1.900 (9) | C8—C10 | 1.481 (18) |
Cu1—O3i | 2.069 (19) | C9—H9A | 0.9900 |
Cu1—N1ii | 2.033 (11) | C9—H9B | 0.9900 |
Cu1—N4 | 2.021 (10) | C10—H10A | 0.9900 |
Cu1A—O1 | 2.121 (9) | C10—H10B | 0.9900 |
Cu1A—O3Ai | 1.89 (3) | C11—H11A | 0.9900 |
Cu1A—N1ii | 2.309 (15) | C11—H11B | 0.9900 |
Cu1A—N4 | 2.033 (10) | C11—C12 | 1.529 (16) |
Cu1A—C17 | 2.534 (15) | C12—C13 | 1.362 (18) |
O1—C17 | 1.241 (19) | C12—C15 | 1.392 (19) |
O2—C17 | 1.243 (16) | C13—H13 | 0.9500 |
O3—C26 | 1.26 (2) | C13—C14 | 1.400 (17) |
O3A—C26A | 1.29 (3) | C14—H14 | 0.9500 |
O4—C26 | 1.24 (2) | C15—H15 | 0.9500 |
O4A—C26A | 1.25 (3) | C15—C16 | 1.395 (18) |
N1—C1 | 1.32 (2) | C16—H16 | 0.9500 |
N1—C3 | 1.39 (3) | C17—C18 | 1.541 (17) |
N2—C6 | 1.420 (17) | C18—C19 | 1.394 (17) |
N2—C7 | 1.441 (16) | C18—C21 | 1.383 (17) |
N2—C8 | 1.461 (16) | C19—H19 | 0.9500 |
N3—C9 | 1.467 (16) | C19—C20 | 1.386 (18) |
N3—C10 | 1.457 (13) | C20—H20 | 0.9500 |
N3—C11 | 1.438 (16) | C20—C23 | 1.37 (2) |
N4—C14 | 1.321 (19) | C21—H21 | 0.9500 |
N4—C16 | 1.33 (2) | C21—C22 | 1.441 (19) |
C1—H1 | 0.9500 | C22—H22 | 0.9500 |
C1—C2 | 1.33 (2) | C22—C23 | 1.35 (2) |
C2—H2 | 0.9500 | C23—C24 | 1.50 (2) |
C2—C5 | 1.36 (2) | C23—C24A | 1.51 (3) |
C3—H3 | 0.9500 | C24—H24A | 0.9900 |
C3—C4 | 1.426 (19) | C24—H24B | 0.9900 |
C4—H4 | 0.9500 | C24—C25 | 1.52 (2) |
C4—C5 | 1.39 (2) | C24A—H24C | 0.9900 |
C5—C6 | 1.531 (17) | C24A—H24D | 0.9900 |
C6—H6A | 0.9900 | C24A—C25A | 1.50 (3) |
C6—H6B | 0.9900 | C25—H25A | 0.9900 |
C7—H7A | 0.9900 | C25—H25B | 0.9900 |
C7—H7B | 0.9900 | C25—C26 | 1.48 (2) |
C7—C9 | 1.46 (2) | C25A—H25C | 0.9900 |
C8—H8A | 0.9900 | C25A—H25D | 0.9900 |
C8—H8B | 0.9900 | C25A—C26A | 1.48 (3) |
O1—Cu1—O3i | 177.2 (7) | C8—C10—H10B | 109.7 |
O1—Cu1—N1ii | 95.3 (4) | H10A—C10—H10B | 108.2 |
O1—Cu1—N4 | 87.9 (4) | N3—C11—H11A | 109.5 |
N1ii—Cu1—O3i | 82.5 (6) | N3—C11—H11B | 109.5 |
N4—Cu1—O3i | 94.5 (6) | N3—C11—C12 | 110.9 (11) |
N4—Cu1—N1ii | 173.1 (6) | H11A—C11—H11B | 108.1 |
O1—Cu1A—N1ii | 81.9 (4) | C12—C11—H11A | 109.5 |
O1—Cu1A—C17 | 29.3 (4) | C12—C11—H11B | 109.5 |
O3Ai—Cu1A—O1 | 153.4 (16) | C13—C12—C11 | 122.5 (12) |
