organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Fluoro-3-(1H-indol-3-ylmeth­yl)-1H-indole

crossmark logo

aCollege of Chemistry and Chemical Engineering, Longdong University, Qingyang, Gansu, 745000, People's Republic of China
*Correspondence e-mail: guoguozhe2008@126.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 11 January 2023; accepted 5 July 2023; online 4 August 2023)

The title compound, C17H13FN2, was synthesized as a potential ligand for the construction of metal–organic frameworks. The two indole motifs present two potential coordination modes. It crystallizes in the ortho­rhom­bic system with space group P212121. The dihedral angle between the fused ring systems is 68.77 (10)°. Weak F⋯H inter­actions are observed in the crystal.

Keywords: crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The di­aryl­methane motif is ubiquitous in natural products, bioactive mol­ecule and medicine (Sakurai et al., 2020[Sakurai, S., Matsumoto, A., Kano, T. & Maruoka, K. (2020). J. Am. Chem. Soc. 142, 19017-19022.]). The title compound belongs to the di­aryl­methane family (Safe et al., 2008[Safe, S., Papineni, S. & Chintharlapalli, S. (2008). Cancer Lett. 269, 326-338.]), which shows anti­oxidant, anti-inflammatory and anti­cancer bioactivities, and can be found in broccoli.

In the present work, we synthesized the title compound as a potential ligand for the construction of metal–organic frameworks. This ligand is expected to be a good candidate for the construction of coordination polymers with diverse structures. The mol­ecular structure is shown in Fig. 1[link]. The title compound crystallizes in the ortho­rhom­bic system, space group P212121. The dihedral angle between the fused ring systems is 68.77 (10)°. Fig. 2[link] shows the weak F⋯H and other inter­actions observed in the crystal Numerical details are given in Table 1[link].

Table 1
Inter­molecular inter­actions (Å)

Atom1 Atom2 Symm. op. 2 Length Length − vdW
F1 H16 [{1\over 2}] + x, −[{1\over 2}] − y, −z 2.48 −0.19
C1 H4 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z 2.88 −0.02
C4 H1 x, [{1\over 2}] + y, [{1\over 2}] − z 2.55 −0.35
C5 H1 x, [{1\over 2}] + y, [{1\over 2}] − z 2.58 −0.32
C11 H7 1 + x, y, z 2.82 −0.08
C12 H2 [{1\over 2}] + x, [{1\over 2}] − y, −z 2.80 −0.10
C16 H2 [{1\over 2}] + x, [{1\over 2}] − y, −z 2.81 −0.09
C17 H2 [{1\over 2}] + x, [{1\over 2}] − y, −z 2.64 −0.26
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of the title compound. Weak inter­actions between the mol­ecules are shown as dashed lines.

Synthesis and crystallization

To a dried reaction tube (10 ml) with a magnetic stirring bar were added NHPI (N-hydroxyphthalimide ester) ester (0.2 mmol), indole (0.4 mmol) and Ru(bpy)2(PF6)2 (3 mol %) successively. Air was then withdrawn and the tube was backfilled with argon three times. Subsequently, degassed DCM (2 ml) was injected into the tube by syringe. Then, the resulting reaction mixture was irradiated at room temperature under blue LEDs (6 W) for 12 h. The reaction progress was monitored by TLC. After the reaction was completed, the reaction mixture was concentrated under reduced pressure, and the residue was purified by column chromatography to afford the title compound. Single crystals of C17H13FN2 were obtained by evaporation after one week. Yield: 47 wt%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H13FN2
Mr 264.29
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 6.0723 (3), 7.8662 (3), 26.2693 (11)
V3) 1254.78 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.12 × 0.1 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.691, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12005, 2866, 2528
Rint 0.063
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.06
No. of reflections 2866
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.30
Absolute structure Flack x determined using 921 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.1 (7)
Computer programs: APEX2 and SAINT (Bruker, 2019[Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: Bruker APEXII CCD; cell refinement: SAINT V8.40A (Bruker, 2019); data reduction: SAINT V8.40A (Bruker, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009).

