inorganic compounds
M-type Gd2[Si2O7]
aInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
*Correspondence e-mail: schleid@iac.uni-stuttgart.de
The title compound, digadolinium(III) oxidodisilicate, Gd2[Si2O7], was obtained in its M-type after attempts to synthesize Gd5Br3[AsO3]4 as a by-product from fused silica ampoules. It crystallizes isotypically with M-type Eu2[Si2O7]. This structure consists of layers of ecliptically arranged oxidodisilicate [Si2O7]6− units separated from each other by bilayers consisting of GdIII cations.
Keywords: crystal structure; oxidodisilicate; rare-earth metal; gadolinium; isotypism.
CCDC reference: 2279127
Structure description
M-type Gd2[Si2O7] crystallizes as colourless platelets, isotypic with M-type Eu2[Si2O7] (Strobel et al., 2009), in the monoclinic P21/n. In the the two crystallographically distinguishable [SiO4]4− tetrahedra form discrete ecliptically arranged oxidodisilicate [Si2O7]6− units, which stand only on `two legs', here atoms O1 and O6, like the E- (Felsche, 1970) and ζ-type oxidodisilicates (Hartenbach et al., 2006), leading to the so-called `horseshoe' conformation, with an Si1—O4—Si2 angle of 161.3 (3)° (Fig. 1). Within the oxidosilicate tetrahedra, Si—O distances (Table 1) ranging from 1.588 (6) to 1.639 (6) Å to the terminal, as well as 1.646 (8) and 1.662 (8) Å to the bridging, oxide ligands (O4) occur, which agree well with those of the well-known dieuropium(III) oxidodisilicate, Eu2[Si2O7], in its M-type structure [d(Si—O) = 1.61–1.66 Å] (Strobel et al., 2009). Six terminal and four edge-bridging GdIII cations coordinate to each vertex-shared [Si2O7]6− bitetrahedron, two of which bind one edge each of two terminal O2− anions of one tetrahedral half (O1—O3 and O6—O7) and two of which bind three times each to one terminal O2− anion of both tetrahedral halves of the oxosilicate doubles, as well as to the bridging O atom (O2⋯O4⋯O5 and O3⋯O4⋯O7). Both crystallographically distinct GdIII cations are surrounded by eight O2− anions, each with Gd—O distances ranging from 2.250 (8) to 2.691 (6) Å (Fig. 2). In the of M-type Gd2[Si2O7], the [Si2O7]6− units are present in a layered arrangement parallel to (001) with adjacent bitetrahedra occurring mirrored along [010] at the inversion centre, whereas they are identically oriented along [100]. This structure consists of layers of [Si2O7]6− units separated from each other by bilayers consisting of GdIII cations (Fig. 3).