O3Ai—Cu1A—N1ii | 87.0 (11) | C13—C12—C15 | 116.7 (11) |
O3Ai—Cu1A—N4 | 90.2 (11) | C15—C12—C11 | 120.6 (11) |
O3Ai—Cu1A—C17 | 176.2 (12) | C12—C13—H13 | 119.1 |
N1ii—Cu1A—C17 | 96.6 (4) | C12—C13—C14 | 121.8 (13) |
N4—Cu1A—O1 | 81.9 (4) | C14—C13—H13 | 119.1 |
N4—Cu1A—N1ii | 137.4 (6) | N4—C14—C13 | 121.8 (14) |
N4—Cu1A—C17 | 87.8 (4) | N4—C14—H14 | 119.1 |
C17—O1—Cu1 | 119.3 (9) | C13—C14—H14 | 119.1 |
C17—O1—Cu1A | 94.1 (8) | C12—C15—H15 | 121.0 |
C26—O3—Cu1iii | 109.1 (18) | C16—C15—C12 | 118.0 (13) |
Cu1iv—N1—Cu1Aiv | 22.93 (17) | C16—C15—H15 | 121.0 |
C1—N1—Cu1iv | 120.4 (12) | N4—C16—C15 | 124.8 (13) |
C1—N1—Cu1Aiv | 143.0 (11) | N4—C16—H16 | 117.6 |
C1—N1—C3 | 123.3 (12) | C15—C16—H16 | 117.6 |
C3—N1—Cu1iv | 115.2 (12) | O1—C17—Cu1A | 56.6 (7) |
C3—N1—Cu1Aiv | 92.4 (11) | O1—C17—C18 | 117.0 (11) |
C6—N2—C7 | 110.6 (10) | O2—C17—Cu1A | 71.4 (8) |
C6—N2—C8 | 112.4 (11) | O2—C17—O1 | 127.2 (13) |
C7—N2—C8 | 108.3 (9) | O2—C17—C18 | 115.7 (13) |
C9—N3—C10 | 109.1 (9) | C18—C17—Cu1A | 166.3 (8) |
C11—N3—C9 | 112.7 (10) | C19—C18—C17 | 118.2 (11) |
C11—N3—C10 | 112.5 (10) | C21—C18—C17 | 122.4 (11) |
C14—N4—Cu1 | 114.5 (10) | C21—C18—C19 | 119.3 (11) |
C14—N4—Cu1A | 135.0 (10) | C18—C19—H19 | 120.2 |
C14—N4—C16 | 116.7 (11) | C20—C19—C18 | 119.7 (13) |
C16—N4—Cu1 | 128.5 (9) | C20—C19—H19 | 120.2 |
C16—N4—Cu1A | 107.0 (9) | C19—C20—H20 | 118.5 |
N1—C1—H1 | 120.3 | C23—C20—C19 | 123.1 (13) |
N1—C1—C2 | 119.3 (16) | C23—C20—H20 | 118.5 |
C2—C1—H1 | 120.3 | C18—C21—H21 | 121.1 |
C1—C2—H2 | 118.6 | C18—C21—C22 | 117.8 (12) |
C1—C2—C5 | 122.8 (15) | C22—C21—H21 | 121.1 |
C5—C2—H2 | 118.6 | C21—C22—H22 | 118.5 |
N1—C3—H3 | 121.7 | C23—C22—C21 | 123.0 (12) |
N1—C3—C4 | 116.6 (15) | C23—C22—H22 | 118.5 |
C4—C3—H3 | 121.7 | C20—C23—C24 | 125 (2) |
C3—C4—H4 | 120.7 | C20—C23—C24A | 109 (3) |
C5—C4—C3 | 118.7 (15) | C22—C23—C20 | 117.1 (11) |
C5—C4—H4 | 120.7 | C22—C23—C24 | 118 (2) |
C2—C5—C4 | 119.0 (12) | C22—C23—C24A | 134 (3) |
C2—C5—C6 | 122.5 (13) | C23—C24—H24A | 109.1 |
C4—C5—C6 | 118.2 (12) | C23—C24—H24B | 109.1 |
N2—C6—C5 | 113.4 (11) | C23—C24—C25 | 112.4 (18) |
