metal-organic compounds
Poly[[μ-1,4-bis(pyridin-4-ylmethyl)piperazine]bis[μ3-4-(2-carboxylatoethyl)benzoato]dicopper(II)]
aE-194 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu
In the title coordination polymer, [Cu2(C9H6O4)2(C16H20N4)]n, the CuII atoms in {NO4} square-pyramidal coordination environments are conjoined into diperiodic coordination polymer slabs by the full span of the bridging 1,4-bis(pyridin-4-ylmethyl)piperazine (bpmp) and 4-(carboxylethyl)benzoate (ceb) ligands. The slab motifs are expanded into the full by means of longer-range C—H⋯O attractive interactions.
CCDC reference: 1976250
Structure description
Our group has reported several divalent metal coordination polymers with intriguing topologies based on the dipodal pyridyl ligand 1,4-bis(pyridin-4-ylmethyl)piperazine (bpmp) in the presence of dicarboxylate co-ligands. For example, using the dicarboxylate ligand oxy(bisbenzoate) (oba) afforded the highly entangled self-penetrated phase [Co3(oba)3(bpmp)2] (Martin et al., 2008). The title compound was obtained by hydrothermal reaction of copper nitrate, 4-(carboxylethyl)benzoic acid (cebH2), and bpmp under basic conditions.
The II atom, a ceb ligand, and half of a bpmp ligand whose central piperazine ring is situated on a crystallographic inversion center. The CuII atom is coordinated in a {NO4} square-pyramidal arrangement (Fig. 1) with `longer' arm ceb carboxylate O-atom donors in trans positions in the basal plane. A carboxylate group from the `shorter' arm ceb terminus bridges a basal position and the Jahn–Teller elongated apical position. The remaining coordination site in the basal plane is taken up by a pyridyl N-atom donor from a bpmp ligand. A modest deviation from idealized square-pyramidal coordination is indicated by the trigonality factor τ of 0.11 (Addison et al., 1984). Bond lengths and angles within the coordination sphere are listed in Table 1.
of the title compound consists of a CuThe carboxylate groups of the longer arms of the ceb ligands bridge two CuII atoms in a syn–syn fashion to construct [Cu2(OCO)2] dimeric groups with a Cu⋯Cu distance of 2.8992 (8) Å. These are connected by chelating carboxylate groups belonging to the shorter ceb termini, to form [Cu2(ceb)2] monoperiodic coordination polymer ribbons oriented along the c axis (Fig. 2). These [Cu2(ceb)2] ribbon motifs are pillared by dipodal bpmp ligands to form [Cu2(ceb)2(bpmp)]n coordination polymer slabs that are oriented parallel to (10) (Fig. 3). Longer-range C—H⋯O attractive forces between parallel adjacent slab motifs construct the full three-dimensional of the title compound (Fig. 4). The slabs stack in an AAA repeating pattern along the a crystal direction.
Synthesis and crystallization
Cu(NO3)2·2.5H2O (86 mg, 0.37 mmol), 4-(carboxymethyl)benzoic acid (cmbH2) (67 mg, 0.37 mmol), 1,4-bis(pyridin-4-ylmethyl)piperazine (bpmp) (99 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed in 10 ml distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title complex were obtained in 51% yield.
Refinement
Crystal data, data collection and structure . The greatest remaining electron density of 1.53 e Å−3 is situated 1.45 Å from the Cu1 atom.
