metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](1-ethyl-4-iso­propyl-1,2,4-triazol-5-yl­­idene)(tri­phenylphos­phane)iridium(I) tetra­fluorido­borate di­chloro­methane sesquisolvate

crossmark logo

aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and bDepartment of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
*Correspondence e-mail: edward.rajaseelan@millersville.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 2 October 2023; accepted 14 October 2023; online 19 October 2023)

The synthesis and crystal structure of a new triazole-based N-heterocyclic carbene iridium(I) cationic complex with a tetra­fluorido­borate counter-anion and solvating di­chloro­methane, [Ir(C8H12)(C7H13N3)(C18H15P)]BF4·1.5CH2Cl2, is reported. The IrI center of the cationic complex has a distorted square-planar conformation, formed by a bidentate cyclo­octa-1,5-diene (COD) ligand, an N-heterocyclic carbene, and a triphenylphosphane ligand. There are weak hydrogen-bonding inter­actions between C—H groupings of the iridium complex and F atoms of the [BF4] counter-ions. The atoms of the COD ligand are disordered over two sets of sites in a 0.65:0.35 ratio and two of the F atoms of the anion are disordered over adjacent sites in a 0.6:0.4 ratio. One of the di­chloro­methane solvent mol­ecules is disordered about an inversion center with 0.5 occupancy.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-heterocyclic carbenes (NHCs) have emerged as excellent supporting ligands in late transition-metal catalysis (Cazin, 2013[Cazin, C. S. J. (2013). Dalton Trans. 42, 7254.]; de Frémont et al., 2009[Frémont, P. de, Marion, N. & Nolan, S. P. (2009). Coord. Chem. Rev. 253, 862-892.]; Díez-Gonzáles et al., 2009[Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612-3676.]; Rovis & Nolan, 2013[Rovis, T. & Nolan, S. (2013). Synlett, 24, 1188-1189.]; Ruff et al., 2016[Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327-335.]; Zuo et al., 2014[Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791-5801.]). They have shown catalytic activity in the transfer hydrogenation of ketones and imines (Albrecht et al., 2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]; Gnanamgari et al., 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]). The NHC ligands can be tuned sterically and electronically by having different substituents on the nitro­gen atoms (Gusev, 2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]). Many imidazole- and triazole-based NHC rhodium and iridium complexes have been synthesized and structurally characterized (Herrmann et al., 2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]; Wang & Lin, 1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]; Chianese et al., 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]). We continue to synthesize new imidazole- and triazole-based NHC complexes, to study the effect of metals, different substituents on the NHCs, and the ancillary ligands coordinating to the metal in transfer-hydrogenation reactions (Maynard et al., 2023[Maynard, A., Keller, T. M., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230784.]; Nichol et al., 2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. 2009, 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.], 2012[Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158-m159.]; Idrees et al., 2017a[Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.],b[Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.]; Rood et al., 2021[Rood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.]; Rushlow et al., 2021[Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.], 2022[Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2022). IUCrData, 7, x220685.]; Newman et al., 2021[Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.]; Castaldi et al., 2021[Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.]).

The mol­ecular structure of the title complex (3), shown in Fig. 1[link], is characterized as an IrI cationic complex with a tetra­fluorido­borate counter-ion and incorporates 1.5 di­chloro­methane solvent mol­ecules. The distorted square-planar geometry of the coordination sphere around the IrI atom is formed by a bidentate cyclo­octa-1,5-diene (COD) ligand, the carbene C atom of the triazole NHC ligand, and the P atom of the tri­phenyl­phosphane ligand. The distorted square-planar geometry exhibits a P1—Ir1—C1 bond angle of 92.69 (7)°. The carbene C atom bonded to the central IrI atom exhibits a bond angle that significantly differs from the expected sp2 hybrid­ization with an N1—C1—N3 bond angle of 103.5 (2)°, as observed in similar structures. An intra­molecular C—H⋯π(ring) inter­action is observed between a hydrogen atom on the isopropyl wingtip of the NHC (H6A) ligand and a phenyl phosphane ring (C8–C13) with an H⋯centroid distance of 2.67 Å and a C—H⋯centroid angle of 168°.

[Figure 1]
Figure 1
The mol­ecular entities in the crystal structure of the title compound 3. Displacement ellipsoids are drawn at the 50% probability level.

In the extended structure, weak hydrogen-bonding inter­actions between a C—H grouping of the N-heterocyclic carbene and F atoms of the [BF4] counter-ion are observed along with inter­actions between the triphenyl phosphane ligand and the [BF4] counter-ion (Table 1[link]). Fig. 2[link] shows the packing diagram of the title complex.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F1i 0.95 2.21 3.140 (16) 168
C11—H11⋯F2ii 0.95 2.37 3.192 (13) 145
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Crystal packing of 3 shown along the a axis direction. Non-classical hydrogen bonding inter­actions are shown as dotted green lines. C—H⋯π(ring) inter­actions are shown as dashed orange lines between hydrogen atoms and phenyl ring centroids.

The crystal structure of the triazolium salt that was used in the synthesis of the title compound was previously determined (Maynard et al., 2023[Maynard, A., Keller, T. M., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230784.]). Comparison of triazolium salt bond angles and lengths with the bond angles and lengths of the NHC in the title complex are summarized in Tables 2[link] and 3[link], respectively. The most significant changes occur for the carbon atom coordinating to the metal center: the N1—C1—N3 bond angle goes from 107° in the triazolium salt to 103.5 (2)° when coordinating to the iridium atom as an NHC and the C—N bond lengths (C1—N1 and C1—N3) elongate by about 0.03 Å when the NHC coordinates to the metal.

Table 2
Comparison of bond angles (°) for NHC and triazolium salt

NHC data from this work. Triazolium salt data from Maynard et al. (2023[Maynard, A., Keller, T. M., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230784.]).

