organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6,7-Di­phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one 5,5-dioxide

crossmark logo

aDepartment of Biochemistry and Molecular Biology Pennsylvania State University, University Park, PA 16802, USA, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 17 October 2023; accepted 25 October 2023; online 31 October 2023)

The racemic mixture of the title compound, C19H19NO3S, crystallizes in space group P[\overline{1}] with two homochiral mol­ecules in each asymmetric unit. The seven-membered ring in both mol­ecules is in a pucker-chair conformation. The extended structure exhibits C—H⋯O hydrogen bonds, of which two connect crystallographically independent mol­ecules to generate a chain propagating along the b-axis direction. One C—H grouping of the cyclo­propyl ring is in close contact with the phenyl ring of the neighboring independent mol­ecule in C—H⋯π type inter­actions with carbon atom–ring-centroid distances of 3.544 (5) and 3.596 (4) Å. Other inter­actions are of the parallel–reciprocal type, with the chiral carbon atom of one mol­ecule donating a proton to an oxygen atom of the sulfone group of a symmetry-related mol­ecule and vice-versa. Symmetry-related mol­ecular pairs also exhibit T-type inter­actions between aromatic rings with inter­planar angles of 74.2 (2) and 69.2 (2)° and inter­centroid distances of 4.965 (4) and 5.114 (4) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The seven-membered 1,3-thia­zepan-4-one ring system, like the similar six-membered 1,3-thia­zin-4-one and five-membered 1,3-thia­zolidin-4-one systems, is biologically active and of potential medicinal use. For example, the Bristol-Myers Squibb ACE/NEP inhibitor omapatrilat (C19H24N2O4S2) advanced to Phase II clinical trials (Graul et al., 1999[Graul, A., Leeson, P. & Castaner, J. (1999). Drugs Fut. 24, 0269-0277.]; Robl et al. 1997[Robl, J. A., Sun, C. Q., Stevenson, J., Ryono, D. E., Simpkins, L. M., Cimarusti, M. P., Dejneka, T., Slusarchyk, W. A., Chao, S., Stratton, L., Misra, R. N., Bednarz, M. S., Asaad, M. M., Cheung, H. S., Abboa-Offei, B. E., Smith, P. L., Mathers, P. D., Fox, M., Schaeffer, T. R., Seymour, A. A. & Trippodo, N. C. (1997). J. Med. Chem. 40, 1570-1577.]; Tabrizchi, 2001[Tabrizchi, R. (2001). Curr. Opin. Investig. Drugs, 2, 1414-1422.]; Cozier et al., 2018[Cozier, G. E., Arendse, L. B., Schwager, S. L., Sturrock, E. D. & Acharya, K. R. (2018). J. Med. Chem. 61, 10141-10154.]). Oxidation to the sulfone has been shown to change the biological activity of an isopenam 1,3-thia­zepan-4-one (Hwu et al., 1999[Hwu, J. R., Hakimelahi, S., Moosavi-Movahedi, A. A. & Tsay, S.-C. (1999). Chem. Eur. J. 5, 2705-2711.]). S-Oxides of 1,3-thia­zin-4-ones have shown greater activity than the sulfides from which they were synthesized (Surrey et al., 1958[Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469-3471.]). Here we report the crystal structure of the sulfone derivative 1 (Silverberg, 2022[Silverberg, L. J. (2022). US Patent Application 0259165.]) of 1,3-thia­zepan-4-one 2 (Yennawar & Silverberg, 2013[Yennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, o1659.]). Although we have isolated the corresponding sulfoxide 3 (Silverberg, 2022[Silverberg, L. J. (2022). US Patent Application 0259165.]), we have not been able to form it selectively and have not yet obtained a crystal structure.

The asymmetric unit of 1 is comprised of two independent mol­ecules (A containing C1 and B containing C20, Fig. 1[link]), each consisting of a cyclo­propane ring, a pair of phenyl rings and a seven-membered heterocycle displaying a chair-pucker conformation in both mol­ecules. For the C1 mol­ecule, q(2) = 0.463 (4) Å, q(3) = 0.728 (3) Å, φ(2) = 92.7 (4)°, φ(3) = 336.2 (3)° and the total puckering amplitude Q = 0.863 (3) Å, with equivalent data of 0.444 (4) Å, 0.729 (3) Å, 90.2 (4)°, 335.4 (3)° and 0.853 (3) Å, respectively for the C20 mol­ecule. We reported similar puckering of the 1,3-thia­zepan-4-one ring previously (Yennawar et al., 2019[Yennawar, H. P., Peterson, S. D. & Silverberg, L. J. (2019). Acta Cryst. E75, 1270-1273.]). The stereogenic centers (C1 and C20) in the arbitrarily chosen asymmetric unit both have R configurations but crystal symmetry generates a racemic mixture.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. C—H⋯O inter­actions are shown as dashed lines.

