organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[4-(2-Chloro­benz­yl)-3-methyl-6-oxo-1,6-di­hydro­pyridazin-1-yl]-N-(4-fluoro­phen­yl)acetamide

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and dMohammed VI Center for Research and Innovation (CM6), Rabat 10000, Morocco
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 12 October 2023; accepted 14 October 2023; online 19 October 2023)

The conformation of the title mol­ecule, C20H17ClFN3O2, is partly determined by an intra­molecular C—H⋯O hydrogen bond, which leads to a dihedral angle of 14.7 (4)° between the fluoro­benzene ring and the acetamide group. The 2-chloro­benzyl group is rotationally disordered over two orientations in a 0.656 (2): 0.344 (2) ratio. In the crystal, a layered structure is formed by N—H⋯O, C—H⋯O and C—H⋯F hydrogen bonds plus slipped ππ stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridazinone derivatives possess a number of biological activities including anti-oxidant (Khokra et al., 2016[Khokra, S. L., Khan, S. A., Thakur, P., Chowdhary, D., Ahmad, A. & Husain, A. (2016). J. Chin. Chem. Soc. 63, 739-750.]), anti-bacterial and anti­fungal (Abiha et al. 2018[Abiha, G. B., Bahar, L. & Utku, S. (2018). Rev. Rom. Med. Lab. 26, 231-241.]), anti-cancer (Kamble et al. 2017[Kamble, V. T., Sawant, A.-S., Sawant, S. S., Pisal, P. M., Gacche, R. N., Kamble, S. S., Shegokar, H. D. & Kamble, V. A. (2017). J. Basic Appl. Res. Int. 21, 10-39.]), analgesic and anti-inflammatory (Ibrahim et al. 2017[Ibrahim, T. H., Loksha, Y. M., Elshihawy, H. A., Khodeer, D. M. & Said, M. M. (2017). Arch. Pharm. Chem. Life Sci. 350, e1700093.]), anti-depressant (Boukharsa et al. 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.]) and anti-ulcer properties (Yamada et al., 1981[Yamada, T., Nobuhara, Y., Shimamura, H., Yoshihara, K., Yamaguchi, A. & Ohki, M. (1981). Chem. Pharm. Bull. 29, 3433-3439.]). In addition, N-aryl­acetamide derivatives with their wide spectrum of activities (e.g., Missioui et al., 2022[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022). J. Mol. Struct. 1247, 131420.]) have significant importance as inter­mediates in organic chemistry. As a continuation of a our work in synthesizing new N-aryl­acetamide derivatives (e.g., Mortada et al., 2023[Mortada, S., Guerrab, W., Missioui, M., Salhi, N., Naceiri Mrabti, H., Rouass, L., Benkirane, S., Hassane, M., Masrar, A., Mezzour, H., Faouzi, M. E. A. & Ramli, Y. (2023). J. Biomol. Struct. Dyn. pp. 1-15.]), and developing new pyridazine-3(2H)-one compounds (e.g., Zaoui et al., 2022[Zaoui, Y., Assila, H., Mague, J. T., Alsubari, A., Taoufik, J., Ramli, Y. & Ansar, M. (2022). IUCrData, 7, x220582.]), the title compound C20H17ClFN3O2 was synthesized and its crystal structure is reported here.

The title mol­ecule adopts an `extended' conformation with a dihedral angle between the mean plane of the C15–C20 fluoro­benzene ring and that defined by N2, C14, C13 and O2 of 14.7 (4)°. This is likely due in part to the intra­molecular C16—H16⋯O2 hydrogen bond (Table 1[link] and Fig. 1[link]). The dihedral angle between this latter plane and the mean plane of the C8–C11/N1/N2 ring is 72.07 (16)° while that between the mean planes of the C8–C11/N1/N2 and the C1–C6 rings is 80.38 (16)°. The disorder in this part of the mol­ecule features a 177.2 (5)° rotation of the 2-chloro­phenyl between the two components of the disorder in a 0.656 (2): 0.344 (2) ratio.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.88 1.95 2.815 (5) 168
C7—H7A⋯O2ii 0.99 2.32 3.282 (15) 164
C16—H16⋯O2 0.95 2.29 2.900 (6) 121
C19—H19⋯F1iii 0.95 2.42 3.336 (7) 162
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [-x+2, y+{\script{1\over 2}}, -z].
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular C—H⋯O hydrogen bond is depicted by a dashed line and only the major component of the disorder is shown.

