metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[(μ3-adamantane-1,3-di­acetato)[μ-N-(pyridin-3-yl)isonicotinamide]­nickel(II)] monohydrate], a layered coordination polymer with triangular (3,6) topology

crossmark logo

aDepartment of Chemistry, Hope College, Holland, MI 49423, USA, and bE-194 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 24 August 2023; accepted 4 October 2023; online 5 October 2023)

The title compound, {[Ni(C14H18O4)(C11H9N3O)]·H2O}n, contains octa­hedrally coordinated NiII ions ligated by 1,3-adamantanedi­acetato (ada) ligands and N-(pyridin-3-yl)isonicotinamide (3-pina) ligands, to form coordination polymer layers with a triangular (3,6) grid topology based on [Ni2(OCO)2] dimeric units. The diperiodic layer motifs stack in an ABAB pattern mediated by C—H⋯O supra­molecular inter­actions between ada ligands and water mol­ecules of crystallization to form the full triperiodic crystal structure of the title compound.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title complex was obtained during attempts to prepare divalent nickel coordination polymers featuring 1,3-adamantanedi­acetate (ada) ligands and the hydrogen-bonding-capable di­pyridyl­amide ligand N-(pyridin-3-yl)isonicotinamide (3-pina). We have reported nickel ada coordination polymers featuring N,N′-(ethane-1,2-di­yl)diisonicotinamide (edin) and N,N′-(propane-1,3-di­yl)diisonicotinamide (pdin) (Travis et al., 2018[Travis, J. Z., Pumford, S. R., Martinez, B. L. & LaDuca, R. L. (2018). Polyhedron, 142, 25-37.]). [Ni(ada)(edin)]n manifests an intriguing self-penetrated layer structure with a 3,5-connected binodal (426)(42678) topology. {[Ni5(ada)5(pdin)5(H2O)5]·8H2O}n shows a looped layer structure with a 3-connected (4)(4.85) topology. Additionally, our group reported a cadmium adamantanedi­carboxyl­ate (adc) coordination polymer containing 3-pina coligands (LaRose & LaDuca, 2017[LaRose, C. J. & LaDuca, R. L. (2017). Inorg. Chim. Acta, 461, 92-101.]). The triperiodic phase {[Cd2(adc)2(3-pina)2]·H2O}n exhibited a non-inter­penetrated network with 658 cds topology.

The asymmetric unit of the title compound contains a nickel atom, a fully deproton­ated ada ligand, an N-(pyridin-3-yl)isonicotinamide (3-pina) ligand, and one water mol­ecule of crystallization (Fig. 1[link]). The Ni atoms possess an octa­hedral {N2O4} coord­in­ation environment with the nominal axial positions taken up by pyridyl N atom belonging to the isonicotinamide side of a 3-pina ligand, and a pyridyl N atom belonging to the 3-pyridyl side of another 3-pina ligand. The nominal equatorial plane contains a chelating carboxyl­ate group from an ada ligand, and cis-oriented O atom donors belonging to two different ada ligands. Bond lengths and angles within the coordination environment are listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 2.023 (2) Ni1—O4ii 2.132 (2)
Ni1—O2i 2.038 (2) Ni1—N1 2.089 (3)
Ni1—O3ii 2.131 (2) Ni1—N3iii 2.099 (3)
       
O1—Ni1—O2i 112.60 (10) O2i—Ni1—N3iii 89.11 (10)
O1—Ni1—O3ii 152.96 (9) O3ii—Ni1—O4ii 61.82 (9)
O1—Ni1—O4ii 91.42 (9) N1—Ni1—O3ii 89.29 (10)
O1—Ni1—N1 86.69 (10) N1—Ni1—O4ii 89.94 (10)
O1—Ni1—N3iii 94.55 (10) N1—Ni1—N3iii 176.07 (11)
O2i—Ni1—O3ii 93.85 (10) N3iii—Ni1—O3ii 91.27 (10)
O2i—Ni1—O4ii 155.53 (9) N3iii—Ni1—O4ii 93.75 (10)
O2i—Ni1—N1 86.97 (11)    
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, y-1, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
Nickel coordination environment in the title compound with full ligand set. Displacement ellipsoids are drawn at the 50% probability level. Color code: Ni, green; O, red; N, light blue; C, black. H-atom positions are shown as gray sticks. Symmetry codes are as listed in Table 1[link].