The packing of 1 is consolidated by a number of C—H⋯O and C—H⋯π type inter­actions (Fig. 2[link] and Table 1[link]). One pair of C—H⋯O bonds, C5—H5A⋯O6 [C⋯O = 3.460 (5) Å, C—H⋯O = 161°] and C24—H24A⋯O3 [3.413 (5) Å and 165°], wherein the carbonyl oxygen atom of one mol­ecule accepts a C—H grouping of the heterocycle of another, form a chain of alternating crystallographically independent mol­ecules along the b axis direction. Independent neighbors along the [10[\overline{1}]] direction participate in C—H⋯π type inter­actions (Tsuzuki, 2000[Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2000). J. Am. Chem. Soc. 122, 3746-3753.]) wherein a C—H moiety (C18/C38) of the cyclo­propyl ring makes a close contact [C⋯π = 3.596 (5) and 3.544 (4) Å] with the centroid of an adjacent phenyl ring (C25–C30 and C6–C11, respectively]. Additionally, parallel give-and-take C—H⋯O inter­actions are seen between the symmetry-related pairs of mol­ecules wherein the chiral carbon atom (C1 and C20) of one donates a proton to one of the sulfone oxygen atoms (O2 and O5, respectively) on the heterocyclic ring of its neighbor in a reciprocal fashion.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.98 2.29 3.242 (4) 165
C5—H5A⋯O6 0.97 2.53 3.460 (5) 161
C20—H20⋯O5ii 0.98 2.35 3.310 (4) 166
C24—H24A⋯O3iii 0.97 2.47 3.413 (5) 165
Symmetry codes: (i) [-x+2, -y+1, -z]; (ii) [-x+1, -y, -z+1]; (iii) [x, y-1, z].
[Figure 2]
Figure 2
Packing diagram viewing down a axis, showing C—H⋯O hydrogen bonds between mol­ecules.

Synthesis and crystallization

6,7-Diphenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one 2 (Yennawar & Silverberg, 2013[Yennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, o1659.]) (0.0831 g, 0.267 mmol) was dissolved in glacial acetic acid (1.2 ml). An aqueous solution of KMnO4 (0.0853 g, 0.535 mmol in 1.45 ml water) was added dropwise at room temperature with vigorous stirring. The reaction was followed by TLC. Solid sodium bis­ulfite (NaHSO3/Na2S205) was added until the solution remained colorless. 1.45 ml of water were added and stirred for 10 min. The mixture was extracted with CH2Cl2 (3 × 5 ml). The organics were combined and washed once with sat. NaCl. The solution was dried over Na2SO4 and filtered. The product 1 was purified by chromatography in a silica gel microcolumn [0.0638 g, 70% yield. m.p. 186.6–187.7°C (decomposition)]. Crystals were grown by slow evaporation of an ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H19NO3S
Mr 341.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 10.125 (5), 11.222 (5), 15.995 (7)
α, β, γ (°) 79.117 (8), 83.484 (9), 72.829 (8)
V3) 1701.8 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.14 × 0.10 × 0.05
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.698, 0.9
