metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(diiso­butyl­ammonium) tetra­chlorido­bis­­[3-(tri­fluorometh­yl)phen­yl]stannate

crossmark logo

aUniversity of the District of Columbia, Chemistry, 4200 Connecticut Avenue, NW, Washington DC, 20008, USA
*Correspondence e-mail: xsong@udc.edu

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 29 August 2023; accepted 17 October 2023; online 24 October 2023)

The asymmetric unit in the title salt, (C8H20N)2[SnCl4(C7H4Cl2F3)2], features a di-isobutyl­ammonium cation in a general position and a diorganotin tetra­chloride dianion, i.e. tetra­chlorido­bis­(3-trifuoro­methyl­phen­yl)stannate(IV), located on a centre of inversion; the SnIV atom is octa­hedrally coordinated. In the crystal, charge-assisted N+—H⋯Cl hydrogen bonds along with C—H⋯F contacts occur within supra­molecular layers that inter­digitate along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title salt, bis­(di-isobutyl­ammonium) tetra­chlorido­bis­(3-tri­fluoro­methyl­phen­yl)stannate, was obtained as a by-product in a reaction of tris­(3-tri­fluoro­methyl­phen­yl)tin chloride with acetic acid in the presence of di-isobutyl­amine. An inter­esting Sn—C cleavage occurred during this reaction.

The crystal comprises di-isobutyl­ammonium cations and tetra­chlorido­bis-(3-tri­fluoro­methyl­phen­yl)stannate(IV) anions, with the SnIV atom of the latter located on a centre of inversion, Fig. 1[link]. The coordination geometry about the SnIV atom is based on an octa­hedron, Table 1[link]. This observation resembles literature precedents, e.g. Teoh et al. (1992[Teoh, S. G., Teo, S. B., Yeap, G. Y. & Declercq, J. P. (1992). Polyhedron, 11, 2351-2356.]) and Hazell et al. (1998[Hazell, A., Khoo, L. E., Ouyang, J., Rausch, B. J. & Tavares, Z. M. (1998). Acta Cryst. C54, 728-732.]).

Table 1
Selected geometric parameters (Å, °)

Sn1—Cl1 2.5845 (4) Sn1—C9 2.147 (2)
Sn1—Cl2 2.5719 (4)    
       
C9—Sn1—Cl1 89.36 (6) Cl1—Sn1—Cl2 90.308 (14)
C9—Sn1—Cl2 90.11 (5)    
[Figure 1]
Figure 1
A view of the mol­ecular structures of the di-isobutyl­ammonium cation and the tetra­chlorido­bis-(3-trifuoro­methyl­phen­yl)stannate(IV) anion, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The unlabelled atoms for the anion are related by 1 − x, 1 − y, 1 − z.

In the crystal, charge-assisted N+—H⋯Cl hydrogen bonds along with C—H⋯F contacts link mol­ecules into a supra­molecular layer parallel to (011). As noted from Table 2[link], the Cll atom accepts two N+—H⋯Cl hydrogen bonds, each of which is significantly shorter than the N+—H⋯Cl hydrogen bond involving the Cl2 atom. This observation accounts for the disparity in the Sn—Cl bond lengths, Table 1[link]. The supra­molecular layers interdigitate along [100], Fig. 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl1i 0.91 2.31 3.1877 (17) 161
N1—H1D⋯Cl1 0.91 2.44 3.1771 (17) 138
N1—H1D⋯Cl2 0.91 2.75 3.4094 (17) 130
C7—H7A⋯F1ii 0.98 2.56 3.227 (3) 125
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram viewed along [010] with inter­molecular hydrogen bonding shown as dashed lines.