N2—C6—H6A | 108.9 | H24A—C24—H24B | 107.9 |
N2—C6—H6B | 108.9 | C25—C24—H24A | 109.1 |
C5—C6—H6A | 108.9 | C25—C24—H24B | 109.1 |
C5—C6—H6B | 108.9 | C23—C24A—H24C | 107.9 |
H6A—C6—H6B | 107.7 | C23—C24A—H24D | 107.9 |
N2—C7—H7A | 109.2 | H24C—C24A—H24D | 107.2 |
N2—C7—H7B | 109.2 | C25A—C24A—C23 | 118 (3) |
N2—C7—C9 | 112.0 (11) | C25A—C24A—H24C | 107.9 |
H7A—C7—H7B | 107.9 | C25A—C24A—H24D | 107.9 |
C9—C7—H7A | 109.2 | C24—C25—H25A | 109.3 |
C9—C7—H7B | 109.2 | C24—C25—H25B | 109.3 |
N2—C8—H8A | 109.0 | H25A—C25—H25B | 108.0 |
N2—C8—H8B | 109.0 | C26—C25—C24 | 111.6 (17) |
N2—C8—C10 | 112.8 (10) | C26—C25—H25A | 109.3 |
H8A—C8—H8B | 107.8 | C26—C25—H25B | 109.3 |
C10—C8—H8A | 109.0 | C24A—C25A—H25C | 110.0 |
C10—C8—H8B | 109.0 | C24A—C25A—H25D | 110.0 |
N3—C9—C7 | 113.1 (11) | H25C—C25A—H25D | 108.3 |
N3—C9—H9A | 109.0 | C26A—C25A—C24A | 109 (3) |
N3—C9—H9B | 109.0 | C26A—C25A—H25C | 110.0 |
C7—C9—H9A | 109.0 | C26A—C25A—H25D | 110.0 |
C7—C9—H9B | 109.0 | O3—C26—C25 | 119 (2) |
H9A—C9—H9B | 107.8 | O4—C26—O3 | 118 (2) |
N3—C10—C8 | 109.7 (10) | O4—C26—C25 | 123 (2) |
N3—C10—H10A | 109.7 | O3A—C26A—C25A | 121 (4) |
N3—C10—H10B | 109.7 | O4A—C26A—O3A | 129 (4) |
C8—C10—H10A | 109.7 | O4A—C26A—C25A | 110 (4) |
Cu1—O1—C17—O2 | 12.4 (17) | C7—N2—C8—C10 | −57.7 (13) |
Cu1—O1—C17—C18 | −165.4 (7) | C8—N2—C6—C5 | −71.7 (14) |
Cu1iii—O3—C26—O4 | 10 (3) | C8—N2—C7—C9 | 55.2 (15) |
Cu1iii—O3—C26—C25 | −167.8 (16) | C9—N3—C10—C8 | −55.3 (13) |
Cu1iv—N1—C1—C2 | 170.7 (11) | C9—N3—C11—C12 | 76.4 (13) |
Cu1iv—N1—C3—C4 | −169.9 (9) | C10—N3—C9—C7 | 55.4 (14) |
Cu1—N4—C14—C13 | 176.7 (10) | C10—N3—C11—C12 | −159.8 (10) |
Cu1—N4—C16—C15 | −176.3 (10) | C11—N3—C9—C7 | −179.0 (10) |
Cu1A—O1—C17—O2 | 11.7 (14) | C11—N3—C10—C8 | 178.9 (11) |
Cu1A—O1—C17—C18 | −166.0 (8) | C11—C12—C13—C14 | 175.3 (12) |
Cu1Aiii—O3A—C26A—O4A | −25 (8) | C11—C12—C15—C16 | −175.7 (12) |
Cu1Aiii—O3A—C26A—C25A | 159 (3) | C12—C13—C14—N4 | −1 (2) |
Cu1Aiv—N1—C1—C2 | 165.8 (12) | C12—C15—C16—N4 | 2 (2) |
Cu1Aiv—N1—C3—C4 | −171.6 (11) | C13—C12—C15—C16 | −1.4 (19) |