Angle in NHC NHC Triazolium salt Δ (salt to NHC)
N1—C1—N3 103.5 (2) 107.1 –3.6
N3—C2—N2 111.4 (2) 111.3 +0.1
C1—N3—C2 108.2 (2) 106.3 +1.9
C2—N2—N1 103.5 (2) 103.8 –0.3
N2—N1—C1 113.4 (2) 111.4 +2.0

Table 3
Comparison of bond lengths (Å) for NHC and triazolium salt

NHC data from this work. Triazolium salt data from Maynard et al. (2023[Maynard, A., Keller, T. M., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230784.]).

Bond in NHC NHC Triazolium salt Δ (salt to NHC)
C1—N1 1.340 (2) 1.307 –0.033
C1—N3 1.368 (3) 1.336 –0.032
C2—N3 1.369 (3) 1.361 +0.008
C2—N2 1.304 (4) 1.306 –0.002
N1—N2 1.382 (3) 1.365 +0.017

Synthesis and crystallization

1-Ethyl-4-isopropyl-1,2,4-triazolium bromide (1) was synthesized by a previously published procedure (Maynard et al., 2023[Maynard, A., Keller, T. M., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230784.]). All other compounds used in the syntheses as shown in Fig. 3[link] were obtained from Sigma–Aldrich and Strem and used as received. All subsequent synthesis procedures were performed under an N2 atmosphere using reagent grade solvents, which were used as received without further purification. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz (operating at 162 MHz for 31P) Varian spectrometer and referenced to the residual solvent peak (δ in ppm). The title compound (3) was crystallized by slow diffusion of pentane into a CH2Cl2 solution.

[Figure 3]
Figure 3
Reaction scheme for the synthesis of 3.

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](1-ethyl-4-isopropyl-1,2,4-triazol-5-yl­idene) chlorido­iridium (2). 1-Ethyl-4-isopropyl-1,2,4 triazolium bromide (1) (0.065 g, 0.300 mmol), Ag2O (0.035 g, 0.149 mmol), and 10 ml of CH2Cl2 were added to an oven-dried flask and stirred under an N2 atmosphere in the dark for 90 min. The mixture was filtered through Celite into [Ir(cod)Cl]2 (0.100 g, 0.149 mmol) and stirred under dark for 90 min. The resulting mixture was filtered through Celite and the solvent was removed under reduced pressure. The orange solid product was washed with pentane and allowed to dry overnight under vacuum. Yield: 0.121 g (85.2%). 1H NMR: CDCl3, δ (ppm) 7.86 (s, 1 H, N—C3H—N), 4.69 [m, 1 H, CH(CH3)2], 4.33, 4.29 (m, 4 H, CH of COD) 4.12 (q, 2 H, CH2—N), 2.98, 2.21, 2.17, 1.79 (m, 8 H, CH2 of COD),1.02 [m, 6 H, CH(CH3)2], 0.874 (t, 3 H, CH2CH3). 13C NMR: δ 182.94 (Ir—C), 141.60 (N—CH—N), 86.40, 86.32 (CH of COD), 51.70 [CH(CH3)2], 39.60 (N—CH3), 33.42, 33.36, 29.62, 29.32 (CH2 of COD), 24.17, 23.31 [CH(CH3)2], 14.04 (CH2CH3).

[(1,2,5,6-η)-Cyclo­octa-1,5-diene] (1-ethyl-4-isopropyl-1,2,4-triazol-5-yl­idene)(tri­phenyl­phosphane)iridium(I) tetra­fluor­ido­borate (3). Tri­phenyl­phosphane (0.052 g, 0.198 mmol) and AgBF4 (0.038 g, 0.198 mmol) were added to an oven-dried flask containing complex 2 (0.094 g, 0.198 mmol) in 10 ml of CH2Cl2, and stirred under an N2 atmosphere in the dark for 90 min. The mixture was filtered through Celite, and the solvent was removed under reduced pressure. The bright orange–red solid was washed with pentane and dried under vacuum. Yield: 0.135 g (86.5%). 1H NMR: CDCl3, δ (ppm) 8.19 (s, 1 H, N—C3H—N), 7.47–7.24 (m, 15H, Harom), 5.30 [m, 1 H, CH(CH3)2], 4.45, 3.80 (m, 4 H, CH of COD), 4.35 (m, 2 H, N—CH2CH3), 2.61–1.61 (m,(CH2 of COD), 1.24 [d, 6 H, CH(CH3)2], 0.79 (t, 3H, N—CH2CH3). 13C NMR: δ 176.77 (Ir—C), 141.19 (N—CH—N), 133.74–128.42 (Carom), 87.18, 87.06, 85.47, 85.37 (CH of COD), 53.43 [CH(CH3)2], 47.71 (N—CH2), 32.29, 31.44, 29.89, 29.05 (CH2 of COD), 24.50, 22.09 [CH(CH3)2], 13.84 (N—CH2CH3). 31P: δ 17.78.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 4[link].

Table 4
Experimental details

Crystal data
Chemical formula [Ir(C8H12)(C7H13N3)(C18H15P)]BF4·1.5CH2Cl2
Mr 916.05
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.8268 (2), 12.5379 (2), 14.0896 (2)
α, β, γ (°) 87.421 (1), 86.988 (1), 77.089 (2)
V3) 1860.58 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.90
Crystal size (mm) 0.23 × 0.15 × 0.05
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.743, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 56836, 9245, 8573
Rint 0.047
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.059, 1.05
No. of reflections 9245
No. of parameters 535
No. of restraints 258
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.04, −1.33
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO 1.171.42.79a (Rigaku OD, 2022); cell refinement: CrysAlis PRO 1.171.42.79a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.42.79a (Rigaku OD, 2022); program(s) used to solve structure: olex2.solve 1.3 (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