Synthesis and crystallization

The crystal was obtained as a by-product in an attempt to poduce tris­(3-tri­fluoro­methyl­phen­yl)tin acetate in a reaction involving tris­(3-tri­fluoro­methyl­phen­yl)tin chloride and acetic acid in the presence of di-iso­butyl­amine. The anti­cipated tris­(3-tri­fluoro­methyl­phen­yl)tin acetate was isolated as the major product along with a few smaller crystals of the title compound in the mother liquid, comprising a mixture of di­chloro­methane and hexane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula (C8H20N)2[SnCl4(C7H4Cl2F3)2]
Mr 811.19
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.2614 (1), 10.8318 (1), 14.6297 (1)
β (°) 108.523 (1)
V3) 1842.36 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 8.64
Crystal size (mm) 0.1 × 0.07 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.293, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18706, 3822, 3652
Rint 0.057
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.08
No. of reflections 3822
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −0.90
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2023); cell refinement: CrysAlis PRO (Rigaku OD, 2023); data reduction: CrysAlis PRO (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Bis(diisobutylammonium) tetrachloridobis[3-(trifluoromethyl)phenyl]stannate top
Crystal data top
(C8H20N)2[SnCl4(C7H4Cl2F3)2]F(000) = 828
Mr = 811.19Dx = 1.462 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.2614 (1) ÅCell parameters from 14287 reflections
b = 10.8318 (1) Åθ = 3.8–77.8°
c = 14.6297 (1) ŵ = 8.64 mm1
β = 108.523 (1)°T = 100 K
V = 1842.36 (3) Å3Block, clear brown-orange
Z = 20.1 × 0.07 × 0.03 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix
diffractometer
3652 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.057
ω scansθmax = 78.0°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
h = 1515
Tmin = 0.293, Tmax = 1.000k = 1311
18706 measured reflectionsl = 1817
3822 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.041P)2 + 0.7503P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3822 reflectionsΔρmax = 0.66 e Å3
200 parametersΔρmin = 0.90 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35270 (19)0.5478 (2)0.13703 (15)0.0239 (4)
H1A0.3585540.4573090.1303240.029*
H1B0.3263080.5837760.0714410.029*
C20.26367 (19)0.5751 (2)0.18694 (15)0.0260 (5)
H20.2954300.5462210.2552250.031*
C30.23739 (19)0.7127 (2)0.18845 (16)0.0275 (5)
H3A0.3066510.7565530.2269650.041*
H3B0.1758490.7249820.2169270.041*
H3C0.2127990.7448750.1224250.041*
C40.1551 (3)0.5004 (2)0.1380 (3)0.0411 (8)
H4A0.1210940.5285250.0713100.062*
H4B0.0996240.5119910.1729480.062*