In the crystal, N3—H3⋯O1 hydrogen bonds form chains of mol­ecules extending along the b-axis direction. These are reinforced by slipped π-stacking inter­actions between a pyridazine and a 4-fluoro­phenyl ring at –x + 2, y + [{1\over 2}], –z + 1 [centroid–centroid separation = 3.706 (3) Å, dihedral angle = 8.7 (2)°, slippage = 1.18 Å] (Fig. 2[link]). These chains are connected into layers by C19—H19⋯F1 hydrogen bonds with the layers further connected by C7—H7A⋯O2 hydrogen bonds (Fig. 3[link]).

[Figure 2]
Figure 2
A portion of one chain of mol­ecules viewed along the a-axis direction with N—H⋯O hydrogen bonds and slipped, π-stacking inter­actions depicted, respectively, by violet and orange dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with N—H⋯O, C—H⋯O and C—H⋯F hydrogen bonds depicted, respectively, by violet, black and light blue dashed lines. Slipped π-stacking inter­actions are depicted by orange dashed lines and non-inter­acting hydrogen atoms are omitted for clarity.

Synthesis and crystallization

A mixture of 3-benzyl­idene-4-oxo­penta­noic acid derivative (0.010 mol) and hydrazine hydrate (0.020 mol) in ethanol was refluxed to obtain the 5-(2-chloro­benz­yl)-6-methyl­pyridazin-3(2H)-one precursor. To this pyridazine-3(2H)-one (0.010 mol) was added 0.010 mol of 2-chloro-N-(4-fluoro­phen­yl)acetamide, followed by 0.020 mol of potassium bicarbonate and a spatula tip of BTBA (benzyl­tri­butyl­ammonium bromide). The mixture was kept stirring at room temperature for 24 h and the progress of the reaction was monitored by TLC. Then, 200 ml of distilled water were added to the reaction mixture, the precipitated product was filtered off, dried and recrystallized from acetone solution to yield colorless crystals of the title compound.

Yield 82%; m.p: 477–479 K. 1H NMR [300 MHz DMSO-d6, δ(p.p.m.)]: 2.25 (s, 3H, CH3); 3.96 (s, 2H, phenyl-CH2-pyridazinone); 4,78 (s, 2H, N—CH2—CO); 6.06 (s, 1H, pyridazinone); 7.07–7.58 (m, 8H, two phen­yl); 10.32 (s, 1H, NH). 13C NMR [126 MHz DMSO-d6, δ(p.p.m.)]: 19.06 (CH3); 35.32 (phenyle-CH2-pyridazinone); 54.61 (pyridazinone-CH2—CO); 115.84 (d, J = 22.5 Hz) (C aromatic acetamide); 121.32 (d, J = 7.7 Hz) (C aromatic acetamide); 126.55 (CH pyridazinone); 128.32 (C aromatic); 129.73 (C aromatic); 130.17 (C aromatic); 132.08 (C aromatic); 134.02 (C aromatic); 134.87 (C aromatic-CH2); 135.67 (d, J = 2,5 Hz) (C aromatic-NH); 144.88 (CH2—C pyridazinone); 145.96 (C pyridazinone–CH3); 157.63 (d, J = 293,9 Hz) (C aromatic-F); 159.83 (C pyridazinone=O); 165.68 (NH—C=O). MS (ESI+): m/z = 386.10.