details are summarized in Table 2
|
Structural data
CCDC reference: 1976250
https://doi.org/10.1107/S2414314623007459/wm4195sup1.cif
contains datablocks I, 1R. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623007459/wm4195Isup2.hkl
res file. DOI: https://doi.org/10.1107/S2414314623007459/wm4195sup3.txt
Data collection: COSMO (Bruker 2009); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CrystalMakerX (Palmer, 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu2(C9H6O4)2(C16H20N4)] | Z = 1 |
Mr = 751.71 | F(000) = 386 |
Triclinic, P1 | Dx = 1.587 Mg m−3 |
a = 8.5431 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.7391 (9) Å | Cell parameters from 5378 reflections |
c = 9.9667 (9) Å | θ = 2.2–25.3° |
α = 104.523 (1)° | µ = 1.41 mm−1 |
β = 93.049 (1)° | T = 173 K |
γ = 99.966 (1)° | Plate, green |
V = 786.57 (13) Å3 | 0.20 × 0.11 × 0.07 mm |
Bruker APEXII CCD diffractometer | 2883 independent reflections |
Radiation source: sealed tube | 2459 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 8.36 pixels mm-1 | θmax = 25.3°, θmin = 2.1° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −11→11 |
Tmin = 0.693, Tmax = 0.745 | l = −11→11 |
10964 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0559P)2 + 0.6812P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.001 |
2883 reflections | Δρmax = 1.53 e Å−3 |
217 parameters | Δρmin = −0.31 e Å−3 |
0 restraints |
Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure was refined by Least Squares using version 2018/3 of XL (Sheldrick, 2015b) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically. There is an unresolvable absorption artifact located as a difference peak of 1.53 e- Å-3 situated 1.45 Å from the Cu1 atom. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.15932 (5) | 0.57426 (4) | 1.06176 (4) | 0.02211 (16) | |
O1 | 0.2117 (3) | 0.4082 (2) | 0.9252 (2) | 0.0217 (5) | |
O2 | −0.0365 (3) | 0.2769 (2) | 0.8582 (2) | 0.0234 (5) | |
O3 | 0.3034 (3) | 0.5715 (3) | 0.2622 (2) | 0.0254 (6) | |
O4 | 0.0605 (3) | 0.4498 (2) | 0.1767 (2) | 0.0243 (5) | |
N1 | 0.3031 (3) | 0.7066 (3) | 0.9800 (3) | 0.0227 (6) | |
N2 | 0.5273 (3) | 0.9828 (3) | 0.6389 (3) | 0.0212 (6) | |
C1 | 0.1118 (4) | 0.3055 (3) | 0.8481 (3) | 0.0201 (7) | |
C2 | 0.1732 (4) | 0.2095 (4) | 0.7247 (3) | 0.0226 (7) | |
H2A | 0.283116 | 0.198415 | 0.750049 | 0.027* | |
H2B | 0.103647 | 0.112435 | 0.695960 | 0.027* | |
C3 | 0.1715 (4) | 0.2823 (4) | 0.6072 (3) | 0.0202 (7) | |
C4 | 0.2935 (4) | 0.3977 (4) | 0.6063 (4) | 0.0237 (8) | |
H4 | 0.377601 | 0.430724 | 0.679879 | 0.028* | |
C5 | 0.2926 (4) | 0.4638 (4) | 0.4992 (3) | 0.0224 (7) | |
H5 | 0.376877 | 0.541559 | 0.499491 | 0.027* | |
C6 | 0.1706 (4) | 0.4188 (3) | 0.3911 (3) | 0.0206 (7) | |
