metal-organic compounds
μ-1,6-Dioxo-1,6-diphenylhexane-3,4-diolato-bis[(2,2′-bipyridine)chloridocopper(II)] dihydrate
aCarlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA, and bSchool of Natural Sciences, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
*Correspondence e-mail: mturnbull@clarku.edu
The reaction of CuCl2 with 1,6-diphenyl-1,3,5,6-hexanetetrone and 2,2′-bipyridine (bipy) in ethanol gave crystals of the corresponding bimetallic complex, [Cu2(C18H12O4)Cl2(C10H8N2)2]·2H2O. The molecule is centrosymmetric with each CuII ion coordinated to two oxygen atoms from the tetronediate, two nitrogen atoms from a bipy ligand and one coordinated chloride ion. A water molecule of crystallization forms hydrogen bonds to the chloride ions, linking the molecules into a chain parallel to the bc-face diagonal.
Keywords: CuII; hydrate; hydrogen-bonding; tetronedioate; crystal structure.
CCDC reference: 2288356
Structure description
1,6-Diphenyl-1,3,4,6-hexanetetrone has been known for over 100 years (Widman & Virgin, 1909) and its structure has been reported (Kaitner et al., 1992). Both its synthesis by oxidation (Balenović et al., 1954) and its reactions with oxidizing agents have been studied (Balenović, 1948; Bird & Thorley, 1977; Poje et al., 1978), as well as its use as a starting material for the preparation of a variety of aminated products (Lacan et al., 1973; Unterhalt & Pindur, 1977; Kaitner et al., 1992; Waring et al., 2002; Kobelev et al., 2019). The backbone core resembles a bis-acac structure and and as such it has been used in the preparation of transition-metal complexes (Boucher & Bailar, 1964; Saalfrank et al., 1998; Nawar, 1994). However, we were surprised to find that there are no reported structures of transition-metal complexes containing this ligand (Groom et al., 2016). We investigated its coordination chemistry with CuII as part of our studies on potential magnetic ladders (Monroe et al., 2022).
The molecule sits astride a crystallographic inversion center (Fig. 1). Each CuII ion is five-coordinate, including two oxygen atoms from the tetronediate ligand, two nitrogen atoms from a bipy molecule and one coordinated chloride ion. The CuN2O2 equatorial plane is nearly planar (mean deviation of the N2O2 donor set = 0.0219 Å) with the CuII ion displaced [0.2219 (15) Å] toward the chloride ion. The 1,3-dionato motif chelates a copper ion and generates a six-membered metallocyclic ring that is only slightly less planar (mean deviation of constituent atoms = 0.1207 Å). The two heterocyclic rings are co-planar as required by symmetry. The pyridyl rings are canted 0.67 (13)° from each other.
π-Stacking is observed between molecules. The Cu1-dionato ring sits above the N11-containing bpy ring with an interplanar distance of 3.33 (2) Å; the rings are canted 4.4 (2)° with respect to each other. The distance between the ring centroids is 3.73 (2) Å with a slip angle of 25.1 (3)°. This effectively blocks the vacant coordination site on Cu1, preventing the addition of a sixth ligand. π-Stacking is also observed between the phenyl rings of the tetrone ligand. Adjacent phenyl rings are parallel with an interplanar distance of 3.33 (2) Å with a slip angle of 22.8 (3)°. The bimetallic units are linked into chains via hydrogen bonds between the solvent water molecules and chloride ions (Table 1 and Fig. 2).
Synthesis and crystallization
CuCl2 (0.403 g, 2.99 mmol) was dissolved in 50 ml of absolute ethanol to generate a green solution. 2,2′-Bipyridine (0.469 g, 3.01 mmol) was added to the solution with stirring to make a light-blue slurry. Addition of 1,6-diphenyl-1,3,4,6-hexanetetrone (0.438 g, 1.49 mmol) generated a lime green slurry, which was stirred for 1 h. The precipitate was recovered by vacuum filtration, washed with ethanol and dried in air to yield 0.973 g of lime green powder (77%). Crystals suitable for X-ray diffraction were grown by recrystallization from DMF.