Refinement

Crystal data, data collection and refinement details are presented in Table 2[link]. The o-chloro­benzyl group is rotationally disordered over two orientations in a 0.656 (2): 0.344 (2) ratio with the components refined with restraints to make their geometries comparable. One reflection affected by the beamstop was omitted from the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula C20H17ClFN3O2
Mr 385.82
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 10.0602 (13), 6.7704 (9), 14.524 (2)
β (°) 110.168 (2)
V3) 928.6 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.19 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.80, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 6266, 2856, 2376
Rint 0.039
θmax (°) 23.9
(sin θ/λ)max−1) 0.570
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.03
No. of reflections 2856
No. of parameters 240
No. of restraints 17
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.28
Absolute structure Flack x determined using 904 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.01 (7)
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT . Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-[4-(2-Chlorobenzyl)-3-methyl-6-oxo-1,6-dihydropyridazin-1-yl]-N-(4-fluorophenyl)acetamide top
Crystal data top
C20H17ClFN3O2F(000) = 400
Mr = 385.82Dx = 1.380 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.0602 (13) ÅCell parameters from 3275 reflections
b = 6.7704 (9) Åθ = 3.0–23.6°
c = 14.524 (2) ŵ = 0.24 mm1
β = 110.168 (2)°T = 150 K
V = 928.6 (2) Å3Plate, colourless
Z = 20.19 × 0.14 × 0.08 mm
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
2856 independent reflections
Radiation source: fine-focus sealed tube2376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 7.3910 pixels mm-1θmax = 23.9°, θmin = 3.0°
φ and ω scansh = 1111
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 77
Tmin = 0.80, Tmax = 0.98l = 1616
6266 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.1965P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2856 reflectionsΔρmax = 0.27 e Å3
240 parametersΔρmin = 0.28 e Å3
17 restraintsAbsolute structure: Flack x determined using 904 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.01 (7)
Special details top