[(1,2,5,6-η)-Cycloocta-1,5-diene](1-ethyl-4-isopropyl-1,2,4-triazol-5-ylidene)(triphenylphosphane)iridium(I) tetrafluoridoborate dichloromethane sesquisolvate top
Crystal data top
[Ir(C8H12)(C7H13N3)(C18H15P)]BF4·1.5CH2Cl2Z = 2
Mr = 916.05F(000) = 910
Triclinic, P1Dx = 1.635 Mg m3
a = 10.8268 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5379 (2) ÅCell parameters from 39800 reflections
c = 14.0896 (2) Åθ = 2.1–28.3°
α = 87.421 (1)°µ = 3.90 mm1
β = 86.988 (1)°T = 100 K
γ = 77.089 (2)°Plate, red
V = 1860.58 (5) Å30.23 × 0.15 × 0.05 mm
Data collection top
Rigaku XtaLAB Synergy-S
diffractometer
8573 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.047
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 1414
Tmin = 0.743, Tmax = 1.000k = 1616
56836 measured reflectionsl = 1818
9245 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0306P)2 + 1.9588P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.005
9245 reflectionsΔρmax = 1.04 e Å3
535 parametersΔρmin = 1.32 e Å3
258 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were placed in claculated locations (C—H = 0.95–0.99 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.42879 (2)0.31295 (2)0.83228 (2)0.01084 (4)
P10.46138 (6)0.24673 (5)0.67973 (5)0.01209 (13)
N10.4873 (2)0.53500 (18)0.77520 (16)0.0137 (4)
N20.5831 (2)0.59119 (18)0.75973 (17)0.0172 (5)
N30.6578 (2)0.41849 (18)0.80404 (15)0.0135 (4)
C10.5294 (2)0.4294 (2)0.80093 (17)0.0122 (5)
C20.6853 (3)0.5177 (2)0.7791 (2)0.0170 (5)
H20.7683300.5312660.7762280.020*
C30.3587 (3)0.5900 (2)0.7484 (2)0.0174 (5)
H3A0.3002730.5409680.7652450.021*
H3B0.3587180.6034850.6786230.021*
C40.3101 (3)0.6974 (2)0.7964 (2)0.0214 (6)
H4A0.2276150.7334490.7718040.032*
H4B0.3703570.7446250.7835390.032*
H4C0.3007080.6837910.8652000.032*
C50.7507 (2)0.3164 (2)0.8281 (2)0.0160 (5)
H50.7063140.2543830.8294720.019*
C60.8591 (3)0.2942 (3)0.7526 (2)0.0233 (6)
H6A0.8241140.2968980.6895850.035*
H6B0.9131420.2215570.7650080.035*
H6C0.9095100.3498540.7548930.035*
C70.8005 (3)0.3224 (3)0.9268 (2)0.0300 (7)
H7A0.8456580.3820120.9267090.045*
H7B0.8585430.2529410.9432290.045*
H7C0.7291540.3362290.9737360.045*
C80.5887 (3)0.2803 (2)0.60086 (18)0.0151 (5)
C90.5887 (3)0.3908 (2)0.58311 (19)0.0170 (5)
H90.5246970.4452080.6127140.020*
C100.6805 (3)0.4223 (3)0.5230 (2)0.0213 (6)
H100.6800840.4977540.5124650.026*
C110.7729 (3)0.3438 (3)0.4781 (2)0.0260 (7)
H110.8366100.3650900.4374820.031*
C120.7720 (3)0.2347 (3)0.4928 (2)0.0277 (7)
H120.8337940.1809550.4605320.033*
C130.6813 (3)0.2023 (3)0.5544 (2)0.0223 (6)
H130.6825730.1266640.5648480.027*
C140.4928 (3)0.0979 (2)0.68138 (18)0.0151 (5)
C150.6038 (3)0.0395 (2)0.7234 (2)0.0200 (6)
H150.6626080.0780590.7449600.024*
C160.6284 (3)0.0734 (2)0.7338 (2)0.0234 (6)
H160.7039160.1124120.7618650.028*
C170.5414 (3)0.1292 (2)0.7027 (2)0.0238 (6)
H170.5580090.2068010.7089410.029*
C180.4307 (3)0.0723 (2)0.6627 (2)0.0241 (6)
H180.3710630.1109760.6427700.029*
C190.4061 (3)0.0411 (2)0.6514 (2)0.0198 (6)
H190.3303830.0796330.6233360.024*
C200.3257 (2)0.2926 (2)0.60536 (18)0.0133 (5)
C210.3355 (3)0.2633 (2)0.5099 (2)0.0193 (6)
H210.4128470.2206800.4843840.023*
C220.2324 (3)0.2965 (3)0.4526 (2)0.0241 (6)
H220.2394870.2768440.3879010.029*
C230.1186 (3)0.3586 (3)0.4898 (2)0.0240 (6)
H230.0478040.3802700.4507260.029*
C240.1087 (3)0.3888 (2)0.5836 (2)0.0234 (6)
H240.0311450.4318200.6085140.028*
C250.2116 (3)0.3567 (2)0.6418 (2)0.0177 (5)
H250.2043650.3781700.7060680.021*