No. of measured, independent and observed [I > 2σ(I)] reflections 15037, 7728, 3674
Rint 0.060
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.207, 0.91
No. of reflections 7728
No. of parameters 433
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.74, −0.45
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SMART V5.634 (Bruker, 2001); cell refinement: SAINT V6.36A (Bruker, 2001); data reduction: SAINT V6.36A (Bruker, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

6,7-Diphenyl-5-thia-7-azaspiro[2.6]nonan-8-one 5,5-dioxide top
Crystal data top
C19H19NO3SZ = 4
Mr = 341.41F(000) = 720
Triclinic, P1Dx = 1.332 Mg m3
a = 10.125 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.222 (5) ÅCell parameters from 1788 reflections
c = 15.995 (7) Åθ = 2.4–25.1°
α = 79.117 (8)°µ = 0.21 mm1
β = 83.484 (9)°T = 298 K
γ = 72.829 (8)°Block, colorless
V = 1701.8 (13) Å30.14 × 0.10 × 0.05 mm
Data collection top
Bruker SMART CCD
diffractometer
7728 independent reflections
Radiation source: fine-focus sealed tube3674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 8.34 pixels mm-1θmax = 28.4°, θmin = 1.3°
phi and ω scansh = 1113
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1415
Tmin = 0.698, Tmax = 0.9l = 2117
15037 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
7728 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.45 e Å3
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 5 sets of ω scans each set at different φ and/or 2θ angles and each scan (30 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The hydrogen atoms were placed geometrically (C—H = 0.93–0.98 Å) and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.90079 (10)0.56246 (8)0.12862 (6)0.0407 (3)
S20.60160 (10)0.07781 (8)0.36592 (6)0.0434 (3)
O10.7581 (3)0.5998 (2)0.11179 (17)0.0541 (7)
O20.9835 (3)0.4395 (2)0.11397 (17)0.0523 (7)
O30.7584 (3)0.9752 (2)0.11388 (16)0.0535 (7)
O40.7454 (3)0.0349 (2)0.38132 (17)0.0552 (8)
O50.5248 (3)0.0146 (2)0.38104 (18)0.0598 (8)
O60.7253 (3)0.4160 (3)0.38174 (17)0.0608 (8)
N10.8788 (3)0.8038 (2)0.05663 (18)0.0350 (7)
N20.6102 (3)0.2742 (3)0.43865 (18)0.0376 (7)
C10.9765 (3)0.6790 (3)0.0601 (2)0.0359 (8)
H10.98020.65930.00260.043*
C20.8408 (4)0.8715 (3)0.1232 (2)0.0376 (8)
C30.8994 (4)0.8121 (3)0.2094 (2)0.0410 (9)
H3A0.87950.87720.24490.049*
H3B0.99930.78050.20130.049*
C40.8430 (4)0.7046 (3)0.2561 (2)0.0404 (9)
C50.9171 (4)0.5762 (3)0.2345 (2)0.0460 (10)
H5A0.88080.51370.27280.055*
H5B1.01460.55750.24400.055*
C61.1264 (3)0.6682 (3)0.0744 (2)0.0385 (9)
C71.2248 (4)0.5528 (4)0.0859 (3)0.0578 (12)
H71.19920.47900.08870.069*
C81.3633 (4)0.5460 (5)0.0933 (3)0.0738 (15)
H81.42900.46760.10190.089*
C91.4028 (5)0.6529 (5)0.0882 (3)0.0714 (14)
H91.49480.64790.09380.086*