Synthesis and crystallization
Single crystals of M-Gd2[Si2O7] were obtained as a by-product during the synthesis of Gd5Br3[AsO3]4 (Locke et al., 2023) by reacting Gd2O3 with fused silica (SiO2) as the reaction vessel at a temperature of 1100 K, taking advantage of the presumed mineralizers As2O3 and GdBr3. The transparent colourless crystals exhibit a platelet-like habit.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2279127
https://doi.org/10.1107/S2414314623006545/wm4193sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623006545/wm4193Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2020); cell
X-AREA (Stoe & Cie, 2020); data reduction: X-AREA (Stoe & Cie, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).Gd2[Si2O7] | F(000) = 848 |
Mr = 482.68 | Dx = 5.572 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
a = 7.7267 (5) Å | Cell parameters from 12003 reflections |
b = 8.3859 (6) Å | θ = 2.3–33.0° |
c = 9.6814 (7) Å | µ = 23.25 mm−1 |
β = 113.486 (3)° | T = 293 K |
V = 575.34 (7) Å3 | Platelet, colourless |
Z = 4 | 1.0 × 0.5 × 0.1 mm |
Stoe StadiVari diffractometer | 2030 independent reflections |
Radiation source: fine-focus sealed tube | 1462 reflections with I > 2σ(I) |
Detector resolution: 5.81 pixels mm-1 | Rint = 0.051 |
rotation method, ω scans | θmax = 33.0°, θmin = 2.9° |
Absorption correction: numerical (LANA; Koziskova et al., 2016) | h = −11→11 |
Tmin = 0.031, Tmax = 0.108 | k = −12→12 |
11604 measured reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0305P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.033 | (Δ/σ)max < 0.001 |
wR(F2) = 0.068 | Δρmax = 1.72 e Å−3 |
S = 0.95 | Δρmin = −1.86 e Å−3 |
2030 reflections | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
102 parameters | Extinction coefficient: 0.0096 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Gd1 | 0.48343 (8) | 0.48090 (4) | 0.21037 (4) | 0.00929 (12) | |
Gd2 | 0.47192 (8) | 0.00947 (4) | 0.70211 (4) | 0.00892 (13) | |
Si1 | 0.3936 (4) | 0.2763 (3) | 0.4626 (3) | 0.0091 (6) | |
Si2 | 0.3149 (4) | 0.2212 (3) | 0.9603 (3) | 0.0098 (6) | |
O1 | 0.4411 (13) | 0.2968 (6) | 0.6396 (6) | 0.0128 (12) | |