The bridging/chelating ada ligands connect to three Ni atoms, and form [Ni(ada)]n monoperiodic coordination polymer chains arranged along the b-axis direction (Fig. 2[link]). The chain motifs contain embedded syn–syn bridged [Ni2(OCO)2] dimeric units with an Ni⋯Ni through-space distance of 4.277 (1) Å. Adjacent and parallel chain motifs are pillared by 3-pina ligands into diperiodic coordination polymer layers of stoichiometry [Ni(ada)(3-pina)]n (Fig. 3[link]); these are oriented parallel to the ab crystal planes. The topology of the title compound can be inferred by considering the [Ni2(OCO)2] dimeric units as 6-connected nodes, with two connections provided by the full span of the ada ligands. Each [Ni2(OCO)2] dimeric unit node also connects to four others via 3-pina ligands. The resultant 6-connected layered topology is that of a (3,6) triangular net (Fig. 4[link]).

[Figure 2]
Figure 2
[Ni(ada)]n coordination polymer chain motif in the title compound, featuring [Ni2(OCO)2] dimeric units.
[Figure 3]
Figure 3
[Ni(ada)(3-pina)]n coordination polymer layer motif in the title compound.
[Figure 4]
Figure 4
Schematic perspective of the 6-connected (3,6) triangular layer topology in the title compound. Centroids of the [Ni2(OCO)2] dimeric units are shown as gold spheres. Connections mediated by the ada ligands and 3-pina ligands are drawn as red rods and blue rods, respectively.

Parallel [Ni(ada)(3-pina)]n layer motifs stack in an ABAB pattern along the c-axis axis, via classical and non-classical hydrogen-bonding pathways (Fig. 5[link]). The water mol­ecules of crystallization are anchored to the layer motifs via O—H⋯O hydrogen bonding donation to ada carboxyl­ate O atoms. The water mol­ecules of crystallization engage in inter­lamellar C—H⋯O inter­actions with 3-pina pyridyl C atoms [C⋯O distance = 3.187 (1) Å]. Metrical parameters for the hydrogen bonding in the title compound are given in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4 0.87 1.98 2.809 (5) 159
N2—H2⋯O5iv 0.88 2.00 2.874 (4) 173
C1—H1⋯O2i 0.95 2.49 2.957 (4) 111
C5—H5⋯O1 0.95 2.48 2.928 (4) 109
C7—H7⋯O2v 0.95 2.68 3.027 (4) 102
C9—H9⋯O5 0.95 2.41 2.922 (4) 114
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 5]
Figure 5
ABAB stacking of coordination polymer layers in the title compound.

Synthesis and crystallization

Ni(NO3)2·6H2O (108 mg, 0.37 mmol), 1,3-adamantanedi­acetic acid (adaH2, 93 mg, 0.37 mmol), N-(pyridin-3-yl)isonicotinamide (3-pina, 74 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title complex were obtained in 43% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C14H18O4)(C11H9N3O)]·H2O
Mr 526.22
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 173
a, b, c (Å) 21.789 (3), 9.5494 (12), 22.200 (3)
V3) 4619.2 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.89
Crystal size (mm) 0.30 × 0.08 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.606, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 71364, 4216, 3175
Rint 0.112
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.134, 1.05
No. of reflections 4216
No. of parameters 319
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.45
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO, Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker X (Palmer, 2020[Palmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: CrystalMaker X (Palmer, 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[(µ3-adamantane-1,3-diacetato)[µ-N-(pyridin-3-yl)isonicotinamide]nickel(II)] monohydrate], top
Crystal data top
[Ni(C14H18O4)(C11H9N3O)]·H2ODx = 1.513 Mg m3
Mr = 526.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9950 reflections
a = 21.789 (3) Åθ = 2.5–25.2°
b = 9.5494 (12) ŵ = 0.89 mm1
c = 22.200 (3) ÅT = 173 K
V = 4619.2 (10) Å3Needle, green
Z = 80.30 × 0.08 × 0.05 mm
F(000) = 2208
Data collection top
Bruker APEXII CCD
diffractometer
4216 independent reflections
Radiation source: sealed tube3175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.112
Detector resolution: 836.6 pixels mm-1θmax = 25.3°, θmin = 1.8°
φ and ω scansh = 2626
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.606, Tmax = 0.745l = 2626
71364 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.134H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0727P)2 + 4.9019P]
where P = (Fo2 + 2Fc2)/3
4216 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.76 e Å3
1 restraintΔρmin = 0.44 e Å3
Special details top