C101.3073 (4)0.7666 (4)0.0749 (3)0.0608 (12)
H101.33460.83980.07110.073*
C111.1706 (4)0.7764 (4)0.0669 (2)0.0474 (10)
H111.10710.85580.05650.057*
C120.8103 (4)0.8537 (3)0.0220 (2)0.0375 (9)
C130.6711 (4)0.8734 (4)0.0242 (3)0.0497 (10)
H130.61880.85610.02580.060*
C140.6076 (4)0.9188 (4)0.1002 (3)0.0612 (12)
H140.51280.93180.10150.073*
C150.6851 (5)0.9450 (4)0.1743 (3)0.0640 (13)
H150.64240.97730.22560.077*
C160.8237 (5)0.9233 (4)0.1722 (3)0.0629 (12)
H160.87660.93760.22260.076*
C170.8872 (4)0.8802 (4)0.0959 (3)0.0527 (11)
H170.98170.86910.09460.063*
C180.7895 (5)0.7086 (4)0.3475 (3)0.0662 (13)
H18A0.80420.62900.38650.079*
H18B0.79340.77960.37260.079*
C190.6911 (4)0.7337 (4)0.2799 (3)0.0598 (12)
H19A0.63480.82000.26400.072*
H19B0.64570.66940.27790.072*
C200.5201 (3)0.1954 (3)0.4352 (2)0.0378 (9)
H200.52100.14530.49250.045*
C210.6467 (4)0.3572 (3)0.3713 (2)0.0422 (9)
C220.5898 (4)0.3741 (3)0.2860 (2)0.0427 (9)
H22A0.60760.44880.25070.051*
H22B0.49020.38890.29380.051*
C230.6501 (4)0.2623 (3)0.2390 (2)0.0398 (9)
C240.5805 (4)0.1577 (3)0.2609 (2)0.0443 (9)
H24A0.61800.09750.22210.053*
H24B0.48230.19330.25260.053*
C250.3683 (4)0.2620 (3)0.4236 (2)0.0408 (9)
C260.2755 (4)0.1958 (5)0.4163 (3)0.0689 (13)
H260.30760.10950.41500.083*
C270.1370 (5)0.2559 (7)0.4112 (4)0.0916 (18)
H270.07700.21020.40410.110*
C280.0860 (5)0.3791 (7)0.4159 (3)0.0851 (18)
H280.00870.41780.41350.102*
C290.1746 (5)0.4483 (5)0.4245 (3)0.0760 (15)
H290.14020.53420.42710.091*
C300.3149 (4)0.3891 (4)0.4292 (3)0.0558 (11)
H300.37430.43530.43620.067*
C310.6767 (4)0.2524 (3)0.5174 (2)0.0451 (10)
C320.5996 (5)0.2989 (5)0.5868 (3)0.0657 (13)
H320.50710.34490.58200.079*
C330.6601 (6)0.2772 (6)0.6635 (3)0.0850 (16)
H330.60890.30940.71030.102*
C340.7943 (7)0.2088 (6)0.6703 (4)0.0921 (18)
H340.83430.19360.72220.111*
C350.8720 (6)0.1616 (5)0.6019 (4)0.0887 (17)
H350.96420.11500.60720.106*
C360.8122 (4)0.1838 (4)0.5243 (3)0.0695 (13)
H360.86410.15210.47740.083*
C370.8030 (4)0.2257 (4)0.2163 (3)0.0552 (11)
H37A0.85700.27560.23220.066*
H37B0.85050.13640.21900.066*
C380.7043 (4)0.2870 (4)0.1474 (2)0.0568 (11)
H38A0.69210.23470.10880.068*
H38B0.69850.37380.12190.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0446 (6)0.0385 (5)0.0399 (6)0.0138 (4)0.0059 (4)0.0100 (4)
S20.0508 (6)0.0347 (5)0.0426 (6)0.0130 (4)0.0093 (4)0.0068 (4)
O10.0448 (16)0.0613 (17)0.0607 (19)0.0246 (13)0.0016 (13)0.0066 (14)
O20.0698 (18)0.0385 (14)0.0496 (17)0.0175 (13)0.0096 (14)0.0138 (12)
O30.0642 (18)0.0405 (15)0.0470 (17)0.0023 (13)0.0024 (13)0.0137 (12)
O40.0458 (16)0.0501 (16)0.0580 (18)0.0007 (13)0.0026 (13)0.0042 (13)
O50.086 (2)0.0417 (15)0.0595 (19)0.0386 (15)0.0152 (15)0.0067 (13)
O60.083 (2)0.0677 (19)0.0467 (18)0.0488 (17)0.0014 (15)0.0049 (14)
N10.0386 (16)0.0349 (15)0.0309 (17)0.0068 (13)0.0009 (13)0.0114 (13)