O2 | 0.2751 (11) | 0.4101 (7) | 0.3477 (7) | 0.0126 (15) | |
O3 | 0.3205 (12) | 0.0922 (7) | 0.4242 (7) | 0.0140 (15) | |
O4 | 0.0880 (10) | 0.2262 (6) | 0.9314 (6) | 0.0118 (11) | |
O5 | 0.3162 (11) | 0.0874 (6) | 0.8436 (7) | 0.0109 (14) | |
O6 | 0.4408 (13) | 0.2074 (6) | 0.1370 (6) | 0.0125 (12) | |
O7 | 0.3525 (12) | 0.4030 (6) | 0.9167 (7) | 0.0104 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Gd1 | 0.0079 (2) | 0.0081 (2) | 0.0127 (2) | 0.0003 (2) | 0.0050 (2) | 0.00029 (16) |
Gd2 | 0.0078 (2) | 0.0078 (2) | 0.0120 (2) | −0.0004 (2) | 0.0048 (2) | 0.00001 (16) |
Si1 | 0.0085 (14) | 0.0073 (12) | 0.0108 (12) | 0.0016 (9) | 0.0032 (10) | 0.0000 (9) |
Si2 | 0.0102 (14) | 0.0087 (13) | 0.0120 (12) | −0.0013 (9) | 0.0060 (10) | 0.0010 (9) |
O1 | 0.014 (4) | 0.014 (3) | 0.012 (3) | −0.004 (4) | 0.007 (4) | −0.001 (2) |
O2 | 0.011 (4) | 0.014 (3) | 0.010 (3) | 0.005 (3) | 0.001 (3) | 0.002 (2) |
O3 | 0.009 (4) | 0.014 (3) | 0.021 (4) | −0.003 (3) | 0.008 (3) | −0.003 (2) |
O4 | 0.008 (3) | 0.011 (3) | 0.014 (3) | 0.005 (3) | 0.005 (3) | 0.001 (2) |
O5 | 0.009 (4) | 0.009 (3) | 0.014 (3) | 0.000 (3) | 0.004 (3) | −0.005 (2) |
O6 | 0.012 (4) | 0.017 (3) | 0.009 (3) | 0.000 (4) | 0.004 (4) | −0.001 (2) |
O7 | 0.012 (4) | 0.006 (3) | 0.014 (3) | −0.001 (3) | 0.007 (3) | −0.001 (2) |
Gd1—O1i | 2.291 (5) | Si1—O1 | 1.612 (6) |
Gd1—O7i | 2.305 (8) | Si1—O3 | 1.635 (6) |
Gd1—O3ii | 2.376 (8) | Si1—O4iii | 1.646 (8) |
Gd1—O6 | 2.384 (5) | Si1—Gd2vi | 3.269 (3) |
Gd1—O5iii | 2.441 (7) | Si2—O5 | 1.595 (6) |
Gd1—O2 | 2.533 (8) | Si2—O6ix | 1.600 (6) |
Gd1—O4iii | 2.621 (5) | Si2—O7 | 1.639 (6) |
Gd1—O7iv | 2.691 (6) | Si2—O4 | 1.662 (8) |
Gd1—Si2iv | 3.128 (3) | Si2—Gd1ix | 3.128 (3) |
Gd1—Si2iii | 3.217 (3) | Si2—Gd1viii | 3.217 (3) |
Gd1—Si1 | 3.277 (3) | Si2—Gd2x | 3.233 (3) |
Gd1—Gd2iii | 3.8078 (6) | O1—Gd1i | 2.291 (5) |
Gd2—O5 | 2.250 (8) | O2—Gd2xi | 2.302 (7) |
Gd2—O2v | 2.302 (7) | O3—Gd1xii | 2.376 (8) |
Gd2—O6vi | 2.313 (5) | O3—Gd2vi | 2.522 (8) |
Gd2—O7vii | 2.471 (8) | O4—Si1viii | 1.646 (8) |
Gd2—O1 | 2.472 (5) | O4—Gd1viii | 2.621 (5) |
Gd2—O3vi | 2.522 (8) | O4—Gd2x | 2.655 (5) |
Gd2—O3 | 2.565 (7) | O5—Gd1viii | 2.441 (7) |
Gd2—O4vii | 2.655 (5) | O6—Si2iv | 1.600 (6) |
Gd2—Si1 | 3.103 (3) | O6—Gd2vi | 2.313 (5) |
Gd2—Si2vii | 3.233 (3) | O7—Gd1i | 2.305 (8) |