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. That attached to nitrogen was located in a difference map and refined with a DFIX 0.91 0.01 instruction. The o-chlorobenzyl group is rotationally disoordered over two sites 177.2 (5)° apart in a 0.656 (2)/0.344 (2) ratio. The two components were refined as rigid hexagons with additional restraints to make their geometries comparable. One reflection affected by the beam stop was omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.7132 (2)0.6802 (4)0.94862 (15)0.0618 (6)0.656 (2)
Cl1A0.3896 (4)0.3635 (7)0.6576 (3)0.0618 (6)0.344 (2)
F10.9061 (5)0.0075 (7)0.0379 (3)0.1107 (17)
O10.9168 (3)0.3291 (5)0.6332 (3)0.0492 (9)
O20.7561 (3)0.3559 (5)0.4072 (2)0.0485 (9)
N10.8281 (4)0.6205 (5)0.5611 (3)0.0390 (9)
N20.7474 (4)0.7866 (6)0.5485 (3)0.0400 (9)
N30.9225 (4)0.4816 (6)0.3484 (3)0.0391 (9)
H30.9834160.5792480.3575400.047*
C70.5560 (15)0.6816 (12)0.7246 (10)0.046 (3)0.656 (2)
H7A0.4630530.7146970.6749560.055*0.656 (2)
H7B0.5854690.7950350.7701110.055*0.656 (2)
C10.5373 (5)0.5015 (6)0.7825 (3)0.041 (2)0.656 (2)
C20.6067 (5)0.4920 (7)0.8834 (3)0.0432 (13)0.656 (2)
C30.5904 (6)0.3270 (8)0.9354 (3)0.052 (2)0.656 (2)
H3A0.6378710.3205151.0043710.063*0.656 (2)
C40.5046 (6)0.1717 (7)0.8867 (4)0.059 (2)0.656 (2)
H40.4933890.0589370.9222860.071*0.656 (2)
C50.4351 (5)0.1812 (7)0.7858 (4)0.056 (2)0.656 (2)
H50.3764340.0750130.7525180.067*0.656 (2)
C60.4514 (5)0.3461 (8)0.7338 (3)0.0432 (13)0.656 (2)
H60.4039600.3526690.6648330.052*0.656 (2)
C7A0.583 (4)0.712 (2)0.741 (2)0.046 (3)0.344 (2)
H7C0.4849150.7504140.7005220.055*0.344 (2)
H7D0.6288440.8285560.7801810.055*0.344 (2)
C1A0.5776 (10)0.5441 (14)0.8094 (7)0.041 (2)0.344 (2)
C2A0.6600 (10)0.5581 (14)0.9082 (7)0.0432 (13)0.344 (2)
H2A0.7181570.6707470.9316700.052*0.344 (2)
C3A0.6572 (11)0.4075 (16)0.9725 (6)0.052 (2)0.344 (2)
H3B0.7135050.4170631.0399370.063*0.344 (2)
C4A0.5721 (13)0.2427 (14)0.9381 (8)0.059 (2)0.344 (2)
H4A0.5702090.1397150.9820190.071*0.344 (2)
C5A0.4897 (12)0.2286 (14)0.8393 (9)0.056 (2)0.344 (2)
H5A0.4315640.1160500.8158340.067*0.344 (2)
C6A0.4925 (10)0.3793 (18)0.7750 (6)0.0432 (13)0.344 (2)
C80.6632 (4)0.6569 (7)0.6726 (3)0.0385 (11)
C90.7456 (5)0.4970 (7)0.6832 (4)0.0393 (10)
H90.7437470.3980760.7291380.047*
C100.8370 (4)0.4717 (7)0.6265 (3)0.0374 (10)
C110.6674 (4)0.8051 (7)0.6030 (3)0.0381 (11)
C120.5826 (5)0.9905 (8)0.5867 (4)0.0513 (13)
H12A0.6062861.0633820.6485410.077*
H12B0.4814720.9576890.5628090.077*
H12C0.6040761.0722400.5379150.077*
C130.9116 (5)0.6132 (7)0.4974 (4)0.0429 (12)
H13A1.0098800.5749450.5365090.052*
H13B0.9146050.7466470.4702930.052*
C140.8535 (5)0.4690 (7)0.4135 (3)0.0393 (11)
C150.9084 (4)0.3573 (7)0.2676 (3)0.0410 (11)
C160.8316 (5)0.1846 (8)0.2489 (3)0.0450 (11)
H160.7785990.1478350.2890620.054*
C170.8311 (6)0.0641 (9)0.1718 (4)0.0572 (14)
H170.7796840.0564790.1591800.069*
C180.9065 (6)0.1228 (10)0.1143 (4)0.0662 (17)
C190.9804 (7)0.2951 (11)0.1287 (4)0.0687 (17)
H191.0294880.3333030.0861650.082*
C200.9824 (5)0.4130 (9)0.2065 (4)0.0526 (14)
H201.0345360.5329740.2185200.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0550 (10)0.0672 (12)0.0641 (11)0.0116 (9)0.0217 (8)0.0154 (10)