N20.0402 (17)0.0414 (16)0.0325 (17)0.0170 (14)0.0031 (13)0.0034 (13)
C10.0384 (19)0.0368 (18)0.030 (2)0.0057 (15)0.0036 (15)0.0106 (15)
C20.041 (2)0.0339 (19)0.037 (2)0.0116 (16)0.0045 (16)0.0075 (16)
C30.050 (2)0.042 (2)0.032 (2)0.0127 (17)0.0017 (17)0.0114 (16)
C40.048 (2)0.041 (2)0.030 (2)0.0103 (17)0.0073 (16)0.0085 (15)
C50.054 (2)0.044 (2)0.036 (2)0.0131 (18)0.0092 (17)0.0057 (16)
C60.0347 (19)0.047 (2)0.030 (2)0.0073 (17)0.0036 (15)0.0074 (16)
C70.043 (2)0.051 (2)0.069 (3)0.0045 (19)0.002 (2)0.003 (2)
C80.037 (2)0.078 (3)0.087 (4)0.002 (2)0.001 (2)0.003 (3)
C90.041 (3)0.106 (4)0.067 (3)0.025 (3)0.008 (2)0.006 (3)
C100.051 (3)0.077 (3)0.062 (3)0.030 (2)0.006 (2)0.016 (2)
C110.042 (2)0.052 (2)0.051 (3)0.0154 (19)0.0060 (18)0.0138 (19)
C120.037 (2)0.0368 (19)0.037 (2)0.0070 (16)0.0044 (16)0.0085 (15)
C130.046 (2)0.061 (3)0.043 (2)0.0164 (19)0.0015 (19)0.0106 (19)
C140.051 (3)0.075 (3)0.061 (3)0.013 (2)0.017 (2)0.017 (2)
C150.072 (3)0.069 (3)0.046 (3)0.008 (2)0.023 (2)0.006 (2)
C160.065 (3)0.078 (3)0.034 (2)0.009 (2)0.001 (2)0.001 (2)
C170.043 (2)0.065 (3)0.043 (3)0.0073 (19)0.0023 (19)0.004 (2)
C180.097 (4)0.050 (2)0.040 (3)0.011 (2)0.021 (2)0.0082 (19)
C190.056 (3)0.052 (2)0.067 (3)0.015 (2)0.023 (2)0.015 (2)
C200.042 (2)0.042 (2)0.031 (2)0.0195 (16)0.0059 (16)0.0013 (15)
C210.050 (2)0.041 (2)0.037 (2)0.0187 (18)0.0144 (18)0.0101 (16)
C220.055 (2)0.038 (2)0.033 (2)0.0156 (17)0.0106 (17)0.0046 (16)
C230.046 (2)0.044 (2)0.028 (2)0.0161 (17)0.0114 (16)0.0050 (15)
C240.050 (2)0.047 (2)0.035 (2)0.0156 (18)0.0091 (17)0.0108 (17)
C250.039 (2)0.053 (2)0.027 (2)0.0134 (18)0.0067 (15)0.0030 (16)
C260.047 (3)0.085 (3)0.080 (4)0.024 (2)0.007 (2)0.023 (3)
C270.047 (3)0.142 (6)0.094 (4)0.036 (3)0.002 (3)0.029 (4)
C280.041 (3)0.140 (5)0.053 (3)0.003 (3)0.001 (2)0.002 (3)
C290.065 (3)0.077 (3)0.056 (3)0.009 (3)0.014 (2)0.003 (2)
C300.050 (2)0.057 (3)0.047 (3)0.004 (2)0.0110 (19)0.0030 (19)
C310.051 (2)0.050 (2)0.040 (2)0.0262 (19)0.0021 (19)0.0022 (18)
C320.063 (3)0.103 (4)0.039 (3)0.036 (3)0.001 (2)0.012 (2)
C330.092 (4)0.142 (5)0.040 (3)0.062 (4)0.003 (3)0.019 (3)
C340.104 (5)0.128 (5)0.061 (4)0.069 (4)0.027 (4)0.016 (3)
C350.067 (3)0.108 (4)0.090 (5)0.025 (3)0.035 (3)0.004 (4)
C360.056 (3)0.075 (3)0.073 (4)0.014 (2)0.008 (2)0.006 (3)
C370.052 (2)0.053 (2)0.057 (3)0.016 (2)0.018 (2)0.012 (2)
C380.077 (3)0.057 (2)0.036 (2)0.028 (2)0.019 (2)0.0075 (19)
Geometric parameters (Å, º) top
S1—O11.423 (3)C16—H160.9300
S1—O21.434 (3)C16—C171.381 (5)
S1—C11.833 (4)C17—H170.9300
S1—C51.759 (4)C18—H18A0.9700
S2—O41.426 (3)C18—H18B0.9700
S2—O51.441 (3)C18—C191.486 (6)
S2—C201.830 (4)C19—H19A0.9700
S2—C241.752 (4)C19—H19B0.9700
O3—C21.209 (4)C20—H200.9800
O6—C211.217 (4)C20—C251.513 (5)
N1—C11.451 (4)C21—C221.499 (5)