Gd2—Si1vi | 3.269 (3) | O7—Gd2x | 2.471 (8) |
Gd2—Gd1viii | 3.8078 (6) | O7—Gd1ix | 2.691 (6) |
Si1—O2 | 1.588 (6) | ||
O1i—Gd1—O7i | 86.5 (3) | O5—Gd2—Si2vii | 94.83 (17) |
O1i—Gd1—O3ii | 88.5 (3) | O2v—Gd2—Si2vii | 148.23 (16) |
O7i—Gd1—O3ii | 100.09 (19) | O6vi—Gd2—Si2vii | 72.48 (17) |
O1i—Gd1—O6 | 160.3 (2) | O7vii—Gd2—Si2vii | 29.74 (15) |
O7i—Gd1—O6 | 106.7 (3) | O1—Gd2—Si2vii | 128.99 (19) |
O3ii—Gd1—O6 | 103.0 (3) | O3vi—Gd2—Si2vii | 87.49 (15) |
O1i—Gd1—O5iii | 84.7 (3) | O3—Gd2—Si2vii | 75.78 (15) |
O7i—Gd1—O5iii | 72.1 (2) | O4vii—Gd2—Si2vii | 30.84 (16) |
O3ii—Gd1—O5iii | 170.0 (2) | Si1—Gd2—Si2vii | 106.49 (7) |
O6—Gd1—O5iii | 85.6 (3) | O5—Gd2—Si1vi | 149.41 (16) |
O1i—Gd1—O2 | 85.0 (3) | O2v—Gd2—Si1vi | 94.01 (18) |
O7i—Gd1—O2 | 168.21 (19) | O6vi—Gd2—Si1vi | 71.81 (19) |
O3ii—Gd1—O2 | 71.6 (2) | O7vii—Gd2—Si1vi | 88.20 (16) |
O6—Gd1—O2 | 83.7 (3) | O1—Gd2—Si1vi | 127.82 (19) |
O5iii—Gd1—O2 | 115.06 (16) | O3vi—Gd2—Si1vi | 29.34 (15) |
O1i—Gd1—O4iii | 95.96 (18) | O3—Gd2—Si1vi | 77.72 (16) |
O7i—Gd1—O4iii | 131.3 (2) | O4vii—Gd2—Si1vi | 30.05 (17) |
O3ii—Gd1—O4iii | 128.6 (2) | Si1—Gd2—Si1vi | 99.74 (6) |
O6—Gd1—O4iii | 64.33 (18) | Si2vii—Gd2—Si1vi | 60.26 (5) |
O5iii—Gd1—O4iii | 59.7 (2) | O5—Gd2—Gd1viii | 37.46 (17) |
O2—Gd1—O4iii | 58.0 (2) | O2v—Gd2—Gd1viii | 139.14 (19) |
O1i—Gd1—O7iv | 139.54 (18) | O6vi—Gd2—Gd1viii | 91.6 (3) |
O7i—Gd1—O7iv | 66.0 (3) | O7vii—Gd2—Gd1viii | 35.64 (16) |
O3ii—Gd1—O7iv | 69.1 (3) | O1—Gd2—Gd1viii | 89.1 (2) |
O6—Gd1—O7iv | 60.18 (17) | O3vi—Gd2—Gd1viii | 147.64 (15) |
O5iii—Gd1—O7iv | 112.0 (2) | O3—Gd2—Gd1viii | 88.6 (2) |
O2—Gd1—O7iv | 116.6 (2) | O4vii—Gd2—Gd1viii | 92.70 (16) |
O4iii—Gd1—O7iv | 124.43 (16) | Si1—Gd2—Gd1viii | 95.78 (5) |
O1i—Gd1—Si2iv | 168.31 (19) | Si2vii—Gd2—Gd1viii | 62.16 (5) |
O7i—Gd1—Si2iv | 91.68 (16) | Si1vi—Gd2—Gd1viii | 122.43 (5) |
O3ii—Gd1—Si2iv | 80.41 (16) | O2—Si1—O1 | 119.5 (4) |
O6—Gd1—Si2iv | 30.06 (14) | O2—Si1—O3 | 117.2 (4) |
O5iii—Gd1—Si2iv | 105.74 (15) | O1—Si1—O3 | 104.7 (3) |
O2—Gd1—Si2iv | 95.01 (15) | O2—Si1—O4iii | 101.2 (4) |
O4iii—Gd1—Si2iv | 93.91 (12) | O1—Si1—O4iii | 111.0 (4) |
O7iv—Gd1—Si2iv | 31.58 (13) | O3—Si1—O4iii | 101.8 (4) |
O1i—Gd1—Si2iii | 91.52 (18) | O2—Si1—Gd2 | 156.8 (3) |
O7i—Gd1—Si2iii | 100.47 (18) | O1—Si1—Gd2 | 52.31 (19) |