Refinement. All H atoms attached to C and N atoms were placed in calculated positions and refined with a riding model. The H atoms in the water molecule of crystallization could not be found in a difference map, so they were placed in calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.48258 (2)0.33446 (4)0.56257 (2)0.01734 (16)
O10.42593 (10)0.5016 (2)0.55617 (11)0.0231 (5)
O1W0.3792 (3)1.3710 (4)0.74898 (18)0.0821 (13)
H1WA0.3906841.3460550.7130020.123*
H1WB0.3606171.4506460.7437410.123*
O20.46532 (11)0.6932 (2)0.51276 (11)0.0234 (6)
O30.51363 (11)1.1459 (2)0.60389 (11)0.0220 (5)
O40.44420 (11)1.2773 (2)0.64741 (11)0.0221 (6)
O50.27987 (11)0.1308 (2)0.41445 (13)0.0302 (6)
N10.41408 (12)0.2205 (3)0.51861 (13)0.0201 (6)
N20.22128 (13)0.0684 (3)0.41194 (13)0.0217 (7)
H20.2240540.1601500.4140960.026*
N30.05497 (12)0.0519 (3)0.39871 (12)0.0178 (6)
C10.42734 (15)0.1183 (3)0.47886 (16)0.0203 (8)
H10.4692320.0965480.4715640.024*
C20.38285 (16)0.0435 (3)0.44816 (15)0.0202 (8)
H2A0.3940930.0293670.4211680.024*
C30.32140 (15)0.0766 (3)0.45745 (15)0.0182 (7)
C40.30765 (15)0.1819 (4)0.49923 (16)0.0220 (8)
H40.2661920.2065880.5071330.026*
C50.35474 (16)0.2495 (4)0.52878 (16)0.0231 (8)
H50.3447520.3194680.5575520.028*
C60.27282 (15)0.0048 (4)0.42567 (15)0.0196 (8)
C70.11246 (16)0.0945 (3)0.40809 (15)0.0191 (7)
H70.1186970.1849130.4248810.023*
C80.16377 (15)0.0138 (3)0.39462 (15)0.0181 (7)
C90.15514 (16)0.1157 (4)0.36646 (16)0.0205 (8)
H90.1890180.1727230.3552800.025*
C100.09520 (16)0.1579 (3)0.35549 (16)0.0209 (8)
H100.0874620.2449060.3361920.025*
C110.04719 (16)0.0741 (3)0.37246 (15)0.0208 (8)
H110.0065590.1062420.3653980.025*
C120.42397 (15)0.6283 (3)0.54030 (15)0.0178 (7)
C130.36516 (16)0.7067 (4)0.55572 (16)0.0212 (8)
H13A0.3304170.6401700.5532380.025*
H13B0.3584070.7796950.5247390.025*
C140.36697 (17)0.6684 (3)0.66913 (16)0.0229 (8)
H14A0.4060040.6157600.6663280.027*
H14B0.3327130.6010250.6650090.027*
C150.36373 (16)0.7771 (4)0.61809 (16)0.0206 (8)
C160.30221 (16)0.8574 (4)0.62426 (17)0.0243 (8)
H16A0.2989050.9279030.5917270.029*
H16B0.2675460.7910930.6200600.029*
C170.29848 (17)0.9305 (4)0.68564 (17)0.0282 (9)
H170.2586430.9820350.6887460.034*
C180.30197 (18)0.8208 (4)0.73539 (18)0.0314 (9)
H18A0.2674260.7540890.7313470.038*
H18B0.2987750.8667800.7752310.038*
C190.36298 (17)0.7421 (4)0.73080 (16)0.0261 (8)
