metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[μ-1,4-bis­­(pyridin-4-ylmeth­yl)piperazine]bis­­[μ3-4-(2-carboxyl­atoeth­yl)benzoato]dicopper(II)]

crossmark logo

aE-194 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 August 2023; accepted 24 August 2023; online 30 August 2023)

In the title coordination polymer, [Cu2(C9H6O4)2(C16H20N4)]n, the CuII atoms in {NO4} square-pyramidal coordination environments are conjoined into diperiodic coordination polymer slabs by the full span of the bridging 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) and 4-(carboxyl­eth­yl)benzoate (ceb) ligands. The slab motifs are expanded into the full crystal structure by means of longer-range C—H⋯O attractive inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Our group has reported several divalent metal coordination polymers with intriguing topologies based on the dipodal pyridyl ligand 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) in the presence of di­carboxyl­ate co-ligands. For example, using the di­carboxyl­ate ligand oxy(bis­benzoate) (oba) afforded the highly entangled self-penetrated phase [Co3(oba)3(bpmp)2] (Martin et al., 2008[Martin, D. P., Staples, R. J. & LaDuca, R. L. (2008). Inorg. Chem. 47, 9754-9756.]). The title com­pound was obtained by hydro­thermal reaction of copper nitrate, 4-(carboxyl­eth­yl)benzoic acid (cebH2), and bpmp under basic conditions.

The asymmetric unit of the title com­pound consists of a CuII atom, a ceb ligand, and half of a bpmp ligand whose central piperazine ring is situated on a crystallographic inversion center. The CuII atom is coordinated in a {NO4} square-pyramidal arrangement (Fig. 1[link]) with `longer' arm ceb carboxyl­ate O-atom donors in trans positions in the basal plane. A carboxyl­ate group from the `shorter' arm ceb terminus bridges a basal position and the Jahn–Teller elongated apical position. The remaining coordination site in the basal plane is taken up by a pyridyl N-atom donor from a bpmp ligand. A modest deviation from idealized square-pyramidal coordination is indicated by the trigonality factor τ of 0.11 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). Bond lengths and angles within the coordination sphere are listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.969 (2) Cu1—O4ii 1.985 (2)
Cu1—O2i 1.968 (2) Cu1—N1 1.979 (3)
Cu1—O3ii 2.299 (2)    
       
O1—Cu1—O3ii 101.92 (9) O2i—Cu1—O4ii 90.56 (10)
O1—Cu1—O4ii 92.30 (10) O2i—Cu1—N1 93.02 (11)
O1—Cu1—N1 89.47 (11) O4ii—Cu1—O3ii 61.65 (9)
O2i—Cu1—O1 157.53 (10) N1—Cu1—O3ii 104.62 (10)
O2i—Cu1—O3ii 99.04 (9) N1—Cu1—O4ii 166.22 (11)
Symmetry codes: (i) [-x, -y+1, -z+2]; (ii) x, y, z+1.
[Figure 1]
Figure 1
The copper coordination environment in the title com­pound with full ceb and bpmp ligands. Displacement ellipsoids are drawn at the 50% probability level. Color code: Cu dark blue, O red, N light blue, C black, and H pink. The symmetry codes are as listed in Table 1[link].

The carboxyl­ate groups of the longer arms of the ceb ligands bridge two CuII atoms in a synsyn fashion to construct [Cu2(OCO)2] dimeric groups with a Cu⋯Cu distance of 2.8992 (8) Å. These are connected by chelating carboxyl­ate groups belonging to the shorter ceb termini, to form [Cu2(ceb)2] monoperiodic coordination polymer ribbons oriented along the c axis (Fig. 2[link]). These [Cu2(ceb)2] ribbon motifs are pillared by dipodal bpmp ligands to form [Cu2(ceb)2(bpmp)]n coordination polymer slabs that are oriented parallel to (1[\overline{1}]0) (Fig. 3[link]). Longer-range C—H⋯O attractive forces between parallel adjacent slab motifs construct the full three-dimensional crystal structure of the title com­pound (Fig. 4[link]). The slabs stack in an AAA repeating pattern along the a crystal direction.