5-Fluoro-3-(1H-indol-3-ylmethyl)-1H-indole top
Crystal data top
C17H13FN2Dx = 1.399 Mg m3
Mr = 264.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4629 reflections
a = 6.0723 (3) Åθ = 2.7–27.4°
b = 7.8662 (3) ŵ = 0.09 mm1
c = 26.2693 (11) ÅT = 296 K
V = 1254.78 (9) Å3Block, colourless
Z = 40.12 × 0.1 × 0.1 mm
F(000) = 552
Data collection top
Bruker APEXII CCD
diffractometer
2528 reflections with I > 2σ(I)
φ and ω scansRint = 0.063
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 2.7°
Tmin = 0.691, Tmax = 0.746h = 77
12005 measured reflectionsk = 910
2866 independent reflectionsl = 3429
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.051P)2 + 0.4902P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.53 e Å3
2866 reflectionsΔρmin = 0.30 e Å3
181 parametersAbsolute structure: Flack x determined using 921 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.1 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were included in calculated positions and treated as riding atoms: C–H = 0.93- 0.98 Å, with Uiso(H) = 1.2Ueq (C), Uiso(H) = 1.2Ueq (N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.0864 (4)0.1701 (2)0.06215 (8)0.0567 (6)
N10.0566 (4)0.2923 (3)0.23358 (10)0.0325 (6)
H10.1634570.2355360.2467120.039*
N20.7008 (4)0.3284 (3)0.05286 (9)0.0366 (6)
H20.8292180.3367650.0392620.044*
C60.1230 (5)0.3505 (3)0.25954 (11)0.0268 (6)
C50.2620 (5)0.4322 (3)0.22362 (10)0.0240 (6)
C80.1535 (5)0.4238 (3)0.17516 (10)0.0255 (6)
C140.2106 (5)0.1028 (3)0.08297 (10)0.0289 (6)
H140.0816090.1238450.1009790.035*
C130.3747 (5)0.2253 (3)0.07888 (10)0.0264 (6)
C100.3965 (5)0.3978 (3)0.09673 (10)0.0264 (6)
C90.2277 (5)0.4995 (3)0.12576 (11)0.0285 (6)
H9A0.2885410.6112540.1325740.034*
H9B0.0997160.5149110.1041650.034*
C40.4575 (5)0.5076 (4)0.24071 (11)0.0293 (6)
H40.5523430.5611010.2179910.035*
C120.5690 (5)0.1875 (4)0.05142 (10)0.0316 (6)
C170.6017 (6)0.0300 (4)0.02794 (11)0.0394 (8)
H170.7301720.0066240.0099700.047*
C70.0405 (5)0.3383 (4)0.18325 (11)0.0312 (6)
H70.1453430.3150360.1584000.037*
C30.5069 (6)0.5007 (4)0.29232 (12)0.0371 (7)
H30.6365640.5497240.3041130.045*
C110.5953 (5)0.4543 (4)0.07946 (11)0.0334 (7)
H110.6512630.5628000.0849540.040*
C150.2462 (6)0.0498 (4)0.05952 (11)0.0345 (7)
C10.1734 (6)0.3440 (4)0.31123 (11)0.0344 (7)
H1A0.0810120.2896530.3343000.041*
C160.4374 (7)0.0887 (4)0.03240 (12)0.0419 (8)
H160.4532950.1950770.0173630.050*
C20.3651 (6)0.4213 (4)0.32682 (12)0.0374 (7)