H4C0.1748670.4126690.1383690.062*
C50.56054 (19)0.55525 (19)0.14964 (15)0.0222 (4)
H5A0.5373900.5777200.0805180.027*
H5B0.5654580.4640990.1540470.027*
C60.67905 (19)0.60917 (19)0.20024 (15)0.0218 (4)
H60.6748570.7006980.1908290.026*
C70.7618 (2)0.5571 (2)0.15105 (19)0.0328 (5)
H7A0.7651950.4670940.1578440.049*
H7B0.8386000.5919700.1812280.049*
H7C0.7346470.5789530.0824970.049*
C80.72259 (19)0.5828 (2)0.30827 (16)0.0274 (5)
H8A0.6697350.6191580.3388810.041*
H8B0.7992780.6188670.3363880.041*
H8C0.7267370.4933290.3189200.041*
N10.46944 (15)0.59824 (15)0.19037 (12)0.0177 (3)
H1C0.4664640.6821780.1884120.021*
H1D0.4889620.5748150.2532560.021*
C90.68457 (19)0.50380 (16)0.54647 (16)0.0146 (4)
C100.74444 (18)0.6150 (2)0.56702 (15)0.0178 (4)
H100.7028130.6902010.5605200.021*
C110.86397 (19)0.6180 (2)0.59687 (16)0.0220 (4)
H110.9032950.6947730.6105100.026*
C120.9258 (2)0.50866 (18)0.60672 (18)0.0215 (5)
H121.0074760.5099220.6271190.026*
C130.86647 (18)0.3971 (2)0.58629 (14)0.0180 (4)
C140.74712 (18)0.39424 (19)0.55628 (14)0.0157 (4)
H140.7079130.3174330.5423740.019*
C150.93450 (17)0.2801 (2)0.59848 (15)0.0205 (4)
Cl10.50101 (4)0.38477 (4)0.34558 (3)0.01643 (11)
Cl20.49391 (4)0.70843 (4)0.41432 (3)0.01725 (11)
F10.86867 (11)0.17902 (12)0.57535 (11)0.0291 (3)
F21.00453 (12)0.27762 (13)0.54416 (10)0.0306 (3)
F31.00321 (13)0.26451 (14)0.69011 (10)0.0364 (3)
Sn10.5000000.5000000.5000000.01258 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0260 (11)0.0198 (11)0.0220 (9)0.0067 (9)0.0021 (8)0.0019 (8)
C20.0229 (10)0.0294 (11)0.0233 (10)0.0069 (9)0.0038 (8)0.0065 (9)
C30.0221 (11)0.0338 (13)0.0268 (10)0.0007 (9)0.0080 (8)0.0042 (9)
C40.0291 (15)0.0419 (19)0.0480 (18)0.0161 (10)0.0061 (13)0.0051 (10)
C50.0301 (11)0.0173 (10)0.0218 (9)0.0001 (8)0.0118 (8)0.0026 (8)
C60.0270 (10)0.0160 (9)0.0269 (10)0.0026 (8)0.0151 (8)0.0001 (8)
C70.0383 (13)0.0285 (13)0.0404 (13)0.0049 (10)0.0249 (11)0.0024 (10)
C80.0212 (10)0.0331 (12)0.0300 (11)0.0014 (9)0.0112 (8)0.0022 (10)
N10.0220 (8)0.0135 (8)0.0181 (7)0.0022 (6)0.0071 (6)0.0008 (6)
C90.0117 (10)0.0175 (11)0.0161 (10)0.0006 (6)0.0063 (8)0.0003 (6)
C100.0190 (10)0.0152 (10)0.0204 (9)0.0002 (8)0.0081 (7)0.0026 (8)
C110.0199 (10)0.0188 (11)0.0275 (10)0.0063 (8)0.0077 (8)0.0041 (8)
C120.0155 (11)0.0232 (12)0.0254 (11)0.0015 (7)0.0057 (9)0.0001 (7)
C130.0189 (9)0.0194 (10)0.0176 (9)0.0016 (8)0.0086 (7)0.0013 (8)
C140.0170 (9)0.0158 (10)0.0155 (8)0.0007 (7)0.0070 (7)0.0017 (7)
C150.0136 (9)0.0234 (10)0.0250 (9)0.0015 (8)0.0068 (7)0.0033 (8)
Cl10.0205 (2)0.0118 (2)0.0188 (2)0.00014 (15)0.00893 (16)0.00113 (15)
Cl20.0188 (2)0.0129 (2)0.0212 (2)0.00085 (15)0.00785 (16)0.00294 (16)
F10.0222 (6)0.0172 (6)0.0500 (8)0.0021 (5)0.0143 (6)0.0042 (6)