N1—C21.378 (4)C22—H22A0.9700
N1—C121.442 (4)C22—H22B0.9700
N2—C201.458 (4)C22—C231.520 (5)
N2—C211.377 (4)C23—C241.508 (5)
N2—C311.442 (5)C23—C371.501 (5)
C1—H10.9800C23—C381.509 (5)
C1—C61.526 (5)C24—H24A0.9700
C2—C31.517 (5)C24—H24B0.9700
C3—H3A0.9700C25—C261.385 (5)
C3—H3B0.9700C25—C301.384 (5)
C3—C41.520 (5)C26—H260.9300
C4—C51.499 (5)C26—C271.370 (6)
C4—C181.505 (5)C27—H270.9300
C4—C191.495 (5)C27—C281.338 (7)
C5—H5A0.9700C28—H280.9300
C5—H5B0.9700C28—C291.382 (7)
C6—C71.376 (5)C29—H290.9300
C6—C111.394 (5)C29—C301.383 (6)
C7—H70.9300C30—H300.9300
C7—C81.399 (6)C31—C321.376 (6)
C8—H80.9300C31—C361.365 (5)
C8—C91.358 (6)C32—H320.9300
C9—H90.9300C32—C331.383 (6)
C9—C101.350 (6)C33—H330.9300
C10—H100.9300C33—C341.354 (7)
C10—C111.375 (5)C34—H340.9300
C11—H110.9300C34—C351.369 (8)
C12—C131.364 (5)C35—H350.9300
C12—C171.374 (5)C35—C361.391 (7)
C13—H130.9300C36—H360.9300
C13—C141.379 (5)C37—H37A0.9700
C14—H140.9300C37—H37B0.9700
C14—C151.378 (6)C37—C381.497 (6)
C15—H150.9300C38—H38A0.9700
C15—C161.356 (6)C38—H38B0.9700
O1—S1—O2118.34 (17)C19—C18—C460.0 (3)
O1—S1—C1106.13 (15)C19—C18—H18A117.8
O1—S1—C5109.40 (18)C19—C18—H18B117.8
O2—S1—C1107.56 (16)C4—C19—H19A117.7
O2—S1—C5108.30 (16)C4—C19—H19B117.7
C5—S1—C1106.48 (17)C18—C19—C460.7 (3)
O4—S2—O5117.82 (16)C18—C19—H19A117.7
O4—S2—C20106.93 (17)C18—C19—H19B117.7
O4—S2—C24109.41 (17)H19A—C19—H19B114.8
O5—S2—C20107.33 (17)S2—C20—H20104.0
O5—S2—C24108.42 (18)N2—C20—S2110.3 (2)
C24—S2—C20106.33 (17)N2—C20—H20104.0
C2—N1—C1125.4 (3)N2—C20—C25117.1 (3)
C2—N1—C12119.0 (3)C25—C20—S2115.8 (3)
C12—N1—C1115.4 (3)C25—C20—H20104.0
C21—N2—C20125.6 (3)O6—C21—N2119.5 (4)
C21—N2—C31118.1 (3)O6—C21—C22120.5 (3)
C31—N2—C20116.0 (3)N2—C21—C22120.0 (3)
S1—C1—H1104.4C21—C22—H22A108.7
N1—C1—S1109.4 (2)C21—C22—H22B108.7
N1—C1—H1104.4C21—C22—C23114.2 (3)
N1—C1—C6116.7 (3)H22A—C22—H22B107.6
C6—C1—S1116.0 (2)C23—C22—H22A108.7
C6—C1—H1104.4C23—C22—H22B108.7
O3—C2—N1120.5 (3)C24—C23—C22115.7 (3)
O3—C2—C3120.3 (3)C24—C23—C38115.9 (3)
N1—C2—C3119.1 (3)C37—C23—C22118.0 (3)
C2—C3—H3A108.7C37—C23—C24117.5 (3)
C2—C3—H3B108.7C37—C23—C3859.7 (2)
C2—C3—C4114.3 (3)C38—C23—C22118.5 (3)
H3A—C3—H3B107.6S2—C24—H24A108.9
C4—C3—H3A108.7S2—C24—H24B108.9
C4—C3—H3B108.7C23—C24—S2113.3 (3)
C5—C4—C3115.7 (3)C23—C24—H24A108.9
C5—C4—C18116.0 (3)C23—C24—H24B108.9
C18—C4—C3117.8 (3)H24A—C24—H24B107.7
C19—C4—C3118.0 (3)C26—C25—C20121.3 (3)
C19—C4—C5118.3 (3)C30—C25—C20120.8 (4)
C19—C4—C1859.4 (3)C30—C25—C26117.5 (4)
S1—C5—H5A108.9C25—C26—H26119.6
S1—C5—H5B108.9C27—C26—C25120.8 (5)
C4—C5—S1113.5 (3)C27—C26—H26119.6
C4—C5—H5A108.9C26—C27—H27119.3
C4—C5—H5B108.9C28—C27—C26121.4 (5)
H5A—C5—H5B107.7C28—C27—H27119.3
C7—C6—C1121.4 (4)C27—C28—H28120.2
C7—C6—C11117.8 (4)C27—C28—C29119.7 (5)
C11—C6—C1120.4 (3)C29—C28—H28120.2
C6—C7—H7119.9C28—C29—H29120.2