C260.3710 (5)0.1670 (7)0.8993 (6)0.0169 (11)0.65
H260.4088610.0968750.8673030.020*0.65
C26*0.4032 (12)0.1559 (14)0.8990 (13)0.0170 (13)0.35
H26*0.4406620.0907340.8601850.020*0.35
C270.2664 (6)0.2317 (5)0.8550 (4)0.0151 (10)0.65
H270.2422930.1999300.7967220.018*0.65
C27*0.2892 (14)0.2125 (12)0.8706 (10)0.0182 (14)0.35
H27*0.2602220.1809200.8141090.022*0.35
C280.1581 (5)0.3082 (5)0.9061 (4)0.0213 (9)0.65
H28A0.1031750.2640360.9398700.026*0.65
H28B0.1066470.3560490.8581950.026*0.65
C28*0.1784 (9)0.2735 (8)0.9343 (7)0.0209 (12)0.35
H28C0.0974640.2690890.9067010.025*0.35
H28D0.1816110.2363520.9978800.025*0.35
C290.1991 (5)0.3808 (5)0.9783 (4)0.0193 (9)0.65
H29A0.1347180.4505040.9821350.023*0.65
H29B0.2013500.3435811.0418540.023*0.65
C29*0.1799 (10)0.3920 (9)0.9454 (7)0.0207 (13)0.35
H29C0.1295960.4366170.8951400.025*0.35
H29D0.1386510.4157651.0076310.025*0.35
C300.3295 (8)0.4067 (9)0.9534 (5)0.0151 (11)0.65
H300.3273730.4868650.9472600.018*0.65
C30*0.3094 (17)0.4132 (19)0.9397 (12)0.0175 (14)0.35
H30*0.3093740.4927440.9308320.021*0.35
C310.4450 (6)0.3434 (8)0.9842 (7)0.0163 (11)0.65
H310.5089460.3875360.9950720.020*0.65
C31*0.4167 (14)0.3534 (16)0.9850 (14)0.0171 (14)0.35
H31*0.4772920.3981211.0025060.021*0.35
C320.4657 (5)0.2386 (4)1.0399 (3)0.0197 (9)0.65
H32A0.4453030.2538781.1079620.024*0.65
H32B0.5562940.2012401.0333230.024*0.65
C32*0.4137 (10)0.2520 (9)1.0527 (7)0.0194 (12)0.35
H32C0.4758300.2484331.1025660.023*0.35
H32D0.3284570.2611411.0845440.023*0.35
C330.3834 (5)0.1614 (4)1.0075 (3)0.0194 (8)0.65
H33A0.4219860.0852191.0280670.023*0.65
H33B0.2978340.1817031.0388650.023*0.65
C33*0.4445 (10)0.1451 (8)1.0004 (6)0.0191 (12)0.35
H33C0.5371880.1152161.0002280.023*0.35
H33D0.4028440.0917441.0357020.023*0.35
Cl10.86248 (11)0.00478 (10)0.89852 (9)0.0580 (3)
Cl21.12218 (14)0.00307 (12)0.82944 (14)0.0864 (5)
C341.0052 (5)0.0780 (4)0.8554 (5)0.0756 (17)
H34A1.0362040.1365250.9035300.091*
H34B0.9894580.1132550.7971460.091*
Cl30.9176 (2)0.0652 (2)0.43518 (18)0.0604 (6)0.5
Cl40.9699 (3)0.0021 (2)0.6212 (2)0.0676 (7)0.5
C350.9003 (9)0.0864 (8)0.5585 (7)0.059 (2)0.5
H35A0.9404250.1632320.5758320.071*0.5
H35B0.8089400.0740990.5772680.071*0.5
F10.0293 (15)0.5305 (13)0.7887 (8)0.037 (2)0.4
F1*0.0197 (11)0.5456 (10)0.7573 (6)0.0390 (17)0.6
F20.0497 (11)0.6626 (8)0.7107 (9)0.043 (2)0.4
F2*0.0260 (7)0.7081 (5)0.7056 (5)0.0344 (13)0.6
F30.15067 (19)0.70529 (16)0.79144 (15)0.0359 (5)
F40.0361 (2)0.65703 (19)0.86652 (14)0.0397 (5)
B10.0248 (3)0.6476 (3)0.7842 (3)0.0265 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01229 (5)0.01067 (5)0.01045 (5)0.00460 (4)0.00090 (3)0.00118 (3)
P10.0135 (3)0.0110 (3)0.0118 (3)0.0027 (2)0.0000 (2)0.0013 (2)
N10.0145 (11)0.0123 (10)0.0155 (11)0.0051 (8)0.0009 (8)0.0005 (8)
N20.0169 (11)0.0133 (11)0.0232 (12)0.0076 (9)0.0003 (9)0.0002 (9)
N30.0131 (10)0.0129 (11)0.0153 (11)0.0046 (8)0.0007 (8)0.0005 (8)
C10.0134 (12)0.0136 (12)0.0095 (11)0.0022 (10)0.0013 (9)0.0034 (9)
C20.0154 (13)0.0143 (13)0.0228 (14)0.0067 (10)0.0012 (10)0.0015 (10)
C30.0171 (13)0.0155 (13)0.0194 (13)0.0025 (10)0.0051 (10)0.0007 (10)
C40.0170 (14)0.0189 (14)0.0279 (15)0.0025 (11)0.0019 (11)0.0008 (11)
C50.0126 (12)0.0122 (12)0.0224 (14)0.0010 (10)0.0021 (10)0.0018 (10)
C60.0181 (14)0.0254 (15)0.0229 (15)0.0025 (12)0.0003 (11)0.0032 (12)
C70.0268 (16)0.0378 (19)0.0199 (15)0.0053 (14)0.0036 (12)0.0022 (13)
C80.0156 (13)0.0199 (13)0.0105 (12)0.0052 (10)0.0011 (9)0.0017 (10)
C90.0179 (13)0.0200 (14)0.0128 (12)0.0037 (11)0.0012 (10)0.0002 (10)