C7 | 0.0445 (4) | 0.3072 (4) | 0.3944 (4) | 0.0262 (8) | |
H7 | −0.042266 | 0.277462 | 0.323303 | 0.031* | |
C8 | 0.0466 (4) | 0.2403 (4) | 0.5012 (4) | 0.0255 (8) | |
H8 | −0.039000 | 0.164151 | 0.502236 | 0.031* | |
C9 | 0.1809 (4) | 0.4860 (4) | 0.2720 (3) | 0.0217 (7) | |
C10 | 0.2529 (4) | 0.8020 (4) | 0.9196 (3) | 0.0235 (7) | |
H10 | 0.147482 | 0.819245 | 0.929866 | 0.028* | |
C11 | 0.3479 (4) | 0.8759 (4) | 0.8433 (3) | 0.0238 (8) | |
H11 | 0.307795 | 0.943106 | 0.802968 | 0.029* | |
C12 | 0.5025 (4) | 0.8526 (4) | 0.8249 (3) | 0.0221 (7) | |
C13 | 0.5560 (4) | 0.7578 (4) | 0.8919 (4) | 0.0267 (8) | |
H13 | 0.661744 | 0.740613 | 0.885116 | 0.032* | |
C14 | 0.4550 (4) | 0.6888 (4) | 0.9684 (4) | 0.0258 (8) | |
H14 | 0.494412 | 0.625784 | 1.014908 | 0.031* | |
C15 | 0.6109 (4) | 0.9265 (4) | 0.7382 (4) | 0.0259 (8) | |
H15A | 0.688256 | 1.007259 | 0.801480 | 0.031* | |
H15B | 0.672420 | 0.856634 | 0.686588 | 0.031* | |
C16 | 0.6446 (4) | 1.0736 (3) | 0.5796 (4) | 0.0226 (7) | |
H16A | 0.719702 | 1.015295 | 0.532433 | 0.027* | |
H16B | 0.706851 | 1.153652 | 0.655442 | 0.027* | |
C17 | 0.4372 (4) | 0.8651 (4) | 0.5234 (4) | 0.0235 (7) | |
H17A | 0.356366 | 0.802431 | 0.560496 | 0.028* | |
H17B | 0.510889 | 0.805222 | 0.475975 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0226 (3) | 0.0256 (3) | 0.0190 (3) | 0.00159 (17) | 0.00451 (17) | 0.00903 (18) |
O1 | 0.0243 (12) | 0.0234 (12) | 0.0184 (12) | 0.0049 (10) | 0.0047 (10) | 0.0067 (10) |
O2 | 0.0245 (13) | 0.0253 (12) | 0.0206 (13) | 0.0031 (10) | 0.0067 (10) | 0.0065 (10) |
O3 | 0.0255 (13) | 0.0294 (13) | 0.0222 (13) | −0.0033 (11) | 0.0018 (10) | 0.0143 (11) |
O4 | 0.0252 (13) | 0.0309 (13) | 0.0176 (13) | 0.0001 (10) | 0.0015 (10) | 0.0115 (10) |
N1 | 0.0235 (15) | 0.0248 (15) | 0.0201 (15) | 0.0030 (12) | 0.0032 (12) | 0.0075 (12) |
N2 | 0.0230 (15) | 0.0207 (14) | 0.0190 (15) | −0.0013 (12) | 0.0029 (12) | 0.0071 (12) |
C1 | 0.0272 (19) | 0.0233 (17) | 0.0171 (17) | 0.0093 (15) | 0.0049 (14) | 0.0150 (14) |
C2 | 0.0251 (18) | 0.0240 (17) | 0.0215 (18) | 0.0078 (14) | 0.0044 (14) | 0.0084 (14) |
C3 | 0.0233 (17) | 0.0249 (17) | 0.0159 (17) | 0.0085 (14) | 0.0062 (14) | 0.0082 (14) |
C4 | 0.0243 (18) | 0.0276 (18) | 0.0171 (18) | 0.0026 (14) | 0.0002 (14) | 0.0039 (14) |
C5 | 0.0253 (18) | 0.0216 (17) | 0.0189 (18) | −0.0008 (14) | 0.0025 (14) | 0.0061 (14) |
C6 | 0.0245 (18) | 0.0239 (17) | 0.0153 (17) | 0.0071 (14) | 0.0054 (14) | 0.0063 (14) |
C7 | 0.0232 (18) | 0.037 (2) | 0.0169 (18) | −0.0013 (15) | −0.0018 (14) | 0.0102 (15) |
C8 | 0.0216 (18) | 0.0310 (19) | 0.0233 (19) | −0.0038 (15) | 0.0052 (15) | 0.0117 (15) |
C9 | 0.0272 (18) | 0.0240 (17) | 0.0147 (17) | 0.0075 (15) | 0.0056 (14) | 0.0038 (14) |