O3ii—Gd1—Si2iii | 159.41 (19) | O3—Si1—Gd2 | 55.7 (2) |
O6—Gd1—Si2iii | 72.03 (17) | O4iii—Si1—Gd2 | 102.0 (2) |
O5iii—Gd1—Si2iii | 28.81 (16) | O2—Si1—Gd2vi | 112.5 (3) |
O2—Gd1—Si2iii | 87.91 (15) | O1—Si1—Gd2vi | 127.9 (3) |
O4iii—Gd1—Si2iii | 30.98 (17) | O3—Si1—Gd2vi | 49.1 (3) |
O7iv—Gd1—Si2iii | 121.22 (15) | O4iii—Si1—Gd2vi | 53.89 (19) |
Si2iv—Gd1—Si2iii | 100.16 (3) | Gd2—Si1—Gd2vi | 80.26 (6) |
O1i—Gd1—Si1 | 91.69 (18) | O2—Si1—Gd1 | 48.9 (3) |
O7i—Gd1—Si1 | 160.70 (18) | O1—Si1—Gd1 | 135.2 (3) |
O3ii—Gd1—Si1 | 99.08 (19) | O3—Si1—Gd1 | 118.8 (3) |
O6—Gd1—Si1 | 70.92 (19) | O4iii—Si1—Gd1 | 52.41 (19) |
O5iii—Gd1—Si1 | 88.55 (16) | Gd2—Si1—Gd1 | 153.91 (9) |
O2—Gd1—Si1 | 28.19 (15) | Gd2vi—Si1—Gd1 | 79.48 (6) |
O4iii—Gd1—Si1 | 29.85 (17) | O5—Si2—O6ix | 122.3 (4) |
O7iv—Gd1—Si1 | 123.92 (15) | O5—Si2—O7 | 114.8 (4) |
Si2iv—Gd1—Si1 | 93.76 (7) | O6ix—Si2—O7 | 104.4 (3) |
Si2iii—Gd1—Si1 | 60.34 (5) | O5—Si2—O4 | 101.7 (4) |
O1i—Gd1—Gd2iii | 89.6 (3) | O6ix—Si2—O4 | 109.5 (4) |
O7i—Gd1—Gd2iii | 38.66 (17) | O7—Si2—O4 | 102.5 (4) |
O3ii—Gd1—Gd2iii | 138.72 (18) | O5—Si2—Gd1ix | 156.8 (3) |
O6—Gd1—Gd2iii | 92.0 (2) | O6ix—Si2—Gd1ix | 48.29 (18) |
O5iii—Gd1—Gd2iii | 34.10 (16) | O7—Si2—Gd1ix | 59.3 (2) |
O2—Gd1—Gd2iii | 149.15 (15) | O4—Si2—Gd1ix | 101.5 (2) |
O4iii—Gd1—Gd2iii | 92.60 (17) | O5—Si2—Gd1viii | 47.5 (3) |
O7iv—Gd1—Gd2iii | 86.64 (19) | O6ix—Si2—Gd1viii | 136.8 (3) |
Si2iv—Gd1—Gd2iii | 96.26 (5) | O7—Si2—Gd1viii | 117.8 (3) |
Si2iii—Gd1—Gd2iii | 61.86 (5) | O4—Si2—Gd1viii | 54.3 (2) |
Si1—Gd1—Gd2iii | 122.19 (5) | Gd1ix—Si2—Gd1viii | 155.51 (9) |
O5—Gd2—O2v | 101.69 (19) | O5—Si2—Gd2x | 112.2 (3) |
O5—Gd2—O6vi | 84.4 (3) | O6ix—Si2—Gd2x | 125.5 (3) |
O2v—Gd2—O6vi | 82.3 (3) | O7—Si2—Gd2x | 48.4 (3) |
O5—Gd2—O7vii | 72.5 (2) | O4—Si2—Gd2x | 55.0 (2) |
O2v—Gd2—O7vii | 170.8 (2) | Gd1ix—Si2—Gd2x | 81.32 (6) |
O6vi—Gd2—O7vii | 89.9 (3) | Gd1viii—Si2—Gd2x | 80.91 (6) |
O5—Gd2—O1 | 81.0 (3) | Si1—O1—Gd1i | 130.8 (3) |
O2v—Gd2—O1 | 80.8 (2) | Si1—O1—Gd2 | 96.6 (2) |
O6vi—Gd2—O1 | 154.8 (2) | Gd1i—O1—Gd2 | 131.5 (3) |
O7vii—Gd2—O1 | 104.9 (3) | Si1—O2—Gd2xi | 142.9 (5) |
O5—Gd2—O3vi | 172.35 (19) | Si1—O2—Gd1 | 102.9 (4) |
O2v—Gd2—O3vi | 73.0 (2) | Gd2xi—O2—Gd1 | 108.3 (2) |
O6vi—Gd2—O3vi | 89.4 (3) | Si1—O3—Gd1xii | 132.2 (4) |