C100.0226 (14)0.0284 (16)0.0153 (13)0.0116 (12)0.0038 (11)0.0063 (11)
C110.0175 (14)0.0454 (19)0.0166 (14)0.0110 (13)0.0009 (11)0.0040 (13)
C120.0186 (15)0.0421 (19)0.0193 (15)0.0006 (13)0.0043 (11)0.0056 (13)
C130.0216 (14)0.0238 (15)0.0195 (14)0.0001 (12)0.0012 (11)0.0058 (11)
C140.0199 (13)0.0121 (12)0.0131 (12)0.0027 (10)0.0005 (10)0.0019 (9)
C150.0229 (14)0.0160 (14)0.0207 (14)0.0032 (11)0.0037 (11)0.0002 (11)
C160.0272 (16)0.0197 (14)0.0197 (14)0.0020 (12)0.0004 (12)0.0019 (11)
C170.0371 (17)0.0118 (13)0.0210 (14)0.0037 (12)0.0064 (12)0.0016 (11)
C180.0362 (17)0.0168 (14)0.0221 (15)0.0119 (13)0.0015 (12)0.0024 (11)
C190.0256 (15)0.0163 (13)0.0173 (13)0.0038 (11)0.0027 (11)0.0004 (10)
C200.0149 (12)0.0110 (12)0.0145 (12)0.0041 (10)0.0017 (9)0.0016 (9)
C210.0167 (13)0.0224 (14)0.0170 (13)0.0002 (11)0.0013 (10)0.0018 (11)
C220.0240 (15)0.0318 (17)0.0158 (14)0.0036 (13)0.0043 (11)0.0020 (12)
C230.0170 (14)0.0296 (16)0.0256 (15)0.0053 (12)0.0076 (11)0.0064 (12)
C240.0151 (13)0.0236 (15)0.0299 (16)0.0020 (11)0.0020 (11)0.0025 (12)
C250.0172 (13)0.0156 (13)0.0204 (13)0.0050 (10)0.0021 (10)0.0010 (10)
C260.020 (3)0.019 (2)0.0149 (16)0.011 (2)0.001 (2)0.0004 (15)
C26*0.019 (3)0.020 (2)0.015 (2)0.010 (3)0.003 (3)0.003 (2)
C270.015 (2)0.021 (2)0.013 (2)0.0122 (18)0.0021 (16)0.0018 (16)
C27*0.019 (3)0.022 (3)0.015 (2)0.008 (2)0.001 (2)0.001 (2)
C280.0175 (18)0.030 (2)0.0171 (19)0.0084 (17)0.0009 (16)0.0064 (16)
C28*0.018 (2)0.027 (3)0.018 (3)0.006 (2)0.000 (2)0.003 (2)
C290.0170 (19)0.0257 (19)0.014 (2)0.0031 (16)0.0018 (17)0.0017 (18)
C29*0.018 (2)0.027 (2)0.015 (3)0.002 (2)0.000 (2)0.000 (2)
C300.015 (3)0.0189 (19)0.012 (2)0.0059 (19)0.0013 (17)0.0042 (18)
C30*0.018 (3)0.022 (2)0.012 (3)0.003 (2)0.001 (2)0.005 (2)
C310.017 (3)0.022 (2)0.0106 (15)0.005 (2)0.002 (2)0.0024 (15)
C31*0.019 (3)0.021 (2)0.012 (2)0.006 (3)0.001 (3)0.003 (2)
C320.022 (2)0.0242 (18)0.0134 (16)0.0053 (19)0.0022 (17)0.0012 (14)
C32*0.020 (3)0.023 (2)0.014 (2)0.004 (3)0.002 (2)0.001 (2)
C330.022 (2)0.0211 (18)0.0158 (16)0.0069 (18)0.0009 (17)0.0033 (14)
C33*0.021 (3)0.022 (2)0.014 (2)0.006 (2)0.003 (2)0.0038 (19)
Cl10.0514 (6)0.0527 (6)0.0722 (8)0.0151 (5)0.0070 (5)0.0036 (6)
Cl20.0627 (8)0.0624 (8)0.1313 (14)0.0159 (7)0.0148 (9)0.0144 (8)
C340.064 (3)0.031 (2)0.130 (5)0.011 (2)0.010 (3)0.007 (3)
Cl30.0549 (13)0.0673 (15)0.0593 (14)0.0123 (11)0.0103 (11)0.0030 (11)
Cl40.0732 (17)0.0561 (14)0.0708 (16)0.0035 (12)0.0137 (13)0.0154 (12)
C350.047 (5)0.060 (6)0.072 (7)0.013 (4)0.001 (5)0.015 (5)
F10.023 (4)0.027 (4)0.062 (7)0.005 (3)0.007 (5)0.017 (5)
F1*0.035 (3)0.033 (3)0.047 (4)0.002 (2)0.003 (3)0.013 (3)
F20.032 (4)0.076 (6)0.027 (3)0.023 (5)0.003 (3)0.005 (5)
F2*0.032 (3)0.058 (4)0.0184 (18)0.023 (3)0.0040 (19)0.003 (3)
F30.0325 (11)0.0314 (11)0.0401 (11)0.0016 (8)0.0078 (9)0.0008 (9)
F40.0430 (12)0.0611 (14)0.0251 (10)0.0329 (11)0.0002 (9)0.0033 (9)
B10.0208 (17)0.039 (2)0.0243 (17)0.0156 (15)0.0060 (13)0.0119 (15)
Geometric parameters (Å, º) top
Ir1—P12.3203 (6)C22—H220.9500
Ir1—C12.029 (3)C22—C231.392 (4)
Ir1—C262.219 (9)C23—H230.9500
Ir1—C26*2.210 (18)C23—C241.384 (4)
Ir1—C272.223 (7)C24—H240.9500
Ir1—C27*2.206 (16)C24—C251.394 (4)
Ir1—C302.208 (9)C25—H250.9500
Ir1—C30*2.186 (19)C26—H261.0000
Ir1—C312.213 (10)C26—C271.396 (8)
Ir1—C31*2.22 (2)C26—C331.534 (9)
P1—C81.836 (3)C26*—H26*1.0000
P1—C141.820 (3)C26*—C27*1.350 (15)
P1—C201.821 (3)C26*—C33*1.511 (18)
N1—N21.382 (3)C27—H271.0000
N1—C11.340 (3)C27—C281.511 (8)
N1—C31.470 (3)C27*—H27*1.0000