H2A0.4012700.4206050.3612240.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0776 (17)0.0382 (10)0.0542 (13)0.0067 (11)0.0121 (12)0.0048 (9)
N10.0292 (14)0.0317 (12)0.0366 (13)0.0075 (10)0.0077 (11)0.0018 (11)
N20.0284 (13)0.0539 (16)0.0276 (12)0.0014 (12)0.0064 (11)0.0075 (11)
C60.0278 (15)0.0242 (12)0.0285 (13)0.0002 (11)0.0056 (12)0.0006 (11)
C50.0270 (14)0.0189 (11)0.0262 (13)0.0034 (10)0.0038 (11)0.0006 (10)
C80.0283 (14)0.0229 (12)0.0253 (13)0.0017 (11)0.0028 (11)0.0011 (10)
C140.0341 (16)0.0307 (14)0.0220 (13)0.0051 (12)0.0021 (12)0.0010 (10)
C130.0307 (15)0.0314 (13)0.0171 (11)0.0064 (11)0.0015 (11)0.0028 (10)
C100.0286 (15)0.0310 (13)0.0196 (12)0.0003 (11)0.0006 (11)0.0040 (10)
C90.0337 (15)0.0263 (12)0.0256 (13)0.0023 (12)0.0015 (12)0.0007 (11)
C40.0296 (15)0.0283 (13)0.0299 (14)0.0019 (12)0.0038 (12)0.0016 (11)
C120.0325 (16)0.0433 (16)0.0191 (12)0.0083 (13)0.0004 (12)0.0052 (11)
C170.0423 (19)0.0527 (19)0.0233 (14)0.0218 (16)0.0028 (14)0.0028 (13)
C70.0293 (15)0.0312 (14)0.0329 (15)0.0005 (12)0.0013 (12)0.0012 (12)
C30.0363 (18)0.0389 (16)0.0361 (16)0.0004 (14)0.0076 (14)0.0065 (13)
C110.0344 (17)0.0390 (16)0.0268 (14)0.0031 (13)0.0008 (13)0.0070 (12)
C150.0465 (19)0.0304 (14)0.0265 (14)0.0038 (13)0.0086 (14)0.0013 (11)
C10.0425 (18)0.0313 (14)0.0294 (15)0.0008 (13)0.0117 (13)0.0009 (12)
C160.063 (2)0.0365 (16)0.0256 (14)0.0183 (16)0.0052 (16)0.0024 (12)
C20.0442 (19)0.0417 (16)0.0262 (14)0.0063 (15)0.0012 (14)0.0030 (13)
Geometric parameters (Å, º) top
F1—C151.357 (4)C10—C91.507 (4)
N1—H10.8600C10—C111.364 (4)
N1—C61.365 (4)C9—H9A0.9700
N1—C71.374 (4)C9—H9B0.9700
N2—H20.8600C4—H40.9300
N2—C121.368 (4)C4—C31.390 (4)
N2—C111.371 (4)C12—C171.398 (4)
C6—C51.420 (4)C17—H170.9300
C6—C11.393 (4)C17—C161.372 (5)
C5—C81.435 (4)C7—H70.9300
C5—C41.401 (4)C3—H30.9300
C8—C91.497 (4)C3—C21.398 (5)
C8—C71.373 (4)C11—H110.9300
C14—H140.9300C15—C161.396 (5)
C14—C131.391 (4)C1—H1A0.9300
C14—C151.366 (4)C1—C21.375 (5)
C13—C101.442 (4)C16—H160.9300
C13—C121.415 (4)C2—H2A0.9300
C6—N1—H1125.2C5—C4—H4120.7
C6—N1—C7109.6 (2)C3—C4—C5118.6 (3)
C7—N1—H1125.2C3—C4—H4120.7
C12—N2—H2125.5N2—C12—C13107.7 (3)
C12—N2—C11109.0 (3)N2—C12—C17130.3 (3)
C11—N2—H2125.5C17—C12—C13122.0 (3)
N1—C6—C5107.1 (2)C12—C17—H17121.2
N1—C6—C1130.6 (3)C16—C17—C12117.5 (3)
C1—C6—C5122.3 (3)C16—C17—H17121.2
C6—C5—C8107.2 (2)N1—C7—H7125.1
C4—C5—C6118.8 (2)C8—C7—N1109.8 (3)
C4—C5—C8133.9 (3)C8—C7—H7125.1
C5—C8—C9127.7 (3)C4—C3—H3119.4
C7—C8—C5106.2 (2)C4—C3—C2121.2 (3)