H190.3655330.6707410.7636750.031*
C200.41681 (15)0.8826 (3)0.62541 (15)0.0174 (7)
H20A0.4564630.8326990.6217160.021*
H20B0.4146280.9531130.5927980.021*
C210.41646 (17)0.8455 (4)0.73669 (16)0.0242 (8)
H21A0.4557970.7939690.7340580.029*
H21B0.4146210.8917400.7765650.029*
C220.41396 (16)0.9572 (4)0.68684 (15)0.0208 (8)
C230.35179 (17)1.0350 (4)0.69142 (18)0.0254 (8)
H23A0.3491271.0839980.7306300.030*
H23B0.3489301.1059500.6590280.030*
C240.46870 (17)1.0572 (4)0.69556 (16)0.0231 (8)
H24A0.4637321.1060820.7345870.028*
H24B0.5067481.0008500.6979350.028*
C250.47650 (16)1.1662 (3)0.64650 (16)0.0199 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0174 (2)0.0116 (2)0.0231 (3)0.00055 (17)0.00082 (18)0.00025 (18)
O10.0210 (13)0.0152 (12)0.0332 (14)0.0007 (10)0.0007 (11)0.0018 (11)
O1W0.140 (4)0.049 (2)0.057 (2)0.026 (3)0.017 (3)0.0070 (19)
O20.0243 (13)0.0187 (12)0.0271 (14)0.0046 (10)0.0064 (11)0.0022 (11)
O30.0235 (13)0.0164 (12)0.0261 (14)0.0008 (10)0.0024 (11)0.0002 (10)
O40.0238 (13)0.0135 (12)0.0291 (14)0.0024 (10)0.0039 (11)0.0009 (10)
O50.0239 (14)0.0104 (12)0.0563 (18)0.0011 (10)0.0040 (13)0.0058 (12)
N10.0178 (15)0.0145 (14)0.0280 (16)0.0001 (12)0.0012 (13)0.0004 (12)
N20.0205 (16)0.0085 (14)0.0361 (18)0.0013 (12)0.0021 (13)0.0017 (12)
N30.0186 (15)0.0148 (14)0.0201 (15)0.0001 (12)0.0000 (12)0.0011 (12)
C10.0148 (17)0.0146 (17)0.031 (2)0.0020 (13)0.0006 (15)0.0006 (15)
C20.0246 (19)0.0109 (16)0.0250 (19)0.0027 (14)0.0017 (15)0.0002 (14)
C30.0205 (18)0.0105 (16)0.0236 (18)0.0014 (14)0.0028 (14)0.0020 (14)
C40.0149 (17)0.0196 (18)0.031 (2)0.0015 (14)0.0023 (15)0.0004 (15)
C50.0248 (19)0.0170 (18)0.027 (2)0.0007 (15)0.0038 (15)0.0035 (15)
C60.0210 (19)0.0127 (17)0.0253 (19)0.0002 (14)0.0011 (14)0.0015 (14)
C70.0246 (19)0.0117 (16)0.0209 (18)0.0006 (14)0.0006 (14)0.0019 (14)
C80.0192 (17)0.0154 (17)0.0196 (18)0.0009 (14)0.0009 (14)0.0004 (14)
C90.0220 (18)0.0148 (16)0.0249 (19)0.0023 (15)0.0003 (15)0.0021 (15)
C100.0257 (19)0.0133 (17)0.0236 (19)0.0017 (15)0.0016 (15)0.0019 (14)
C110.0206 (18)0.0182 (18)0.0235 (18)0.0031 (15)0.0023 (15)0.0007 (15)
C120.0208 (18)0.0147 (17)0.0180 (17)0.0019 (14)0.0035 (14)0.0029 (14)
C130.0214 (18)0.0156 (17)0.026 (2)0.0009 (14)0.0009 (15)0.0024 (14)
C140.0238 (18)0.0146 (17)0.030 (2)0.0032 (15)0.0024 (15)0.0024 (15)
C150.0210 (18)0.0170 (17)0.0237 (19)0.0008 (14)0.0028 (15)0.0037 (15)