F20.0271 (7)0.0289 (7)0.0442 (8)0.0067 (5)0.0235 (6)0.0043 (6)
F30.0351 (8)0.0389 (8)0.0284 (6)0.0168 (6)0.0005 (6)0.0061 (6)
Sn10.01231 (11)0.01048 (12)0.01599 (11)0.00097 (5)0.00599 (8)0.00084 (5)
Geometric parameters (Å, º) top
C1—C21.523 (3)C11—C121.389 (3)
C1—N11.499 (3)C12—C131.393 (3)
C2—C31.527 (3)C13—C141.388 (3)
C2—C41.528 (3)C13—C151.497 (3)
C5—C61.522 (3)C15—F11.338 (3)
C5—N11.497 (3)C15—F21.343 (2)
C6—C71.526 (3)C15—F31.348 (2)
C6—C81.526 (3)Sn1—Cl12.5845 (4)
C9—C101.393 (3)Sn1—Cl22.5719 (4)
C9—C141.396 (3)Sn1—C92.147 (2)
C10—C111.390 (3)
N1—C1—C2113.03 (17)F1—C15—F2106.35 (17)
C1—C2—C3112.52 (18)F1—C15—F3106.55 (17)
C1—C2—C4108.9 (2)F2—C15—C13112.55 (17)
C3—C2—C4111.5 (2)F2—C15—F3105.72 (16)
N1—C5—C6113.87 (16)F3—C15—C13111.92 (17)
C5—C6—C7107.69 (18)C9—Sn1—C9i180.0
C5—C6—C8113.43 (18)C9i—Sn1—Cl1i89.36 (6)
C7—C6—C8110.67 (19)C9—Sn1—Cl189.36 (6)
C5—N1—C1112.90 (16)C9—Sn1—Cl1i90.64 (6)
C10—C9—C14118.6 (2)C9i—Sn1—Cl190.64 (6)
C10—C9—Sn1121.02 (14)C9—Sn1—Cl2i89.89 (5)
C14—C9—Sn1120.40 (14)C9i—Sn1—Cl2i90.11 (5)
C11—C10—C9121.3 (2)C9i—Sn1—Cl289.89 (5)
C12—C11—C10119.9 (2)C9—Sn1—Cl290.11 (5)
C11—C12—C13119.1 (2)Cl1i—Sn1—Cl1180.0
C12—C13—C15118.4 (2)Cl1—Sn1—Cl290.308 (14)
C14—C13—C12120.9 (2)Cl2i—Sn1—Cl1i90.308 (14)
C14—C13—C15120.68 (19)Cl2i—Sn1—Cl189.692 (14)
C13—C14—C9120.20 (19)Cl2—Sn1—Cl1i89.693 (14)
F1—C15—C13113.22 (17)Cl2i—Sn1—Cl2180.00 (3)
C2—C1—N1—C5171.26 (17)C12—C13—C14—C90.3 (3)
C6—C5—N1—C1177.79 (17)C12—C13—C15—F1178.98 (19)
N1—C1—C2—C366.3 (2)C12—C13—C15—F258.3 (3)
N1—C1—C2—C4169.55 (19)C12—C13—C15—F360.6 (3)
N1—C5—C6—C7179.98 (17)C14—C9—C10—C110.1 (3)
N1—C5—C6—C857.2 (2)C14—C13—C15—F11.7 (3)
C9—C10—C11—C120.1 (3)C14—C13—C15—F2122.3 (2)
C10—C9—C14—C130.2 (3)C14—C13—C15—F3118.8 (2)
C10—C11—C12—C130.0 (4)C15—C13—C14—C9179.09 (19)
C11—C12—C13—C140.1 (4)Sn1—C9—C10—C11179.81 (16)
C11—C12—C13—C15179.2 (2)Sn1—C9—C14—C13179.96 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl1ii0.912.313.1877 (17)161
N1—H1D···Cl10.912.443.1771 (17)138
N1—H1D···Cl20.912.753.4094 (17)130
C7—H7A···F1iii0.982.563.227 (3)125
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Funding information

Financial assistance from the National Science Foundation (NSF grants Nos. 2117621, 1622811 and 1833656) and the University of the District of Columbia (UDC) is gratefully acknowledged.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHazell, A., Khoo, L. E., Ouyang, J., Rausch, B. J. & Tavares, Z. M. (1998). Acta Cryst. C54, 728–732.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTeoh, S. G., Teo, S. B., Yeap, G. Y. & Declercq, J. P. (1992). Polyhedron, 11, 2351–2356.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146