[Figure 2]
Figure 2
The [Cu2(ceb)2]n coordination polymer chain in the title com­pound.
[Figure 3]
Figure 3
The [Cu2(ceb)2(bpmp)]n coordination polymer slab in the title com­pound. The [Cu2(ceb)2]n chain motifs are drawn in red.
[Figure 4]
Figure 4
The AAA stacking of the [Cu2(ceb)2(bpmp)]n coordination polymer slabs in the title com­pound.

Synthesis and crystallization

Cu(NO3)2·2.5H2O (86 mg, 0.37 mmol), 4-(carb­oxy­meth­yl)benzoic acid (cmbH2) (67 mg, 0.37 mmol), 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) (99 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed in 10 ml distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title com­plex were obtained in 51% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The greatest remaining electron density of 1.53 e Å−3 is situated 1.45 Å from the Cu1 atom.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C9H6O4)2(C16H20N4)]
Mr 751.71
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 8.5431 (8), 9.7391 (9), 9.9667 (9)
α, β, γ (°) 104.523 (1), 93.049 (1), 99.966 (1)
V3) 786.57 (13)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.41
Crystal size (mm) 0.20 × 0.11 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.693, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 10964, 2883, 2459
Rint 0.042
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 1.12
No. of reflections 2883
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.53, −0.32
Computer programs: COSMO (Bruker 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMakerX (Palmer, 2020[Palmer, D. (2020). CrystalMakerX. Crystal Maker Software, Begbroke, England.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker 2009); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CrystalMakerX (Palmer, 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[µ-1,4-bis(pyridin-4-ylmethyl)piperazine]bis[µ3-4-(2-carboxylatoethyl)benzoato]dicopper(II)] top
Crystal data top
[Cu2(C9H6O4)2(C16H20N4)]Z = 1
Mr = 751.71F(000) = 386
Triclinic, P1Dx = 1.587 Mg m3
a = 8.5431 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7391 (9) ÅCell parameters from 5378 reflections
c = 9.9667 (9) Åθ = 2.2–25.3°
α = 104.523 (1)°µ = 1.41 mm1
β = 93.049 (1)°T = 173 K
γ = 99.966 (1)°Plate, green
V = 786.57 (13) Å30.20 × 0.11 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2883 independent reflections
Radiation source: sealed tube2459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 8.36 pixels mm-1θmax = 25.3°, θmin = 2.1°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1111