C160.0171 (18)0.0238 (19)0.032 (2)0.0011 (15)0.0015 (15)0.0018 (16)
C170.023 (2)0.0242 (19)0.038 (2)0.0028 (16)0.0068 (17)0.0097 (17)
C180.034 (2)0.031 (2)0.029 (2)0.0110 (18)0.0106 (18)0.0060 (17)
C190.035 (2)0.0202 (19)0.0235 (19)0.0047 (17)0.0051 (17)0.0025 (16)
C200.0204 (18)0.0137 (16)0.0182 (17)0.0000 (14)0.0007 (14)0.0025 (14)
C210.033 (2)0.0191 (18)0.0208 (19)0.0024 (16)0.0016 (16)0.0014 (15)
C220.0247 (19)0.0171 (17)0.0208 (18)0.0039 (15)0.0013 (15)0.0006 (14)
C230.029 (2)0.0176 (18)0.030 (2)0.0024 (16)0.0016 (16)0.0030 (15)
C240.030 (2)0.0171 (17)0.0223 (19)0.0020 (15)0.0021 (15)0.0006 (15)
C250.0247 (19)0.0124 (17)0.0225 (18)0.0054 (15)0.0038 (15)0.0010 (14)
Geometric parameters (Å, º) top
Ni1—O12.023 (2)C11—H110.9500
Ni1—O2i2.038 (2)C12—C131.523 (5)
Ni1—O3ii2.131 (2)C13—H13A0.9900
Ni1—O4ii2.132 (2)C13—H13B0.9900
Ni1—N12.089 (3)C13—C151.539 (5)
Ni1—N3iii2.099 (3)C14—H14A0.9900
O1—C121.261 (4)C14—H14B0.9900
O1W—H1WA0.8700C14—C151.538 (5)
O1W—H1WB0.8701C14—C191.542 (5)
O2—C121.253 (4)C15—C161.551 (5)
O3—C251.260 (4)C15—C201.542 (5)
O4—C251.273 (4)C16—H16A0.9900
O5—C61.238 (4)C16—H16B0.9900
N1—C11.347 (4)C16—C171.533 (5)
N1—C51.342 (4)C17—H171.0000
N2—H20.8800C17—C181.525 (5)
N2—C61.357 (4)C17—C231.536 (5)
N2—C81.411 (4)C18—H18A0.9900
N3—C71.334 (4)C18—H18B0.9900
N3—C111.347 (4)C18—C191.530 (5)
C1—H10.9500C19—H191.0000
C1—C21.384 (5)C19—C211.533 (5)
C2—H2A0.9500C20—H20A0.9900
C2—C31.391 (5)C20—H20B0.9900
C3—C41.400 (5)C20—C221.540 (5)
C3—C61.491 (5)C21—H21A0.9900
C4—H40.9500C21—H21B0.9900
C4—C51.378 (5)C21—C221.538 (5)
C5—H50.9500C22—C231.548 (5)
C7—H70.9500C22—C241.541 (5)
C7—C81.390 (5)C23—H23A0.9900
C8—C91.399 (5)C23—H23B0.9900
C9—H90.9500C24—H24A0.9900
C9—C101.388 (5)C24—H24B0.9900
C10—H100.9500C24—C251.516 (5)
C10—C111.370 (5)
O1—Ni1—O2i112.60 (10)C15—C14—H14A109.6
O1—Ni1—O3ii152.96 (9)C15—C14—H14B109.6
O1—Ni1—O4ii91.42 (9)C15—C14—C19110.1 (3)
O1—Ni1—N186.69 (10)C19—C14—H14A109.6
O1—Ni1—N3iii94.55 (10)C19—C14—H14B109.6
O2i—Ni1—O3ii93.85 (10)C13—C15—C16108.2 (3)
O2i—Ni1—O4ii155.53 (9)C13—C15—C20111.4 (3)
O2i—Ni1—N186.97 (11)C14—C15—C13111.6 (3)
O2i—Ni1—N3iii89.11 (10)C14—C15—C16108.0 (3)
O3ii—Ni1—O4ii61.82 (9)C14—C15—C20109.2 (3)
N1—Ni1—O3ii89.29 (10)C20—C15—C16108.4 (3)
N1—Ni1—O4ii89.94 (10)C15—C16—H16A109.6
N1—Ni1—N3iii176.07 (11)C15—C16—H16B109.6