N2—C21.304 (4)C27*—C28*1.538 (16)
N3—C11.368 (3)C28—H28A0.9900
N3—C21.369 (3)C28—H28B0.9900
N3—C51.479 (3)C28—C291.541 (8)
C2—H20.9500C28*—H28C0.9900
C3—H3A0.9900C28*—H28D0.9900
C3—H3B0.9900C28*—C29*1.505 (16)
C3—C41.508 (4)C29—H29A0.9900
C4—H4A0.9800C29—H29B0.9900
C4—H4B0.9800C29—C301.537 (10)
C4—H4C0.9800C29*—H29C0.9900
C5—H51.0000C29*—H29D0.9900
C5—C61.528 (4)C29*—C30*1.48 (2)
C5—C71.528 (4)C30—H301.0000
C6—H6A0.9800C30—C311.402 (8)
C6—H6B0.9800C30*—H30*1.0000
C6—H6C0.9800C30*—C31*1.402 (18)
C7—H7A0.9800C31—H311.0000
C7—H7B0.9800C31—C321.479 (10)
C7—H7C0.9800C31*—H31*1.0000
C8—C91.397 (4)C31*—C32*1.56 (2)
C8—C131.393 (4)C32—H32A0.9900
C9—H90.9500C32—H32B0.9900
C9—C101.385 (4)C32—C331.551 (7)
C10—H100.9500C32*—H32C0.9900
C10—C111.385 (4)C32*—H32D0.9900
C11—H110.9500C32*—C33*1.522 (14)
C11—C121.376 (5)C33—H33A0.9900
C12—H120.9500C33—H33B0.9900
C12—C131.393 (4)C33*—H33C0.9900
C13—H130.9500C33*—H33D0.9900
C14—C151.404 (4)Cl1—C341.753 (5)
C14—C191.390 (4)Cl2—C341.753 (5)
C15—H150.9500C34—H34A0.9900
C15—C161.383 (4)C34—H34B0.9900
C16—H160.9500Cl3—C351.752 (11)
C16—C171.391 (4)Cl4—C351.764 (9)
C17—H170.9500C35—H35A0.9900
C17—C181.384 (5)C35—H35B0.9900
C18—H180.9500F1—B11.478 (16)
C18—C191.390 (4)F1*—B11.339 (13)
C19—H190.9500F2—B11.311 (13)
C20—C211.402 (4)F2*—B11.466 (8)
C20—C251.401 (4)F3—B11.394 (4)
C21—H210.9500F4—B11.387 (4)
C21—C221.388 (4)
C1—Ir1—P192.69 (7)C23—C24—H24119.7
C1—Ir1—C26160.8 (2)C23—C24—C25120.5 (3)
C1—Ir1—C26*153.1 (4)C25—C24—H24119.7
C1—Ir1—C27161.03 (17)C20—C25—H25120.1
C1—Ir1—C27*169.3 (4)C24—C25—C20119.8 (3)
C1—Ir1—C3090.8 (3)C24—C25—H25120.1
C1—Ir1—C30*92.2 (6)Ir1—C26—H26114.4
C1—Ir1—C3187.4 (3)C27—C26—Ir171.8 (4)
C1—Ir1—C31*90.2 (5)C27—C26—H26114.4
C26—Ir1—P195.9 (2)C27—C26—C33122.7 (6)
C26—Ir1—C2736.63 (19)C33—C26—Ir1111.9 (5)
C26*—Ir1—P194.3 (5)C33—C26—H26114.4
C26*—Ir1—C31*79.7 (7)Ir1—C26*—H26*114.0
C27—Ir1—P189.18 (18)C27*—C26*—Ir172.0 (9)
C27*—Ir1—P192.1 (4)C27*—C26*—H26*114.0
C27*—Ir1—C26*35.6 (4)C27*—C26*—C33*124.8 (12)
C27*—Ir1—C31*86.4 (6)C33*—C26*—Ir1110.5 (10)
C30—Ir1—P1158.19 (17)C33*—C26*—H26*114.0
C30—Ir1—C2687.6 (3)Ir1—C27—H27114.5
C30—Ir1—C2780.8 (3)C26—C27—Ir171.5 (4)
C30—Ir1—C3137.0 (2)C26—C27—H27114.5
C30*—Ir1—P1150.5 (4)C26—C27—C28124.5 (6)
C30*—Ir1—C26*94.4 (7)C28—C27—Ir1109.1 (4)
C30*—Ir1—C27*79.0 (7)C28—C27—H27114.5
C30*—Ir1—C31*37.1 (4)Ir1—C27*—H27*112.8
C31—Ir1—P1164.72 (18)C26*—C27*—Ir172.4 (10)
C31—Ir1—C2679.8 (4)C26*—C27*—H27*112.8
C31—Ir1—C2795.7 (3)C26*—C27*—C28*126.9 (12)
C31*—Ir1—P1171.5 (5)C28*—C27*—Ir1112.1 (8)
C8—P1—Ir1119.96 (9)C28*—C27*—H27*112.8
C14—P1—Ir1111.55 (9)C27—C28—H28A108.6
C14—P1—C8104.04 (12)C27—C28—H28B108.6
C14—P1—C20105.26 (12)C27—C28—C29114.6 (4)
C20—P1—Ir1113.78 (9)H28A—C28—H28B107.6
C20—P1—C8100.68 (12)C29—C28—H28A108.6
N2—N1—C3118.2 (2)C29—C28—H28B108.6
C1—N1—N2113.4 (2)C27*—C28*—H28C108.9
C1—N1—C3127.7 (2)C27*—C28*—H28D108.9
C2—N2—N1103.5 (2)H28C—C28*—H28D107.7
C1—N3—C2108.2 (2)C29*—C28*—C27*113.3 (9)
C1—N3—C5125.7 (2)C29*—C28*—H28C108.9
C2—N3—C5126.0 (2)C29*—C28*—H28D108.9
N1—C1—Ir1128.93 (19)C28—C29—H29A108.8
N1—C1—N3103.5 (2)C28—C29—H29B108.8
N3—C1—Ir1127.53 (19)H29A—C29—H29B107.7
N2—C2—N3111.4 (2)C30—C29—C28113.7 (5)
N2—C2—H2124.3C30—C29—H29A108.8
N3—C2—H2124.3C30—C29—H29B108.8
N1—C3—H3A109.0C28*—C29*—H29C108.9
N1—C3—H3B109.0C28*—C29*—H29D108.9
N1—C3—C4113.0 (2)H29C—C29*—H29D107.7
H3A—C3—H3B107.8C30*—C29*—C28*113.2 (11)
C4—C3—H3A109.0C30*—C29*—H29C108.9
C4—C3—H3B109.0C30*—C29*—H29D108.9
C3—C4—H4A109.5Ir1—C30—H30113.7