C6—C7—C8120.2 (4)C28—C29—C30119.5 (5)
C8—C7—H7119.9C30—C29—H29120.2
C7—C8—H8119.7C25—C30—H30119.5
C9—C8—C7120.6 (4)C29—C30—C25121.0 (5)
C9—C8—H8119.7C29—C30—H30119.5
C8—C9—H9120.3C32—C31—N2118.6 (4)
C10—C9—C8119.4 (4)C36—C31—N2121.0 (4)
C10—C9—H9120.3C36—C31—C32120.4 (4)
C9—C10—H10119.3C31—C32—H32120.1
C9—C10—C11121.3 (4)C31—C32—C33119.7 (4)
C11—C10—H10119.3C33—C32—H32120.1
C6—C11—H11119.8C32—C33—H33120.1
C10—C11—C6120.5 (4)C34—C33—C32119.8 (5)
C10—C11—H11119.8C34—C33—H33120.1
C13—C12—N1121.1 (3)C33—C34—H34119.5
C13—C12—C17119.7 (3)C33—C34—C35121.0 (5)
C17—C12—N1119.3 (3)C35—C34—H34119.5
C12—C13—H13119.8C34—C35—H35120.2
C12—C13—C14120.4 (4)C34—C35—C36119.6 (5)
C14—C13—H13119.8C36—C35—H35120.2
C13—C14—H14120.1C31—C36—C35119.5 (5)
C15—C14—C13119.9 (4)C31—C36—H36120.3
C15—C14—H14120.1C35—C36—H36120.3
C14—C15—H15120.2C23—C37—H37A117.7
C16—C15—C14119.7 (4)C23—C37—H37B117.7
C16—C15—H15120.2H37A—C37—H37B114.8
C15—C16—H16119.7C38—C37—C2360.4 (2)
C15—C16—C17120.6 (4)C38—C37—H37A117.7
C17—C16—H16119.7C38—C37—H37B117.7
C12—C17—C16119.8 (4)C23—C38—H38A117.8
C12—C17—H17120.1C23—C38—H38B117.8
C16—C17—H17120.1C37—C38—C2359.9 (3)
C4—C18—H18A117.8C37—C38—H38A117.8
C4—C18—H18B117.8C37—C38—H38B117.8
H18A—C18—H18B114.9H38A—C38—H38B114.9
S1—C1—C6—C743.2 (4)C9—C10—C11—C61.5 (6)
S1—C1—C6—C11143.7 (3)C11—C6—C7—C82.6 (6)
S2—C20—C25—C2644.9 (4)C12—N1—C1—S1105.8 (3)
S2—C20—C25—C30142.2 (3)C12—N1—C1—C6120.0 (3)
O1—S1—C1—N138.4 (3)C12—N1—C2—O35.1 (5)
O1—S1—C1—C6173.0 (2)C12—N1—C2—C3172.5 (3)
O1—S1—C5—C453.8 (3)C12—C13—C14—C150.3 (6)
O2—S1—C1—N1166.0 (2)C13—C12—C17—C161.7 (6)
O2—S1—C1—C659.4 (3)C13—C14—C15—C161.4 (7)
O2—S1—C5—C4175.9 (3)C14—C15—C16—C172.7 (7)
O3—C2—C3—C4106.8 (4)C15—C16—C17—C122.8 (7)
O4—S2—C20—N239.2 (3)C17—C12—C13—C140.4 (6)
O4—S2—C20—C25175.0 (2)C18—C4—C5—S1150.0 (3)
O4—S2—C24—C2353.5 (3)C19—C4—C5—S182.4 (4)
O5—S2—C20—N2166.5 (2)C20—S2—C24—C2361.7 (3)
O5—S2—C20—C2557.7 (3)C20—N2—C21—O6178.5 (3)
O5—S2—C24—C23176.8 (2)C20—N2—C21—C221.4 (5)
O6—C21—C22—C23108.0 (4)C20—N2—C31—C3276.4 (4)
N1—C1—C6—C7174.5 (3)C20—N2—C31—C36101.6 (4)
N1—C1—C6—C1112.5 (5)C20—C25—C26—C27176.0 (4)
N1—C2—C3—C470.8 (4)C20—C25—C30—C29175.5 (4)
N1—C12—C13—C14178.7 (3)C21—N2—C20—S265.9 (4)
N1—C12—C17—C16177.4 (3)C21—N2—C20—C2569.3 (4)
N2—C20—C25—C26177.6 (3)C21—N2—C31—C32109.7 (4)
N2—C20—C25—C309.5 (5)C21—N2—C31—C3672.2 (5)
N2—C21—C22—C2371.9 (4)C21—C22—C23—C2485.7 (4)
N2—C31—C32—C33178.8 (4)C21—C22—C23—C3761.1 (4)
N2—C31—C36—C35178.3 (4)C21—C22—C23—C38129.9 (4)
C1—S1—C5—C460.5 (3)C22—C23—C24—S266.5 (4)
C1—N1—C2—O3179.9 (3)C22—C23—C37—C38108.4 (4)
C1—N1—C2—C32.5 (5)C22—C23—C38—C37107.6 (4)
C1—N1—C12—C13113.9 (4)C24—S2—C20—N277.6 (3)
C1—N1—C12—C1765.2 (4)C24—S2—C20—C2558.1 (3)
C1—C6—C7—C8175.9 (4)C24—C23—C37—C38105.4 (4)
C1—C6—C11—C10176.3 (3)C24—C23—C38—C37108.1 (4)