Refinement
Crystal data, data collection and structure . Eight reflections were omitted from the final owing to poor agreement; details are included in the CIF.
details are summarized in Table 2Structural data
CCDC reference: 2288356
https://doi.org/10.1107/S2414314623007137/tk4095sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623007137/tk4095Isup2.hkl
Data collection: CrystalClear (Rigaku, 2005); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015).[Cu2(C18H12O4)Cl2(C10H8N2)2]·2H2O | Z = 1 |
Mr = 838.65 | F(000) = 428 |
Triclinic, P1 | Dx = 1.616 Mg m−3 |
a = 8.7211 (2) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 10.4194 (2) Å | Cell parameters from 3450 reflections |
c = 10.5243 (7) Å | θ = 6.6–72.0° |
α = 106.426 (7)° | µ = 3.41 mm−1 |
β = 109.090 (8)° | T = 123 K |
γ = 90.373 (6)° | Plate, green |
V = 861.67 (8) Å3 | 0.13 × 0.09 × 0.02 mm |
Rigaku Spider diffractometer | 2552 independent reflections |
Radiation source: rotating anode | 1901 reflections with I > 2σ(I) |
Confocal optics monochromator | Rint = 0.046 |
Detector resolution: 10 pixels mm-1 | θmax = 61.1°, θmin = 6.6° |
ω–scans | h = −9→9 |
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) | k = −8→11 |
Tmin = 0.641, Tmax = 0.929 | l = −11→11 |
7470 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: mixed |
wR(F2) = 0.121 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0514P)2 + 0.1469P] where P = (Fo2 + 2Fc2)/3 |
2552 reflections | (Δ/σ)max < 0.001 |
241 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydrogen atoms bonded to carbon atoms were placed geometrically and refined with fixed isotropic thermal parameters. Hydrogen atoms bonded to O2 were located in the difference map and their positions refined with fixed isotropic thermal parameters (O—H = 0.82 (5) & 0.98 (4) Å). |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.33000 (7) | 0.32164 (6) | 0.96525 (6) | 0.0307 (2) | |
Cl1 | 0.11639 (12) | 0.13154 (10) | 0.77171 (10) | 0.0345 (3) | |
O1 | 0.1754 (3) | 0.4177 (3) | 1.0408 (3) | 0.0324 (7) | |
C1 | 0.0704 (5) | 0.4796 (4) | 0.9723 (4) | 0.0254 (10) | |
C2 | 0.0728 (5) | 0.5143 (4) | 0.8569 (4) | 0.0294 (10) | |
H2 | −0.017613 | 0.555390 | 0.812000 | 0.035* | |
O3 | 0.3211 (3) | 0.4301 (3) | 0.8421 (3) | 0.0330 (7) | |
C3 | 0.2001 (5) | 0.4937 (4) | 0.7987 (4) | 0.0271 (10) | |
C4 | 0.1975 (5) | 0.5506 (4) | 0.6837 (4) | 0.0303 (10) | |
C5 | 0.2992 (5) | 0.5074 (4) | 0.6059 (4) | 0.0329 (11) | |
H5 | 0.372026 | 0.443341 | 0.628745 | 0.039* | |
C6 | 0.2963 (5) | 0.5555 (5) | 0.4963 (5) | 0.0411 (12) | |