N3iii—Ni1—O3ii91.27 (10)H16A—C16—H16B108.1
N3iii—Ni1—O4ii93.75 (10)C17—C16—C15110.5 (3)
C12—O1—Ni1142.9 (2)C17—C16—H16A109.6
H1WA—O1W—H1WB104.5C17—C16—H16B109.6
C12—O2—Ni1i137.5 (2)C16—C17—H17109.3
C25—O3—Ni1iv89.42 (19)C16—C17—C23109.3 (3)
C25—O4—Ni1iv89.0 (2)C18—C17—C16109.1 (3)
C1—N1—Ni1122.0 (2)C18—C17—H17109.3
C5—N1—Ni1120.2 (2)C18—C17—C23110.4 (3)
C5—N1—C1117.8 (3)C23—C17—H17109.3
C6—N2—H2116.3C17—C18—H18A109.8
C6—N2—C8127.3 (3)C17—C18—H18B109.8
C8—N2—H2116.3C17—C18—C19109.4 (3)
C7—N3—Ni1v118.9 (2)H18A—C18—H18B108.2
C7—N3—C11117.3 (3)C19—C18—H18A109.8
C11—N3—Ni1v123.0 (2)C19—C18—H18B109.8
N1—C1—H1118.4C14—C19—H19109.5
N1—C1—C2123.1 (3)C18—C19—C14109.4 (3)
C2—C1—H1118.4C18—C19—H19109.5
C1—C2—H2A120.5C18—C19—C21109.8 (3)
C1—C2—C3118.9 (3)C21—C19—C14109.1 (3)
C3—C2—H2A120.5C21—C19—H19109.5
C2—C3—C4117.9 (3)C15—C20—H20A109.3
C2—C3—C6119.6 (3)C15—C20—H20B109.3
C4—C3—C6122.4 (3)H20A—C20—H20B108.0
C3—C4—H4120.3C22—C20—C15111.4 (3)
C5—C4—C3119.5 (3)C22—C20—H20A109.3
C5—C4—H4120.3C22—C20—H20B109.3
N1—C5—C4122.7 (3)C19—C21—H21A109.4
N1—C5—H5118.6C19—C21—H21B109.4
C4—C5—H5118.6C19—C21—C22111.0 (3)
O5—C6—N2123.9 (3)H21A—C21—H21B108.0
O5—C6—C3120.9 (3)C22—C21—H21A109.4
N2—C6—C3115.2 (3)C22—C21—H21B109.4
N3—C7—H7118.2C20—C22—C23108.4 (3)
N3—C7—C8123.5 (3)C20—C22—C24111.5 (3)
C8—C7—H7118.2C21—C22—C20108.4 (3)
C7—C8—N2116.8 (3)C21—C22—C23108.5 (3)
C7—C8—C9118.6 (3)C21—C22—C24108.2 (3)
C9—C8—N2124.6 (3)C24—C22—C23111.8 (3)
C8—C9—H9121.3C17—C23—C22110.1 (3)
C10—C9—C8117.5 (3)C17—C23—H23A109.6
C10—C9—H9121.3C17—C23—H23B109.6
C9—C10—H10120.0C22—C23—H23A109.6
C11—C10—C9120.1 (3)C22—C23—H23B109.6
C11—C10—H10120.0H23A—C23—H23B108.1
N3—C11—C10123.0 (3)C22—C24—H24A108.5
N3—C11—H11118.5C22—C24—H24B108.5
C10—C11—H11118.5H24A—C24—H24B107.5
O1—C12—C13115.9 (3)C25—C24—C22115.0 (3)
O2—C12—O1125.9 (3)C25—C24—H24A108.5
O2—C12—C13118.1 (3)C25—C24—H24B108.5
C12—C13—H13A108.4O3—C25—Ni1iv59.84 (17)
C12—C13—H13B108.4O3—C25—O4119.7 (3)
C12—C13—C15115.7 (3)O3—C25—C24120.4 (3)
H13A—C13—H13B107.4O4—C25—Ni1iv59.89 (17)
C15—C13—H13A108.4O4—C25—C24119.9 (3)
C15—C13—H13B108.4C24—C25—Ni1iv175.6 (2)
H14A—C14—H14B108.2
Ni1—O1—C12—O29.4 (6)C12—C13—C15—C1464.2 (4)
Ni1—O1—C12—C13171.6 (3)C12—C13—C15—C16177.1 (3)
Ni1i—O2—C12—O150.8 (5)C12—C13—C15—C2058.0 (4)
Ni1i—O2—C12—C13128.2 (3)C13—C15—C16—C17179.6 (3)
Ni1iv—O3—C25—O43.3 (3)C13—C15—C20—C22177.8 (3)