C3—C4—H4B109.5C29—C30—Ir1112.3 (5)
C3—C4—H4C109.5C29—C30—H30113.7
H4A—C4—H4B109.5C31—C30—Ir171.7 (6)
H4A—C4—H4C109.5C31—C30—C29124.6 (7)
H4B—C4—H4C109.5C31—C30—H30113.7
N3—C5—H5108.2Ir1—C30*—H30*112.8
N3—C5—C6110.7 (2)C29*—C30*—Ir1110.9 (11)
N3—C5—C7110.3 (2)C29*—C30*—H30*112.8
C6—C5—H5108.2C31*—C30*—Ir172.9 (11)
C6—C5—C7111.2 (2)C31*—C30*—C29*127.5 (15)
C7—C5—H5108.2C31*—C30*—H30*112.8
C5—C6—H6A109.5Ir1—C31—H31113.4
C5—C6—H6B109.5C30—C31—Ir171.3 (5)
C5—C6—H6C109.5C30—C31—H31113.4
H6A—C6—H6B109.5C30—C31—C32127.4 (7)
H6A—C6—H6C109.5C32—C31—Ir1109.8 (5)
H6B—C6—H6C109.5C32—C31—H31113.4
C5—C7—H7A109.5Ir1—C31*—H31*114.5
C5—C7—H7B109.5C30*—C31*—Ir170.0 (11)
C5—C7—H7C109.5C30*—C31*—H31*114.5
H7A—C7—H7B109.5C30*—C31*—C32*122.9 (13)
H7A—C7—H7C109.5C32*—C31*—Ir1112.7 (10)
H7B—C7—H7C109.5C32*—C31*—H31*114.5
C9—C8—P1117.8 (2)C31—C32—H32A109.1
C13—C8—P1123.7 (2)C31—C32—H32B109.1
C13—C8—C9118.4 (3)C31—C32—C33112.5 (5)
C8—C9—H9119.5H32A—C32—H32B107.8
C10—C9—C8121.0 (3)C33—C32—H32A109.1
C10—C9—H9119.5C33—C32—H32B109.1
C9—C10—H10120.0C31*—C32*—H32C109.1
C9—C10—C11120.0 (3)C31*—C32*—H32D109.1
C11—C10—H10120.0H32C—C32*—H32D107.9
C10—C11—H11120.2C33*—C32*—C31*112.4 (9)
C12—C11—C10119.7 (3)C33*—C32*—H32C109.1
C12—C11—H11120.2C33*—C32*—H32D109.1
C11—C12—H12119.7C26—C33—C32112.3 (4)
C11—C12—C13120.7 (3)C26—C33—H33A109.2
C13—C12—H12119.7C26—C33—H33B109.2
C8—C13—C12120.3 (3)C32—C33—H33A109.2
C8—C13—H13119.9C32—C33—H33B109.2
C12—C13—H13119.9H33A—C33—H33B107.9
C15—C14—P1117.8 (2)C26*—C33*—C32*114.2 (9)
C19—C14—P1122.6 (2)C26*—C33*—H33C108.7
C19—C14—C15119.3 (3)C26*—C33*—H33D108.7
C14—C15—H15119.6C32*—C33*—H33C108.7
C16—C15—C14120.8 (3)C32*—C33*—H33D108.7
C16—C15—H15119.6H33C—C33*—H33D107.6
C15—C16—H16120.3Cl1—C34—H34A109.2
C15—C16—C17119.3 (3)Cl1—C34—H34B109.2
C17—C16—H16120.3Cl2—C34—Cl1112.1 (3)
C16—C17—H17119.8Cl2—C34—H34A109.2
C18—C17—C16120.3 (3)Cl2—C34—H34B109.2
C18—C17—H17119.8H34A—C34—H34B107.9
C17—C18—H18119.7Cl3—C35—Cl4111.7 (6)
C17—C18—C19120.5 (3)Cl3—C35—H35A109.3
C19—C18—H18119.7Cl3—C35—H35B109.3
C14—C19—H19120.1Cl4—C35—H35A109.3
C18—C19—C14119.8 (3)Cl4—C35—H35B109.3
C18—C19—H19120.1H35A—C35—H35B107.9
C21—C20—P1119.5 (2)F1*—B1—F2*108.8 (5)
C25—C20—P1121.1 (2)F1*—B1—F3109.8 (6)
C25—C20—C21119.4 (2)F1*—B1—F4116.2 (5)
C20—C21—H21119.9F2—B1—F1107.2 (7)
C22—C21—C20120.2 (3)F2—B1—F3121.4 (5)
C22—C21—H21119.9F2—B1—F4108.6 (6)
C21—C22—H22119.9F3—B1—F1105.8 (7)
C21—C22—C23120.1 (3)F3—B1—F2*101.5 (4)
C23—C22—H22119.9F4—B1—F1102.0 (6)
C22—C23—H23120.0F4—B1—F2*109.4 (4)
C24—C23—C22120.0 (3)F4—B1—F3110.1 (3)
C24—C23—H23120.0
Ir1—P1—C8—C956.0 (2)C9—C10—C11—C120.8 (4)
Ir1—P1—C8—C13127.2 (2)C10—C11—C12—C131.9 (5)
Ir1—P1—C14—C1564.4 (2)C11—C12—C13—C81.1 (5)
Ir1—P1—C14—C19109.2 (2)C13—C8—C9—C101.9 (4)
Ir1—P1—C20—C21176.48 (19)C14—P1—C8—C9178.4 (2)
Ir1—P1—C20—C253.5 (2)C14—P1—C8—C131.6 (3)
Ir1—C26—C27—C28100.9 (6)C14—P1—C20—C2161.1 (2)
Ir1—C26—C33—C3215.5 (5)C14—P1—C20—C25119.0 (2)
Ir1—C26*—C27*—C28*104.8 (14)C14—C15—C16—C170.5 (4)
Ir1—C26*—C33*—C32*36.6 (11)C15—C14—C19—C180.5 (4)
Ir1—C27—C28—C2934.4 (5)C15—C16—C17—C180.7 (4)
Ir1—C27*—C28*—C29*7.8 (11)C16—C17—C18—C191.2 (5)
Ir1—C30—C31—C32101.0 (9)C17—C18—C19—C140.6 (4)
Ir1—C30*—C31*—C32*104.7 (15)C19—C14—C15—C161.0 (4)
Ir1—C31—C32—C3340.6 (5)C20—P1—C8—C969.6 (2)
Ir1—C31*—C32*—C33*10.7 (12)C20—P1—C8—C13107.2 (2)
P1—C8—C9—C10178.8 (2)C20—P1—C14—C15171.7 (2)
P1—C8—C13—C12177.5 (2)C20—P1—C14—C1914.7 (3)
P1—C14—C15—C16174.9 (2)C20—C21—C22—C230.3 (5)
P1—C14—C19—C18174.0 (2)C21—C20—C25—C241.2 (4)