H6 | 0.365425 | 0.523306 | 0.443454 | 0.049* | |
C7 | 0.1939 (6) | 0.6503 (5) | 0.4627 (5) | 0.0422 (12) | |
H7 | 0.193055 | 0.683511 | 0.387222 | 0.051* | |
C8 | 0.0922 (5) | 0.6969 (4) | 0.5389 (5) | 0.0393 (12) | |
H8 | 0.022438 | 0.763064 | 0.516788 | 0.047* | |
C9 | 0.0926 (5) | 0.6469 (4) | 0.6470 (4) | 0.0310 (10) | |
H9 | 0.020939 | 0.677797 | 0.697730 | 0.037* | |
N11 | 0.5341 (4) | 0.2451 (3) | 0.9445 (3) | 0.0282 (8) | |
C11 | 0.6014 (5) | 0.2564 (4) | 0.8501 (4) | 0.0339 (11) | |
H11 | 0.549680 | 0.303493 | 0.785150 | 0.041* | |
C12 | 0.7425 (5) | 0.2020 (4) | 0.8441 (4) | 0.0343 (11) | |
H12 | 0.788780 | 0.212980 | 0.777127 | 0.041* | |
C13 | 0.8170 (5) | 0.1309 (4) | 0.9368 (4) | 0.0302 (10) | |
H13 | 0.914522 | 0.092053 | 0.933922 | 0.036* | |
C14 | 0.7475 (5) | 0.1177 (4) | 1.0326 (4) | 0.0277 (10) | |
H14 | 0.796296 | 0.069566 | 1.097313 | 0.033* | |
C15 | 0.6054 (5) | 0.1754 (4) | 1.0339 (4) | 0.0237 (9) | |
C16 | 0.5227 (5) | 0.1699 (4) | 1.1351 (4) | 0.0275 (10) | |
C17 | 0.5733 (5) | 0.1040 (4) | 1.2364 (4) | 0.0273 (10) | |
H17 | 0.667767 | 0.057482 | 1.244906 | 0.033* | |
C18 | 0.4850 (5) | 0.1061 (4) | 1.3261 (4) | 0.0318 (11) | |
H18 | 0.519826 | 0.063659 | 1.398103 | 0.038* | |
C19 | 0.3447 (5) | 0.1721 (4) | 1.3075 (4) | 0.0362 (11) | |
H19 | 0.280783 | 0.173765 | 1.365635 | 0.043* | |
C20 | 0.2994 (5) | 0.2349 (4) | 1.2041 (4) | 0.0316 (11) | |
H20 | 0.203908 | 0.280215 | 1.193139 | 0.038* | |
N12 | 0.3846 (4) | 0.2349 (3) | 1.1175 (3) | 0.0282 (8) | |
O2 | 0.2128 (4) | 0.0355 (4) | 0.4911 (4) | 0.0538 (10) | |
H2A | 0.178 (6) | 0.059 (5) | 0.557 (5) | 0.065* | |
H2B | 0.110 (6) | −0.013 (4) | 0.420 (5) | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0320 (4) | 0.0347 (4) | 0.0347 (4) | 0.0178 (3) | 0.0164 (3) | 0.0183 (3) |
Cl1 | 0.0317 (6) | 0.0400 (7) | 0.0367 (6) | 0.0129 (5) | 0.0136 (5) | 0.0164 (5) |
O1 | 0.0366 (17) | 0.0391 (18) | 0.0347 (17) | 0.0202 (14) | 0.0200 (14) | 0.0217 (14) |
C1 | 0.030 (2) | 0.022 (2) | 0.027 (2) | 0.0052 (19) | 0.012 (2) | 0.0094 (19) |
C2 | 0.027 (2) | 0.034 (3) | 0.032 (2) | 0.0130 (19) | 0.011 (2) | 0.016 (2) |
O3 | 0.0297 (16) | 0.0351 (17) | 0.0388 (17) | 0.0198 (14) | 0.0135 (13) | 0.0156 (14) |
C3 | 0.031 (3) | 0.024 (2) | 0.026 (2) | 0.0026 (19) | 0.009 (2) | 0.0098 (19) |
C4 | 0.025 (2) | 0.032 (3) | 0.030 (2) | 0.0030 (19) | 0.0050 (19) | 0.009 (2) |
C5 | 0.029 (2) | 0.039 (3) | 0.038 (3) | 0.011 (2) | 0.014 (2) | 0.021 (2) |
C6 | 0.039 (3) | 0.050 (3) | 0.042 (3) | 0.004 (2) | 0.018 (2) | 0.021 (2) |
C7 | 0.052 (3) | 0.046 (3) | 0.036 (3) | −0.005 (2) | 0.013 (2) | 0.025 (2) |