Tmin = 0.693, Tmax = 0.745l = 1111
10964 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.6812P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
2883 reflectionsΔρmax = 1.53 e Å3
217 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was refined by Least Squares using version 2018/3 of XL (Sheldrick, 2015b) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically. There is an unresolvable absorption artifact located as a difference peak of 1.53 e- Å-3 situated 1.45 Å from the Cu1 atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.15932 (5)0.57426 (4)1.06176 (4)0.02211 (16)
O10.2117 (3)0.4082 (2)0.9252 (2)0.0217 (5)
O20.0365 (3)0.2769 (2)0.8582 (2)0.0234 (5)
O30.3034 (3)0.5715 (3)0.2622 (2)0.0254 (6)
O40.0605 (3)0.4498 (2)0.1767 (2)0.0243 (5)
N10.3031 (3)0.7066 (3)0.9800 (3)0.0227 (6)
N20.5273 (3)0.9828 (3)0.6389 (3)0.0212 (6)
C10.1118 (4)0.3055 (3)0.8481 (3)0.0201 (7)
C20.1732 (4)0.2095 (4)0.7247 (3)0.0226 (7)
H2A0.2831160.1984150.7500490.027*
H2B0.1036470.1124350.6959600.027*
C30.1715 (4)0.2823 (4)0.6072 (3)0.0202 (7)
C40.2935 (4)0.3977 (4)0.6063 (4)0.0237 (8)
H40.3776010.4307240.6798790.028*
C50.2926 (4)0.4638 (4)0.4992 (3)0.0224 (7)
H50.3768770.5415590.4994910.027*
C60.1706 (4)0.4188 (3)0.3911 (3)0.0206 (7)
C70.0445 (4)0.3072 (4)0.3944 (4)0.0262 (8)
H70.0422660.2774620.3233030.031*
C80.0466 (4)0.2403 (4)0.5012 (4)0.0255 (8)
H80.0390000.1641510.5022360.031*
C90.1809 (4)0.4860 (4)0.2720 (3)0.0217 (7)
C100.2529 (4)0.8020 (4)0.9196 (3)0.0235 (7)
H100.1474820.8192450.9298660.028*
C110.3479 (4)0.8759 (4)0.8433 (3)0.0238 (8)
H110.3077950.9431060.8029680.029*
C120.5025 (4)0.8526 (4)0.8249 (3)0.0221 (7)
C130.5560 (4)0.7578 (4)0.8919 (4)0.0267 (8)
H130.6617440.7406130.8851160.032*
C140.4550 (4)0.6888 (4)0.9684 (4)0.0258 (8)
H140.4944120.6257841.0149080.031*
C150.6109 (4)0.9265 (4)0.7382 (4)0.0259 (8)
H15A0.6882561.0072590.8014800.031*
H15B0.6724200.8566340.6865880.031*
C160.6446 (4)1.0736 (3)0.5796 (4)0.0226 (7)
H16A0.7197021.0152950.5324330.027*
H16B0.7068511.1536520.6554420.027*
C170.4372 (4)0.8651 (4)0.5234 (4)0.0235 (7)
H17A0.3563660.8024310.5604960.028*
H17B0.5108890.8052220.4759750.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0226 (3)0.0256 (3)0.0190 (3)0.00159 (17)0.00451 (17)0.00903 (18)
O10.0243 (12)0.0234 (12)0.0184 (12)0.0049 (10)0.0047 (10)0.0067 (10)
O20.0245 (13)0.0253 (12)0.0206 (13)0.0031 (10)0.0067 (10)0.0065 (10)
O30.0255 (13)0.0294 (13)0.0222 (13)0.0033 (11)0.0018 (10)0.0143 (11)
O40.0252 (13)0.0309 (13)0.0176 (13)0.0001 (10)0.0015 (10)0.0115 (10)