C10 | 0.0236 (18) | 0.0286 (18) | 0.0197 (18) | 0.0052 (15) | 0.0027 (14) | 0.0087 (15) |
C11 | 0.0317 (19) | 0.0233 (17) | 0.0185 (18) | 0.0088 (15) | 0.0015 (15) | 0.0072 (14) |
C12 | 0.0244 (18) | 0.0225 (17) | 0.0164 (17) | 0.0001 (14) | 0.0017 (14) | 0.0027 (14) |
C13 | 0.0221 (18) | 0.0304 (19) | 0.029 (2) | 0.0052 (15) | 0.0039 (15) | 0.0104 (16) |
C14 | 0.0266 (19) | 0.0282 (19) | 0.0251 (19) | 0.0047 (15) | 0.0011 (15) | 0.0123 (15) |
C15 | 0.0225 (18) | 0.0299 (19) | 0.0244 (19) | 0.0007 (15) | 0.0023 (15) | 0.0086 (15) |
C16 | 0.0223 (18) | 0.0215 (17) | 0.0219 (19) | −0.0030 (14) | 0.0027 (14) | 0.0070 (14) |
C17 | 0.0251 (18) | 0.0213 (17) | 0.0228 (19) | −0.0014 (14) | 0.0035 (14) | 0.0071 (14) |
Cu1—Cu1i | 2.8992 (8) | C5—H5 | 0.9500 |
Cu1—O1 | 1.969 (2) | C5—C6 | 1.388 (5) |
Cu1—O2i | 1.968 (2) | C6—C7 | 1.400 (5) |
Cu1—O3ii | 2.299 (2) | C6—C9 | 1.492 (5) |
Cu1—O4ii | 1.985 (2) | C7—H7 | 0.9500 |
Cu1—N1 | 1.979 (3) | C7—C8 | 1.381 (5) |
Cu1—C9ii | 2.466 (3) | C8—H8 | 0.9500 |
O1—C1 | 1.252 (4) | C10—H10 | 0.9500 |
O2—C1 | 1.264 (4) | C10—C11 | 1.375 (5) |
O3—C9 | 1.244 (4) | C11—H11 | 0.9500 |
O4—C9 | 1.299 (4) | C11—C12 | 1.392 (5) |
N1—C10 | 1.343 (4) | C12—C13 | 1.389 (5) |
N1—C14 | 1.346 (4) | C12—C15 | 1.513 (5) |
N2—C15 | 1.458 (4) | C13—H13 | 0.9500 |
N2—C16 | 1.467 (4) | C13—C14 | 1.380 (5) |
N2—C17 | 1.473 (4) | C14—H14 | 0.9500 |
C1—C2 | 1.525 (4) | C15—H15A | 0.9900 |
C2—H2A | 0.9900 | C15—H15B | 0.9900 |
C2—H2B | 0.9900 | C16—H16A | 0.9900 |
C2—C3 | 1.514 (5) | C16—H16B | 0.9900 |
C3—C4 | 1.396 (5) | C16—C17iii | 1.508 (5) |
C3—C8 | 1.391 (5) | C17—H17A | 0.9900 |
C4—H4 | 0.9500 | C17—H17B | 0.9900 |
C4—C5 | 1.378 (5) | ||
O1—Cu1—O3ii | 101.92 (9) | C8—C7—H7 | 120.1 |
O1—Cu1—O4ii | 92.30 (10) | C3—C8—H8 | 119.3 |
O1—Cu1—N1 | 89.47 (11) | C7—C8—C3 | 121.3 (3) |
O2i—Cu1—O1 | 157.53 (10) | C7—C8—H8 | 119.3 |
O2i—Cu1—O3ii | 99.04 (9) | O3—C9—Cu1iv | 67.55 (18) |
O2i—Cu1—O4ii | 90.56 (10) | O3—C9—O4 | 120.8 (3) |
O2i—Cu1—N1 | 93.02 (11) | O3—C9—C6 | 120.8 (3) |
O4ii—Cu1—O3ii | 61.65 (9) | O4—C9—Cu1iv | 53.30 (16) |
N1—Cu1—O3ii | 104.62 (10) | O4—C9—C6 | 118.3 (3) |
N1—Cu1—O4ii | 166.22 (11) | C6—C9—Cu1iv | 171.6 (3) |
C1—O1—Cu1 | 125.2 (2) | N1—C10—H10 | 118.7 |
C1—O2—Cu1i | 122.9 (2) | N1—C10—C11 | 122.6 (3) |
C9—O3—Cu1iv | 82.5 (2) | C11—C10—H10 | 118.7 |
C9—O4—Cu1iv | 95.0 (2) | C10—C11—H11 | 119.8 |
C10—N1—Cu1 | 123.5 (2) | C10—C11—C12 | 120.3 (3) |
C10—N1—C14 | 117.3 (3) | C12—C11—H11 | 119.8 |
C14—N1—Cu1 | 118.7 (2) | C11—C12—C15 | 122.9 (3) |
C15—N2—C16 | 109.1 (3) | C13—C12—C11 | 116.8 (3) |
C15—N2—C17 | 111.4 (3) | C13—C12—C15 | 120.3 (3) |
C16—N2—C17 | 108.0 (3) | C12—C13—H13 | 120.1 |
O1—C1—O2 | 126.7 (3) | C14—C13—C12 | 119.8 (3) |