P1—C20—C21—C22179.2 (2)C21—C22—C23—C241.0 (5)
P1—C20—C25—C24178.8 (2)C22—C23—C24—C250.6 (5)
N1—N2—C2—N31.1 (3)C23—C24—C25—C200.5 (4)
N2—N1—C1—Ir1179.62 (18)C25—C20—C21—C220.8 (4)
N2—N1—C1—N31.4 (3)C26—C27—C28—C2945.9 (8)
N2—N1—C3—C457.1 (3)C26*—C27*—C28*—C29*91.9 (16)
C1—N1—N2—C21.6 (3)C27—C26—C33—C3297.4 (7)
C1—N1—C3—C4133.5 (3)C27—C28—C29—C3028.6 (7)
C1—N3—C2—N20.3 (3)C27*—C26*—C33*—C32*45.2 (18)
C1—N3—C5—C6129.0 (3)C27*—C28*—C29*—C30*30.3 (13)
C1—N3—C5—C7107.5 (3)C28—C29—C30—Ir17.8 (6)
C2—N3—C1—Ir1178.91 (18)C28—C29—C30—C3190.5 (9)
C2—N3—C1—N10.6 (3)C28*—C29*—C30*—Ir138.1 (13)
C2—N3—C5—C649.5 (3)C28*—C29*—C30*—C31*46 (2)
C2—N3—C5—C774.0 (3)C29—C30—C31—Ir1105.0 (8)
C3—N1—N2—C2172.5 (2)C29—C30—C31—C324.0 (13)
C3—N1—C1—Ir110.5 (4)C29*—C30*—C31*—Ir1103.5 (18)
C3—N1—C1—N3171.2 (2)C29*—C30*—C31*—C32*1 (3)
C5—N3—C1—Ir12.4 (4)C30—C31—C32—C3340.5 (10)
C5—N3—C1—N1179.4 (2)C30*—C31*—C32*—C33*90.9 (17)
C5—N3—C2—N2178.4 (2)C31—C32—C33—C2637.6 (7)
C8—P1—C14—C1566.3 (2)C31*—C32*—C33*—C26*31.3 (13)
C8—P1—C14—C19120.1 (2)C33—C26—C27—Ir1104.8 (7)
C8—P1—C20—C2146.8 (2)C33—C26—C27—C283.9 (10)
C8—P1—C20—C25133.1 (2)C33*—C26*—C27*—Ir1102.8 (14)
C8—C9—C10—C111.1 (4)C33*—C26*—C27*—C28*2 (2)
C9—C8—C13—C120.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F1i0.952.213.140 (16)168
C11—H11···F2ii0.952.373.192 (13)145
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
Comparison of bond angles (°) for NHC and triazolium salt top
NHC data from this work. Triazolium salt data from Maynard et al. (2023).
Angle in NHCNHCTriazolium saltΔ (salt to NHC)
N1—C1—N3103.5 (2)107.1–3.6
N3—C2—N2111.4 (2)111.3+0.1
C1—N3—C2108.2 (2)106.3+1.9
C2—N2—N1103.5 (2)103.8–0.3
N2—N1—C1113.4 (2)111.4+2.0
Comparison of bond lengths (Å) for NHC and triazolium salt top
NHC data from this work. Triazolium salt data from Maynard et al. (2023).
Bond in NHCNHCTriazolium saltΔ (salt to NHC)
C1—N11.340 (2)1.307–0.033
C1—N31.368 (3)1.336–0.032
C2—N31.369 (3)1.361+0.008
C2—N21.304 (4)1.306–0.002
N1—N21.382 (3)1.365+0.017
 

Acknowledgements

AM was supported in this work by the Millersville University Murley Summer Undergraduate Research Fellowship.

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCastaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.  Google Scholar
First citationCazin, C. S. J. (2013). Dalton Trans. 42, 7254.  Web of Science CrossRef Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrémont, P. de, Marion, N. & Nolan, S. P. (2009). Coord. Chem. Rev. 253, 862–892.  Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationIdrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.  Google Scholar
First citationIdrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.  Google Scholar
First citationMaynard, A., Keller, T. M., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230784.  Google Scholar
First citationNewman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.  Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. 2009, 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.  Google Scholar
First citationRovis, T. & Nolan, S. (2013). Synlett, 24, 1188–1189.  Web of Science CrossRef CAS Google Scholar
First citationRuff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationRushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.  Google Scholar
First citationRushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2022). IUCrData, 7, x220685.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146