Cl1A0.0550 (10)0.0672 (12)0.0641 (11)0.0116 (9)0.0217 (8)0.0154 (10)
F10.134 (4)0.130 (4)0.094 (3)0.030 (3)0.072 (3)0.054 (3)
O10.0436 (18)0.038 (2)0.074 (2)0.0100 (16)0.0311 (17)0.0024 (17)
O20.0387 (17)0.052 (2)0.063 (2)0.0123 (17)0.0283 (16)0.0098 (18)
N10.035 (2)0.034 (2)0.054 (2)0.0004 (17)0.0227 (18)0.0041 (18)
N20.037 (2)0.032 (2)0.054 (2)0.0014 (17)0.0195 (19)0.0036 (18)
N30.034 (2)0.039 (2)0.050 (2)0.0057 (18)0.0216 (17)0.0019 (19)
C70.043 (6)0.044 (4)0.060 (5)0.008 (5)0.029 (6)0.002 (5)
C10.026 (4)0.049 (5)0.050 (4)0.007 (4)0.017 (3)0.012 (4)
C20.037 (3)0.043 (3)0.051 (4)0.005 (2)0.017 (3)0.021 (3)
C30.054 (5)0.043 (5)0.067 (6)0.001 (4)0.030 (5)0.001 (4)
C40.055 (5)0.060 (5)0.074 (5)0.007 (4)0.036 (4)0.009 (4)
C50.048 (5)0.033 (4)0.100 (8)0.008 (4)0.041 (5)0.021 (5)
C60.037 (3)0.043 (3)0.051 (4)0.005 (2)0.017 (3)0.021 (3)
C7A0.043 (6)0.044 (4)0.060 (5)0.008 (5)0.029 (6)0.002 (5)
C1A0.026 (4)0.049 (5)0.050 (4)0.007 (4)0.017 (3)0.012 (4)
C2A0.037 (3)0.043 (3)0.051 (4)0.005 (2)0.017 (3)0.021 (3)
C3A0.054 (5)0.043 (5)0.067 (6)0.001 (4)0.030 (5)0.001 (4)
C4A0.055 (5)0.060 (5)0.074 (5)0.007 (4)0.036 (4)0.009 (4)
C5A0.048 (5)0.033 (4)0.100 (8)0.008 (4)0.041 (5)0.021 (5)
C6A0.037 (3)0.043 (3)0.051 (4)0.005 (2)0.017 (3)0.021 (3)
C80.035 (2)0.037 (3)0.045 (3)0.001 (2)0.016 (2)0.003 (2)
C90.036 (2)0.037 (3)0.051 (3)0.003 (2)0.022 (2)0.001 (2)
C100.035 (2)0.033 (2)0.046 (3)0.002 (2)0.017 (2)0.002 (2)
C110.033 (2)0.035 (3)0.048 (3)0.000 (2)0.015 (2)0.006 (2)
C120.050 (3)0.043 (3)0.067 (3)0.006 (2)0.028 (3)0.002 (3)
C130.037 (2)0.041 (3)0.059 (3)0.007 (2)0.028 (2)0.009 (2)
C140.031 (2)0.040 (3)0.052 (3)0.000 (2)0.020 (2)0.001 (2)
C150.033 (2)0.048 (3)0.045 (3)0.000 (2)0.017 (2)0.001 (2)
C160.043 (3)0.047 (3)0.047 (3)0.003 (2)0.018 (2)0.006 (3)
C170.058 (3)0.058 (3)0.059 (3)0.007 (3)0.025 (3)0.013 (3)
C180.070 (4)0.079 (4)0.057 (3)0.007 (3)0.031 (3)0.024 (3)
C190.068 (4)0.096 (5)0.057 (3)0.012 (4)0.041 (3)0.010 (3)
C200.044 (3)0.065 (4)0.055 (3)0.003 (3)0.026 (3)0.003 (3)
Geometric parameters (Å, º) top
Cl1—C21.723 (4)C1A—C6A1.3900
Cl1A—C6A1.666 (9)C2A—C3A1.3900
F1—C181.355 (7)C2A—H2A0.9500
O1—C101.237 (5)C3A—C4A1.3900
O2—C141.222 (5)C3A—H3B0.9500
N1—N21.362 (5)C4A—C5A1.3900
N1—C101.366 (6)C4A—H4A0.9500
N1—C131.450 (6)C5A—C6A1.3900
N2—C111.314 (6)C5A—H5A0.9500
N3—C141.356 (5)C8—C91.340 (6)
N3—C151.410 (6)C8—C111.435 (7)
N3—H30.8800C9—C101.441 (6)
C7—C81.525 (6)C9—H90.9500
C7—C11.529 (6)C11—C121.490 (6)
C7—H7A0.9900C12—H12A0.9800
C7—H7B0.9900C12—H12B0.9800
C1—C21.3900C12—H12C0.9800
C1—C61.3900C13—C141.512 (7)
C2—C31.3900C13—H13A0.9900
C3—C41.3900C13—H13B0.9900
C3—H3A0.9500C15—C161.376 (7)
C4—C51.3900C15—C201.393 (6)
C4—H40.9500C16—C171.384 (7)
C5—C61.3900C16—H160.9500
C5—H50.9500C17—C181.367 (8)
C6—H60.9500C17—H170.9500
C7A—C81.524 (7)C18—C191.360 (9)
C7A—C1A1.529 (6)C19—C201.378 (8)
C7A—H7C0.9900C19—H190.9500
C7A—H7D0.9900C20—H200.9500
C1A—C2A1.3900
N2—N1—C10126.5 (4)C6A—C5A—H5A120.0
N2—N1—C13113.1 (4)C5A—C6A—C1A120.0
C10—N1—C13120.3 (4)C5A—C6A—Cl1A119.4 (7)
C11—N2—N1117.3 (4)C1A—C6A—Cl1A120.5 (8)
C14—N3—C15127.9 (4)C9—C8—C11118.6 (4)
C14—N3—H3116.0C9—C8—C7A124.8 (6)
C15—N3—H3116.0C11—C8—C7A115.8 (5)