Ni1iv—O3—C25—C24174.9 (3)C14—C15—C16—C1759.5 (4)
Ni1iv—O4—C25—O33.3 (3)C14—C15—C20—C2258.6 (4)
Ni1iv—O4—C25—C24174.9 (3)C14—C19—C21—C2260.2 (4)
Ni1—N1—C1—C2178.5 (3)C15—C14—C19—C1860.5 (4)
Ni1—N1—C5—C4177.2 (3)C15—C14—C19—C2159.6 (4)
Ni1v—N3—C7—C8167.3 (3)C15—C16—C17—C1860.6 (4)
Ni1v—N3—C11—C10169.7 (3)C15—C16—C17—C2360.1 (4)
O1—C12—C13—C1588.5 (4)C15—C20—C22—C2158.2 (4)
O2—C12—C13—C1592.4 (4)C15—C20—C22—C2359.3 (4)
N1—C1—C2—C31.5 (5)C15—C20—C22—C24177.2 (3)
N2—C8—C9—C10176.3 (3)C16—C15—C20—C2258.8 (4)
N3—C7—C8—N2174.6 (3)C16—C17—C18—C1960.6 (4)
N3—C7—C8—C93.9 (5)C16—C17—C23—C2260.5 (4)
C1—N1—C5—C41.8 (5)C17—C18—C19—C1460.5 (4)
C1—C2—C3—C42.0 (5)C17—C18—C19—C2159.1 (4)
C1—C2—C3—C6178.8 (3)C18—C17—C23—C2259.6 (4)
C2—C3—C4—C50.8 (5)C18—C19—C21—C2259.6 (4)
C2—C3—C6—O533.1 (5)C19—C14—C15—C13177.9 (3)
C2—C3—C6—N2148.4 (3)C19—C14—C15—C1659.1 (4)
C3—C4—C5—N11.2 (5)C19—C14—C15—C2058.6 (4)
C4—C3—C6—O5143.5 (4)C19—C21—C22—C2059.0 (4)
C4—C3—C6—N235.0 (5)C19—C21—C22—C2358.4 (4)
C5—N1—C1—C20.4 (5)C19—C21—C22—C24179.9 (3)
C6—N2—C8—C7152.4 (3)C20—C15—C16—C1758.7 (4)
C6—N2—C8—C926.1 (5)C20—C22—C23—C1759.5 (4)
C6—C3—C4—C5177.5 (3)C20—C22—C24—C2555.4 (4)
C7—N3—C11—C100.0 (5)C21—C22—C23—C1758.0 (4)
C7—C8—C9—C102.1 (5)C21—C22—C24—C25174.5 (3)
C8—N2—C6—O513.6 (6)C22—C24—C25—O396.9 (4)
C8—N2—C6—C3164.8 (3)C22—C24—C25—O481.2 (4)
C8—C9—C10—C110.4 (5)C23—C17—C18—C1959.5 (4)
C9—C10—C11—N31.6 (5)C23—C22—C24—C2566.1 (4)
C11—N3—C7—C82.8 (5)C24—C22—C23—C17177.2 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1/2, y+1/2, z+1; (iv) x, y+1, z; (v) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O40.871.982.809 (5)159
N2—H2···O5vi0.882.002.874 (4)173
C1—H1···O2i0.952.492.957 (4)111
C5—H5···O10.952.482.928 (4)109
C7—H7···O2vii0.952.683.027 (4)102
C9—H9···O50.952.412.922 (4)114
Symmetry codes: (i) x+1, y+1, z+1; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y1/2, z.
 

Funding information

Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.

References

First citationBruker (2009). COSMO, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLaRose, C. J. & LaDuca, R. L. (2017). Inorg. Chim. Acta, 461, 92–101.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTravis, J. Z., Pumford, S. R., Martinez, B. L. & LaDuca, R. L. (2018). Polyhedron, 142, 25–37.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146