C7—C8—C9126.0 (3)C2—C3—H3119.4
C13—C14—H14121.3N2—C11—H11124.8
C15—C14—H14121.3C10—C11—N2110.4 (3)
C15—C14—C13117.4 (3)C10—C11—H11124.8
C14—C13—C10133.9 (3)F1—C15—C14118.4 (3)
C14—C13—C12119.4 (3)F1—C15—C16117.9 (3)
C12—C13—C10106.7 (3)C14—C15—C16123.7 (3)
C13—C10—C9127.0 (3)C6—C1—H1A121.3
C11—C10—C13106.2 (3)C2—C1—C6117.4 (3)
C11—C10—C9126.7 (3)C2—C1—H1A121.3
C8—C9—C10115.6 (2)C17—C16—C15119.9 (3)
C8—C9—H9A108.4C17—C16—H16120.0
C8—C9—H9B108.4C15—C16—H16120.0
C10—C9—H9A108.4C3—C2—H2A119.1
C10—C9—H9B108.4C1—C2—C3121.7 (3)
H9A—C9—H9B107.4C1—C2—H2A119.1
F1—C15—C16—C17178.8 (3)C13—C10—C11—N21.1 (3)
N1—C6—C5—C81.5 (3)C13—C12—C17—C160.0 (4)
N1—C6—C5—C4178.5 (2)C10—C13—C12—N20.3 (3)
N1—C6—C1—C2177.1 (3)C10—C13—C12—C17179.0 (3)
N2—C12—C17—C16179.2 (3)C9—C8—C7—N1177.8 (3)
C6—N1—C7—C81.6 (3)C9—C10—C11—N2177.5 (3)
C6—C5—C8—C9176.6 (3)C4—C5—C8—C90.2 (5)
C6—C5—C8—C70.5 (3)C4—C5—C8—C7176.9 (3)
C6—C5—C4—C30.6 (4)C4—C3—C2—C11.2 (5)
C6—C1—C2—C31.2 (5)C12—N2—C11—C101.3 (3)
C5—C6—C1—C20.2 (4)C12—C13—C10—C9176.9 (3)
C5—C8—C9—C1081.7 (4)C12—C13—C10—C110.4 (3)
C5—C8—C7—N10.6 (3)C12—C17—C16—C150.1 (4)
C5—C4—C3—C20.3 (5)C7—N1—C6—C51.9 (3)
C8—C5—C4—C3175.5 (3)C7—N1—C6—C1175.8 (3)
C14—C13—C10—C92.1 (5)C7—C8—C9—C10101.7 (3)
C14—C13—C10—C11178.6 (3)C11—N2—C12—C131.0 (3)
C14—C13—C12—N2179.5 (2)C11—N2—C12—C17178.3 (3)
C14—C13—C12—C170.2 (4)C11—C10—C9—C8126.1 (3)
C14—C15—C16—C170.4 (5)C15—C14—C13—C10178.5 (3)
C13—C14—C15—F1178.7 (2)C15—C14—C13—C120.4 (4)
C13—C14—C15—C160.6 (4)C1—C6—C5—C8176.4 (3)
C13—C10—C9—C858.2 (4)C1—C6—C5—C40.6 (4)
Intermolecular interactions (Å) top
Atom1Atom2Symm. op. 2LengthLength - vdW
F1H16-1/2 + x, -1/2 - y, -z2.48-0.19
C1H41 - x, -1/2 + y, 1/2 - z2.88-0.02
C4H1-x, 1/2 + y, 1/2 - z2.55-0.35
C5H1-x, 1/2 + y, 1/2 - z2.58-0.32
C11H71 + x, y, z2.82-0.08
C12H2-1/2 + x, 1/2 - y, -z2.80-0.10
C16H2-1/2 + x, 1/2 - y, -z2.81-0.09
C17H2-1/2 + x, 1/2 - y, -z2.64-0.26
 

Funding information

We thank the Doctoral Funding Project of Longdong University (XYBYZK2224) for financially supporting this work. We also thank the Youth Foundation of Gansu Province (21JR7RM196) for financial support.

References

First citationBruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSafe, S., Papineni, S. & Chintharlapalli, S. (2008). Cancer Lett. 269, 326–338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSakurai, S., Matsumoto, A., Kano, T. & Maruoka, K. (2020). J. Am. Chem. Soc. 142, 19017–19022.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146