C8—C7—C1115.3 (4)C9—C8—C7123.1 (5)
C8—C7—H7A108.4C11—C8—C7118.0 (4)
C1—C7—H7A108.4C8—C9—C10121.4 (4)
C8—C7—H7B108.4C8—C9—H9119.3
C1—C7—H7B108.4C10—C9—H9119.3
H7A—C7—H7B107.5O1—C10—N1121.0 (4)
C2—C1—C6120.0O1—C10—C9124.9 (4)
C2—C1—C7120.3 (7)N1—C10—C9114.1 (4)
C6—C1—C7119.7 (7)N2—C11—C8122.0 (4)
C1—C2—C3120.0N2—C11—C12114.9 (4)
C1—C2—Cl1122.4 (3)C8—C11—C12123.1 (4)
C3—C2—Cl1117.6 (3)C11—C12—H12A109.5
C4—C3—C2120.0C11—C12—H12B109.5
C4—C3—H3A120.0H12A—C12—H12B109.5
C2—C3—H3A120.0C11—C12—H12C109.5
C3—C4—C5120.0H12A—C12—H12C109.5
C3—C4—H4120.0H12B—C12—H12C109.5
C5—C4—H4120.0N1—C13—C14112.8 (4)
C6—C5—C4120.0N1—C13—H13A109.0
C6—C5—H5120.0C14—C13—H13A109.0
C4—C5—H5120.0N1—C13—H13B109.0
C5—C6—C1120.0C14—C13—H13B109.0
C5—C6—H6120.0H13A—C13—H13B107.8
C1—C6—H6120.0O2—C14—N3125.2 (4)
C8—C7A—C1A112.7 (6)O2—C14—C13122.9 (4)
C8—C7A—H7C109.1N3—C14—C13111.9 (4)
C1A—C7A—H7C109.1C16—C15—C20119.4 (4)
C8—C7A—H7D109.1C16—C15—N3124.1 (4)
C1A—C7A—H7D109.1C20—C15—N3116.5 (4)
H7C—C7A—H7D107.8C15—C16—C17120.4 (5)
C2A—C1A—C6A120.0C15—C16—H16119.8
C2A—C1A—C7A118.8 (17)C17—C16—H16119.8
C6A—C1A—C7A121.2 (17)C18—C17—C16118.4 (5)
C1A—C2A—C3A120.0C18—C17—H17120.8
C1A—C2A—H2A120.0C16—C17—H17120.8
C3A—C2A—H2A120.0F1—C18—C19117.9 (5)
C4A—C3A—C2A120.0F1—C18—C17119.1 (5)
C4A—C3A—H3B120.0C19—C18—C17123.0 (5)
C2A—C3A—H3B120.0C18—C19—C20118.4 (5)
C5A—C4A—C3A120.0C18—C19—H19120.8
C5A—C4A—H4A120.0C20—C19—H19120.8
C3A—C4A—H4A120.0C19—C20—C15120.4 (5)
C4A—C5A—C6A120.0C19—C20—H20119.8
C4A—C5A—H5A120.0C15—C20—H20119.8
C10—N1—N2—C111.5 (6)C7—C8—C9—C10174.7 (9)
C13—N1—N2—C11179.6 (4)N2—N1—C10—O1178.3 (4)
C8—C7—C1—C298.6 (11)C13—N1—C10—O10.6 (6)
C8—C7—C1—C680.7 (11)N2—N1—C10—C92.5 (6)
C6—C1—C2—C30.0C13—N1—C10—C9178.7 (4)
C7—C1—C2—C3179.3 (3)C8—C9—C10—O1179.2 (5)
C6—C1—C2—Cl1179.3 (4)C8—C9—C10—N11.6 (6)
C7—C1—C2—Cl11.4 (4)N1—N2—C11—C80.5 (6)
C1—C2—C3—C40.0N1—N2—C11—C12179.5 (4)
Cl1—C2—C3—C4179.3 (4)C9—C8—C11—N21.2 (7)
C2—C3—C4—C50.0C7A—C8—C11—N2171.4 (18)
C3—C4—C5—C60.0C7—C8—C11—N2173.8 (8)
C4—C5—C6—C10.0C9—C8—C11—C12178.7 (4)
C2—C1—C6—C50.0C7A—C8—C11—C128.6 (18)
C7—C1—C6—C5179.3 (3)C7—C8—C11—C126.2 (10)
C8—C7A—C1A—C2A107 (2)N2—N1—C13—C14105.4 (4)
C8—C7A—C1A—C6A73 (2)C10—N1—C13—C1475.6 (5)
C6A—C1A—C2A—C3A0.0C15—N3—C14—O27.4 (7)
C7A—C1A—C2A—C3A179.9 (4)C15—N3—C14—C13172.5 (4)
C1A—C2A—C3A—C4A0.0N1—C13—C14—O27.6 (7)
C2A—C3A—C4A—C5A0.0N1—C13—C14—N3172.5 (4)
C3A—C4A—C5A—C6A0.0C14—N3—C15—C168.1 (7)
C4A—C5A—C6A—C1A0.0C14—N3—C15—C20174.3 (4)
C4A—C5A—C6A—Cl1A178.2 (7)C20—C15—C16—C171.9 (7)
C2A—C1A—C6A—C5A0.0N3—C15—C16—C17175.5 (5)
C7A—C1A—C6A—C5A179.9 (4)C15—C16—C17—C181.1 (8)
C2A—C1A—C6A—Cl1A178.2 (7)C16—C17—C18—F1179.4 (5)
C7A—C1A—C6A—Cl1A1.8 (8)C16—C17—C18—C190.8 (9)
C1A—C7A—C8—C913 (3)F1—C18—C19—C20179.6 (6)
C1A—C7A—C8—C11177.5 (16)C17—C18—C19—C201.8 (10)
C1—C7—C8—C95.9 (15)C18—C19—C20—C151.0 (9)
C1—C7—C8—C11168.9 (8)C16—C15—C20—C190.9 (8)
C11—C8—C9—C100.1 (7)N3—C15—C20—C19176.8 (5)
C7A—C8—C9—C10169.2 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.881.952.815 (5)168
C7—H7A···O2ii0.992.323.282 (15)164
C16—H16···O20.952.292.900 (6)121
C19—H19···F1iii0.952.423.336 (7)162
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+1, y+1/2, z+1; (iii) x+2, y+1/2, z.
 