C2—N1—C1—S169.3 (4)C25—C26—C27—C282.4 (8)
C2—N1—C1—C664.9 (4)C26—C25—C30—C292.3 (6)
C2—N1—C12—C1361.5 (5)C26—C27—C28—C291.4 (8)
C2—N1—C12—C17119.3 (4)C27—C28—C29—C300.9 (7)
C2—C3—C4—C586.5 (4)C28—C29—C30—C251.4 (6)
C2—C3—C4—C18130.0 (4)C30—C25—C26—C272.8 (6)
C2—C3—C4—C1961.9 (4)C31—N2—C20—S2107.4 (3)
C3—C4—C5—S165.9 (4)C31—N2—C20—C25117.4 (3)
C3—C4—C18—C19107.7 (4)C31—N2—C21—O65.3 (5)
C3—C4—C19—C18107.4 (4)C31—N2—C21—C22174.6 (3)
C5—S1—C1—N178.1 (3)C31—C32—C33—C340.9 (8)
C5—S1—C1—C656.5 (3)C32—C31—C36—C350.2 (6)
C5—C4—C18—C19108.8 (4)C32—C33—C34—C350.7 (9)
C5—C4—C19—C18105.1 (4)C33—C34—C35—C360.2 (9)
C6—C7—C8—C90.9 (7)C34—C35—C36—C310.0 (8)
C7—C6—C11—C102.9 (6)C36—C31—C32—C330.7 (7)
C7—C8—C9—C100.7 (7)C37—C23—C24—S280.5 (4)
C8—C9—C10—C110.4 (7)C38—C23—C24—S2148.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.293.242 (4)165
C5—H5A···O60.972.533.460 (5)161
C20—H20···O5ii0.982.353.310 (4)166
C24—H24A···O3iii0.972.473.413 (5)165
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z+1; (iii) x, y1, z.
 

Funding information

LJS thanks Penn State Schuylkill for funding. We acknowledge NSF grant CHE-0131112 for the purchase of the diffractometer.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCozier, G. E., Arendse, L. B., Schwager, S. L., Sturrock, E. D. & Acharya, K. R. (2018). J. Med. Chem. 61, 10141–10154.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGraul, A., Leeson, P. & Castaner, J. (1999). Drugs Fut. 24, 0269–0277.  CrossRef CAS Google Scholar
First citationHwu, J. R., Hakimelahi, S., Moosavi-Movahedi, A. A. & Tsay, S.-C. (1999). Chem. Eur. J. 5, 2705–2711.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationRobl, J. A., Sun, C. Q., Stevenson, J., Ryono, D. E., Simpkins, L. M., Cimarusti, M. P., Dejneka, T., Slusarchyk, W. A., Chao, S., Stratton, L., Misra, R. N., Bednarz, M. S., Asaad, M. M., Cheung, H. S., Abboa-Offei, B. E., Smith, P. L., Mathers, P. D., Fox, M., Schaeffer, T. R., Seymour, A. A. & Trippodo, N. C. (1997). J. Med. Chem. 40, 1570–1577.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilverberg, L. J. (2022). US Patent Application 0259165.  Google Scholar
First citationSurrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469–3471.  CrossRef CAS Web of Science Google Scholar
First citationTabrizchi, R. (2001). Curr. Opin. Investig. Drugs, 2, 1414–1422.  PubMed CAS Google Scholar
First citationTsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2000). J. Am. Chem. Soc. 122, 3746–3753.  Web of Science CrossRef CAS Google Scholar
First citationYennawar, H. P., Peterson, S. D. & Silverberg, L. J. (2019). Acta Cryst. E75, 1270–1273.  CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, o1659.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146