N10.0235 (15)0.0248 (15)0.0201 (15)0.0030 (12)0.0032 (12)0.0075 (12)
N20.0230 (15)0.0207 (14)0.0190 (15)0.0013 (12)0.0029 (12)0.0071 (12)
C10.0272 (19)0.0233 (17)0.0171 (17)0.0093 (15)0.0049 (14)0.0150 (14)
C20.0251 (18)0.0240 (17)0.0215 (18)0.0078 (14)0.0044 (14)0.0084 (14)
C30.0233 (17)0.0249 (17)0.0159 (17)0.0085 (14)0.0062 (14)0.0082 (14)
C40.0243 (18)0.0276 (18)0.0171 (18)0.0026 (14)0.0002 (14)0.0039 (14)
C50.0253 (18)0.0216 (17)0.0189 (18)0.0008 (14)0.0025 (14)0.0061 (14)
C60.0245 (18)0.0239 (17)0.0153 (17)0.0071 (14)0.0054 (14)0.0063 (14)
C70.0232 (18)0.037 (2)0.0169 (18)0.0013 (15)0.0018 (14)0.0102 (15)
C80.0216 (18)0.0310 (19)0.0233 (19)0.0038 (15)0.0052 (15)0.0117 (15)
C90.0272 (18)0.0240 (17)0.0147 (17)0.0075 (15)0.0056 (14)0.0038 (14)
C100.0236 (18)0.0286 (18)0.0197 (18)0.0052 (15)0.0027 (14)0.0087 (15)
C110.0317 (19)0.0233 (17)0.0185 (18)0.0088 (15)0.0015 (15)0.0072 (14)
C120.0244 (18)0.0225 (17)0.0164 (17)0.0001 (14)0.0017 (14)0.0027 (14)
C130.0221 (18)0.0304 (19)0.029 (2)0.0052 (15)0.0039 (15)0.0104 (16)
C140.0266 (19)0.0282 (19)0.0251 (19)0.0047 (15)0.0011 (15)0.0123 (15)
C150.0225 (18)0.0299 (19)0.0244 (19)0.0007 (15)0.0023 (15)0.0086 (15)
C160.0223 (18)0.0215 (17)0.0219 (19)0.0030 (14)0.0027 (14)0.0070 (14)
C170.0251 (18)0.0213 (17)0.0228 (19)0.0014 (14)0.0035 (14)0.0071 (14)
Geometric parameters (Å, º) top
Cu1—Cu1i2.8992 (8)C5—H50.9500
Cu1—O11.969 (2)C5—C61.388 (5)
Cu1—O2i1.968 (2)C6—C71.400 (5)
Cu1—O3ii2.299 (2)C6—C91.492 (5)
Cu1—O4ii1.985 (2)C7—H70.9500
Cu1—N11.979 (3)C7—C81.381 (5)
Cu1—C9ii2.466 (3)C8—H80.9500
O1—C11.252 (4)C10—H100.9500
O2—C11.264 (4)C10—C111.375 (5)
O3—C91.244 (4)C11—H110.9500
O4—C91.299 (4)C11—C121.392 (5)
N1—C101.343 (4)C12—C131.389 (5)
N1—C141.346 (4)C12—C151.513 (5)
N2—C151.458 (4)C13—H130.9500
N2—C161.467 (4)C13—C141.380 (5)
N2—C171.473 (4)C14—H140.9500
C1—C21.525 (4)C15—H15A0.9900
C2—H2A0.9900C15—H15B0.9900
C2—H2B0.9900C16—H16A0.9900
C2—C31.514 (5)C16—H16B0.9900
C3—C41.396 (5)C16—C17iii1.508 (5)
C3—C81.391 (5)C17—H17A0.9900
C4—H40.9500C17—H17B0.9900
C4—C51.378 (5)
O1—Cu1—O3ii101.92 (9)C8—C7—H7120.1
O1—Cu1—O4ii92.30 (10)C3—C8—H8119.3
O1—Cu1—N189.47 (11)C7—C8—C3121.3 (3)
O2i—Cu1—O1157.53 (10)C7—C8—H8119.3
O2i—Cu1—O3ii99.04 (9)O3—C9—Cu1iv67.55 (18)
O2i—Cu1—O4ii90.56 (10)O3—C9—O4120.8 (3)
O2i—Cu1—N193.02 (11)O3—C9—C6120.8 (3)
O4ii—Cu1—O3ii61.65 (9)O4—C9—Cu1iv53.30 (16)
N1—Cu1—O3ii104.62 (10)O4—C9—C6118.3 (3)
N1—Cu1—O4ii166.22 (11)C6—C9—Cu1iv171.6 (3)
C1—O1—Cu1125.2 (2)N1—C10—H10118.7
C1—O2—Cu1i122.9 (2)N1—C10—C11122.6 (3)
C9—O3—Cu1iv82.5 (2)C11—C10—H10118.7