Cu1A—N4—C14—C13 | −164.0 (11) | C14—N4—C16—C15 | −2 (2) |
Cu1A—N4—C16—C15 | 167.4 (11) | C15—C12—C13—C14 | 1 (2) |
Cu1A—C17—C18—C19 | −45 (4) | C16—N4—C14—C13 | 1 (2) |
Cu1A—C17—C18—C21 | 136 (4) | C17—C18—C19—C20 | 179.8 (11) |
O1—C17—C18—C19 | 14.4 (15) | C17—C18—C21—C22 | 179.2 (11) |
O1—C17—C18—C21 | −165.1 (10) | C18—C19—C20—C23 | 1 (2) |
O2—C17—C18—C19 | −163.6 (11) | C18—C21—C22—C23 | 0.6 (19) |
O2—C17—C18—C21 | 16.9 (16) | C19—C18—C21—C22 | −0.3 (17) |
N1—C1—C2—C5 | −6 (2) | C19—C20—C23—C22 | −1 (2) |
N1—C3—C4—C5 | 2.8 (19) | C19—C20—C23—C24 | −178.5 (18) |
N2—C7—C9—N3 | −56.4 (14) | C19—C20—C23—C24A | −178 (3) |
N2—C8—C10—N3 | 59.1 (13) | C20—C23—C24—C25 | 80 (4) |
N3—C11—C12—C13 | 16.8 (18) | C20—C23—C24A—C25A | 58 (7) |
N3—C11—C12—C15 | −169.2 (11) | C21—C18—C19—C20 | −0.7 (18) |
C1—N1—C3—C4 | −2 (2) | C21—C22—C23—C20 | 0 (2) |
C1—C2—C5—C4 | 6 (2) | C21—C22—C23—C24 | 177.6 (16) |
C1—C2—C5—C6 | −178.6 (14) | C21—C22—C23—C24A | 176 (3) |
C2—C5—C6—N2 | 140.9 (14) | C22—C23—C24—C25 | −98 (3) |
C3—N1—C1—C2 | 3 (2) | C22—C23—C24A—C25A | −119 (5) |
C3—C4—C5—C2 | −5 (2) | C23—C24—C25—C26 | −174 (3) |
C3—C4—C5—C6 | 179.9 (12) | C23—C24A—C25A—C26A | 177 (6) |
C4—C5—C6—N2 | −44.1 (17) | C24—C25—C26—O3 | 82 (3) |
C6—N2—C7—C9 | 178.9 (12) | C24—C25—C26—O4 | −96 (3) |
C6—N2—C8—C10 | 179.7 (10) | C24A—C25A—C26A—O3A | −85 (7) |
C7—N2—C6—C5 | 167.0 (11) | C24A—C25A—C26A—O4A | 98 (6) |
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) −x+7/4, y+1/4, z+3/4; (iii) x−1/2, y, z−1/2; (iv) −x+7/4, y−1/4, z−3/4. |
Funding information
Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.
References
Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586. Web of Science CrossRef CAS Google Scholar
Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Martin, D. P., Staples, R. J. & LaDuca, R. L. (2008). Inorg. Chem. 47, 9754–9756. Web of Science CSD CrossRef PubMed CAS Google Scholar
Palmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Robinson, M. E., Mizzi, J. E., Staples, R. J. & LaDuca, R. L. (2015). Cryst. Growth Des. 15, 2260–2271. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.