O7vii—Gd2—O3vi | 112.04 (17) | Si1—O3—Gd2vi | 101.6 (4) |
O1—Gd2—O3vi | 103.2 (3) | Gd1xii—O3—Gd2vi | 106.4 (2) |
O5—Gd2—O3 | 115.4 (3) | Si1—O3—Gd2 | 92.6 (3) |
O2v—Gd2—O3 | 119.4 (2) | Gd1xii—O3—Gd2 | 114.0 (3) |
O6vi—Gd2—O3 | 143.85 (18) | Gd2vi—O3—Gd2 | 107.8 (3) |
O7vii—Gd2—O3 | 69.9 (3) | Si1viii—O4—Si2 | 161.3 (3) |
O1—Gd2—O3 | 61.35 (18) | Si1viii—O4—Gd1viii | 97.7 (3) |
O3vi—Gd2—O3 | 72.2 (3) | Si2—O4—Gd1viii | 94.7 (3) |
O5—Gd2—O4vii | 121.6 (2) | Si1viii—O4—Gd2x | 96.1 (3) |
O2v—Gd2—O4vii | 119.9 (2) | Si2—O4—Gd2x | 94.2 (3) |
O6vi—Gd2—O4vii | 64.64 (16) | Gd1viii—O4—Gd2x | 104.97 (18) |
O7vii—Gd2—O4vii | 60.2 (2) | Si2—O5—Gd2 | 142.3 (4) |
O1—Gd2—O4vii | 140.50 (18) | Si2—O5—Gd1viii | 103.7 (4) |
O3vi—Gd2—O4vii | 58.9 (2) | Gd2—O5—Gd1viii | 108.4 (2) |
O3—Gd2—O4vii | 79.25 (17) | Si2iv—O6—Gd2vi | 131.8 (3) |
O5—Gd2—Si1 | 104.65 (16) | Si2iv—O6—Gd1 | 101.7 (3) |
O2v—Gd2—Si1 | 95.40 (16) | Gd2vi—O6—Gd1 | 126.0 (2) |
O6vi—Gd2—Si1 | 171.0 (2) | Si2—O7—Gd1i | 136.3 (4) |
O7vii—Gd2—Si1 | 93.06 (15) | Si2—O7—Gd2x | 101.8 (4) |
O1—Gd2—Si1 | 31.07 (14) | Gd1i—O7—Gd2x | 105.7 (2) |
O3vi—Gd2—Si1 | 81.58 (15) | Si2—O7—Gd1ix | 89.1 (3) |
O3—Gd2—Si1 | 31.75 (14) | Gd1i—O7—Gd1ix | 114.0 (3) |
O4vii—Gd2—Si1 | 109.70 (12) | Gd2x—O7—Gd1ix | 106.8 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) x, y, z−1; (v) x+1/2, −y+1/2, z+1/2; (vi) −x+1, −y, −z+1; (vii) −x+1/2, y−1/2, −z+3/2; (viii) x−1/2, −y+1/2, z+1/2; (ix) x, y, z+1; (x) −x+1/2, y+1/2, −z+3/2; (xi) x−1/2, −y+1/2, z−1/2; (xii) −x+1/2, y−1/2, −z+1/2. |
Acknowledgements
We thank Dr Falk Lissner for the single-crystal X-ray diffraction measurements.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Felsche, J. (1970). J. Less-Common Met. 21, 1–14. CrossRef CAS Web of Science Google Scholar
Hartenbach, I., Meier, S. F. & Schleid, T. (2006). Z. Naturforsch. Teil B, 61, 1054–1060. Web of Science CrossRef CAS Google Scholar
Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136–140. Web of Science CrossRef CAS Google Scholar
Locke, R. J. C. (2023). Planned doctoral thesis, University of Stuttgart, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2020). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Strobel, S., Schäfer, M. C. & Schleid, T. (2009). Z. Kristallogr. Suppl. 29, 40. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.