C9—O4—Cu1iv95.0 (2)C10—C11—H11119.8
C10—N1—Cu1123.5 (2)C10—C11—C12120.3 (3)
C10—N1—C14117.3 (3)C12—C11—H11119.8
C14—N1—Cu1118.7 (2)C11—C12—C15122.9 (3)
C15—N2—C16109.1 (3)C13—C12—C11116.8 (3)
C15—N2—C17111.4 (3)C13—C12—C15120.3 (3)
C16—N2—C17108.0 (3)C12—C13—H13120.1
O1—C1—O2126.7 (3)C14—C13—C12119.8 (3)
O1—C1—C2116.9 (3)C14—C13—H13120.1
O2—C1—C2116.3 (3)N1—C14—C13123.0 (3)
C1—C2—H2A110.3N1—C14—H14118.5
C1—C2—H2B110.3C13—C14—H14118.5
H2A—C2—H2B108.6N2—C15—C12114.2 (3)
C3—C2—C1107.1 (3)N2—C15—H15A108.7
C3—C2—H2A110.3N2—C15—H15B108.7
C3—C2—H2B110.3C12—C15—H15A108.7
C4—C3—C2120.2 (3)C12—C15—H15B108.7
C8—C3—C2121.3 (3)H15A—C15—H15B107.6
C8—C3—C4118.5 (3)N2—C16—H16A109.5
C3—C4—H4119.8N2—C16—H16B109.5
C5—C4—C3120.3 (3)N2—C16—C17iii110.8 (3)
C5—C4—H4119.8H16A—C16—H16B108.1
C4—C5—H5119.4C17iii—C16—H16A109.5
C4—C5—C6121.2 (3)C17iii—C16—H16B109.5
C6—C5—H5119.4N2—C17—C16iii110.2 (3)
C5—C6—C7118.8 (3)N2—C17—H17A109.6
C5—C6—C9119.3 (3)N2—C17—H17B109.6
C7—C6—C9121.9 (3)C16iii—C17—H17A109.6
C6—C7—H7120.1C16iii—C17—H17B109.6
C8—C7—C6119.9 (3)H17A—C17—H17B108.1
Cu1—O1—C1—O212.1 (5)C5—C6—C9—O36.7 (5)
Cu1—O1—C1—C2164.4 (2)C5—C6—C9—O4175.2 (3)
Cu1i—O2—C1—O128.1 (4)C6—C7—C8—C30.5 (5)
Cu1i—O2—C1—C2148.4 (2)C7—C6—C9—O3170.6 (3)
Cu1iv—O3—C9—O41.2 (3)C7—C6—C9—O47.4 (5)
Cu1iv—O3—C9—C6179.2 (3)C8—C3—C4—C52.7 (5)
Cu1iv—O4—C9—O31.4 (3)C9—C6—C7—C8174.8 (3)
Cu1iv—O4—C9—C6179.5 (2)C10—N1—C14—C133.5 (5)
Cu1—N1—C10—C11168.9 (2)C10—C11—C12—C132.8 (5)
Cu1—N1—C14—C13168.5 (3)C10—C11—C12—C15177.8 (3)
O1—C1—C2—C384.4 (3)C11—C12—C13—C142.0 (5)
O2—C1—C2—C392.4 (3)C11—C12—C15—N220.0 (5)
N1—C10—C11—C120.5 (5)C12—C13—C14—N11.2 (5)
C1—C2—C3—C479.3 (4)C13—C12—C15—N2160.6 (3)
C1—C2—C3—C898.3 (4)C14—N1—C10—C112.6 (5)
C2—C3—C4—C5179.7 (3)C15—N2—C16—C17iii179.7 (3)
C2—C3—C8—C7179.7 (3)C15—N2—C17—C16iii178.5 (3)
C3—C4—C5—C60.6 (5)C15—C12—C13—C14178.7 (3)
C4—C3—C8—C72.1 (5)C16—N2—C15—C12169.9 (3)
C4—C5—C6—C72.0 (5)C16—N2—C17—C16iii58.8 (4)
C4—C5—C6—C9175.4 (3)C17—N2—C15—C1271.1 (4)
C5—C6—C7—C82.6 (5)C17—N2—C16—C17iii59.2 (4)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y, z+1; (iii) x+1, y+2, z+1; (iv) x, y, z1.
 

Funding information

Funding for this research was provided by: Lyman Briggs College, Michigan State University.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartin, D. P., Staples, R. J. & LaDuca, R. L. (2008). Inorg. Chem. 47, 9754–9756.  CrossRef PubMed CAS Google Scholar
First citationPalmer, D. (2020). CrystalMakerX. Crystal Maker Software, Begbroke, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146