Acknowledgements

Author contributions are as follows. Conceptualization, MA and IAE; methodology, YR; investigation, HA and AEAA; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AS and YR; supervision, MA and YR; crystal structure determination and validation, JTM.

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAbiha, G. B., Bahar, L. & Utku, S. (2018). Rev. Rom. Med. Lab. 26, 231–241.  Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT . Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationIbrahim, T. H., Loksha, Y. M., Elshihawy, H. A., Khodeer, D. M. & Said, M. M. (2017). Arch. Pharm. Chem. Life Sci. 350, e1700093.  Web of Science CrossRef Google Scholar
First citationKamble, V. T., Sawant, A.-S., Sawant, S. S., Pisal, P. M., Gacche, R. N., Kamble, S. S., Shegokar, H. D. & Kamble, V. A. (2017). J. Basic Appl. Res. Int. 21, 10–39.  Google Scholar
First citationKhokra, S. L., Khan, S. A., Thakur, P., Chowdhary, D., Ahmad, A. & Husain, A. (2016). J. Chin. Chem. Soc. 63, 739–750.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022). J. Mol. Struct. 1247, 131420.  Web of Science CSD CrossRef Google Scholar
First citationMortada, S., Guerrab, W., Missioui, M., Salhi, N., Naceiri Mrabti, H., Rouass, L., Benkirane, S., Hassane, M., Masrar, A., Mezzour, H., Faouzi, M. E. A. & Ramli, Y. (2023). J. Biomol. Struct. Dyn. pp. 1–15.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYamada, T., Nobuhara, Y., Shimamura, H., Yoshihara, K., Yamaguchi, A. & Ohki, M. (1981). Chem. Pharm. Bull. 29, 3433–3439.  CrossRef CAS PubMed Google Scholar
First citationZaoui, Y., Assila, H., Mague, J. T., Alsubari, A., Taoufik, J., Ramli, Y. & Ansar, M. (2022). IUCrData, 7, x220582.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146