O1—C1—C2 | 116.9 (3) | C14—C13—H13 | 120.1 |
O2—C1—C2 | 116.3 (3) | N1—C14—C13 | 123.0 (3) |
C1—C2—H2A | 110.3 | N1—C14—H14 | 118.5 |
C1—C2—H2B | 110.3 | C13—C14—H14 | 118.5 |
H2A—C2—H2B | 108.6 | N2—C15—C12 | 114.2 (3) |
C3—C2—C1 | 107.1 (3) | N2—C15—H15A | 108.7 |
C3—C2—H2A | 110.3 | N2—C15—H15B | 108.7 |
C3—C2—H2B | 110.3 | C12—C15—H15A | 108.7 |
C4—C3—C2 | 120.2 (3) | C12—C15—H15B | 108.7 |
C8—C3—C2 | 121.3 (3) | H15A—C15—H15B | 107.6 |
C8—C3—C4 | 118.5 (3) | N2—C16—H16A | 109.5 |
C3—C4—H4 | 119.8 | N2—C16—H16B | 109.5 |
C5—C4—C3 | 120.3 (3) | N2—C16—C17iii | 110.8 (3) |
C5—C4—H4 | 119.8 | H16A—C16—H16B | 108.1 |
C4—C5—H5 | 119.4 | C17iii—C16—H16A | 109.5 |
C4—C5—C6 | 121.2 (3) | C17iii—C16—H16B | 109.5 |
C6—C5—H5 | 119.4 | N2—C17—C16iii | 110.2 (3) |
C5—C6—C7 | 118.8 (3) | N2—C17—H17A | 109.6 |
C5—C6—C9 | 119.3 (3) | N2—C17—H17B | 109.6 |
C7—C6—C9 | 121.9 (3) | C16iii—C17—H17A | 109.6 |
C6—C7—H7 | 120.1 | C16iii—C17—H17B | 109.6 |
C8—C7—C6 | 119.9 (3) | H17A—C17—H17B | 108.1 |
Cu1—O1—C1—O2 | −12.1 (5) | C5—C6—C9—O3 | 6.7 (5) |
Cu1—O1—C1—C2 | 164.4 (2) | C5—C6—C9—O4 | −175.2 (3) |
Cu1i—O2—C1—O1 | 28.1 (4) | C6—C7—C8—C3 | 0.5 (5) |
Cu1i—O2—C1—C2 | −148.4 (2) | C7—C6—C9—O3 | −170.6 (3) |
Cu1iv—O3—C9—O4 | 1.2 (3) | C7—C6—C9—O4 | 7.4 (5) |
Cu1iv—O3—C9—C6 | 179.2 (3) | C8—C3—C4—C5 | −2.7 (5) |
Cu1iv—O4—C9—O3 | −1.4 (3) | C9—C6—C7—C8 | 174.8 (3) |
Cu1iv—O4—C9—C6 | −179.5 (2) | C10—N1—C14—C13 | −3.5 (5) |
Cu1—N1—C10—C11 | −168.9 (2) | C10—C11—C12—C13 | −2.8 (5) |
Cu1—N1—C14—C13 | 168.5 (3) | C10—C11—C12—C15 | 177.8 (3) |
O1—C1—C2—C3 | −84.4 (3) | C11—C12—C13—C14 | 2.0 (5) |
O2—C1—C2—C3 | 92.4 (3) | C11—C12—C15—N2 | −20.0 (5) |
N1—C10—C11—C12 | 0.5 (5) | C12—C13—C14—N1 | 1.2 (5) |
C1—C2—C3—C4 | 79.3 (4) | C13—C12—C15—N2 | 160.6 (3) |
C1—C2—C3—C8 | −98.3 (4) | C14—N1—C10—C11 | 2.6 (5) |
C2—C3—C4—C5 | 179.7 (3) | C15—N2—C16—C17iii | −179.7 (3) |
C2—C3—C8—C7 | 179.7 (3) | C15—N2—C17—C16iii | −178.5 (3) |
C3—C4—C5—C6 | 0.6 (5) | C15—C12—C13—C14 | −178.7 (3) |
C4—C3—C8—C7 | 2.1 (5) | C16—N2—C15—C12 | 169.9 (3) |
C4—C5—C6—C7 | 2.0 (5) | C16—N2—C17—C16iii | −58.8 (4) |
C4—C5—C6—C9 | −175.4 (3) | C17—N2—C15—C12 | −71.1 (4) |
C5—C6—C7—C8 | −2.6 (5) | C17—N2—C16—C17iii | 59.2 (4) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) x, y, z+1; (iii) −x+1, −y+2, −z+1; (iv) x, y, z−1. |
Funding information
Funding for this research was provided by: Lyman Briggs College, Michigan State University.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martin, D. P., Staples, R. J. & LaDuca, R. L. (2008). Inorg. Chem. 47, 9754–9756. CrossRef PubMed CAS Google Scholar
Palmer, D. (2020). CrystalMakerX. Crystal Maker Software, Begbroke, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.