C8 | 0.036 (3) | 0.035 (3) | 0.048 (3) | 0.008 (2) | 0.008 (2) | 0.020 (2) |
C9 | 0.031 (2) | 0.038 (3) | 0.030 (2) | 0.008 (2) | 0.010 (2) | 0.020 (2) |
N11 | 0.027 (2) | 0.032 (2) | 0.031 (2) | 0.0111 (16) | 0.0163 (17) | 0.0114 (17) |
C11 | 0.038 (3) | 0.032 (3) | 0.034 (3) | 0.013 (2) | 0.014 (2) | 0.012 (2) |
C12 | 0.038 (3) | 0.037 (3) | 0.037 (3) | 0.012 (2) | 0.022 (2) | 0.013 (2) |
C13 | 0.032 (2) | 0.028 (2) | 0.036 (3) | 0.0114 (19) | 0.015 (2) | 0.013 (2) |
C14 | 0.034 (2) | 0.028 (2) | 0.027 (2) | 0.0105 (19) | 0.011 (2) | 0.017 (2) |
C15 | 0.028 (2) | 0.021 (2) | 0.025 (2) | 0.0064 (18) | 0.0106 (19) | 0.0097 (19) |
C16 | 0.024 (2) | 0.027 (2) | 0.034 (2) | 0.0078 (18) | 0.0102 (19) | 0.013 (2) |
C17 | 0.034 (2) | 0.024 (2) | 0.034 (3) | 0.0095 (19) | 0.011 (2) | 0.023 (2) |
C18 | 0.043 (3) | 0.030 (3) | 0.029 (2) | 0.006 (2) | 0.013 (2) | 0.019 (2) |
C19 | 0.038 (3) | 0.037 (3) | 0.041 (3) | 0.013 (2) | 0.022 (2) | 0.013 (2) |
C20 | 0.038 (3) | 0.029 (3) | 0.039 (3) | 0.013 (2) | 0.019 (2) | 0.021 (2) |
N12 | 0.031 (2) | 0.027 (2) | 0.032 (2) | 0.0085 (16) | 0.0155 (17) | 0.0119 (17) |
O2 | 0.044 (2) | 0.079 (3) | 0.046 (2) | 0.0153 (18) | 0.0187 (17) | 0.028 (2) |
Cu1—O1 | 1.929 (3) | N11—C11 | 1.338 (5) |
Cu1—O3 | 1.930 (3) | N11—C15 | 1.345 (5) |
Cu1—N12 | 1.984 (3) | C11—C12 | 1.371 (5) |
Cu1—N11 | 2.006 (3) | C11—H11 | 0.9500 |
Cu1—Cl1 | 2.5944 (12) | C12—C13 | 1.387 (5) |
O1—C1 | 1.270 (4) | C12—H12 | 0.9500 |
C1—C2 | 1.369 (5) | C13—C14 | 1.372 (5) |
C1—C1i | 1.537 (7) | C13—H13 | 0.9500 |
C2—C3 | 1.424 (5) | C14—C15 | 1.383 (5) |
C2—H2 | 0.9500 | C14—H14 | 0.9500 |
O3—C3 | 1.275 (4) | C15—C16 | 1.481 (5) |
C3—C4 | 1.485 (5) | C16—N12 | 1.371 (5) |
C4—C5 | 1.390 (5) | C16—C17 | 1.384 (5) |
C4—C9 | 1.412 (5) | C17—C18 | 1.396 (5) |
C5—C6 | 1.374 (6) | C17—H17 | 0.9500 |
C5—H5 | 0.9500 | C18—C19 | 1.393 (5) |
C6—C7 | 1.378 (6) | C18—H18 | 0.9500 |
C6—H6 | 0.9500 | C19—C20 | 1.375 (5) |
C7—C8 | 1.385 (6) | C19—H19 | 0.9500 |
C7—H7 | 0.9500 | C20—N12 | 1.352 (5) |
C8—C9 | 1.378 (5) | C20—H20 | 0.9500 |
C8—H8 | 0.9500 | O2—H2A | 0.82 (5) |
C9—H9 | 0.9500 | O2—H2B | 0.98 (4) |
O1—Cu1—O3 | 93.44 (11) | C4—C9—H9 | 119.4 |
O1—Cu1—N12 | 89.27 (12) | C11—N11—C15 | 118.8 (3) |
O3—Cu1—N12 | 167.52 (12) | C11—N11—Cu1 | 125.9 (3) |
O1—Cu1—N11 | 163.37 (13) | C15—N11—Cu1 | 115.3 (3) |
O3—Cu1—N11 | 93.59 (12) | N11—C11—C12 | 122.1 (4) |
N12—Cu1—N11 | 80.78 (13) | N11—C11—H11 | 118.9 |
O1—Cu1—Cl1 | 95.59 (9) | C12—C11—H11 | 118.9 |
O3—Cu1—Cl1 | 94.10 (9) | C11—C12—C13 | 119.3 (4) |
N12—Cu1—Cl1 | 97.76 (10) | C11—C12—H12 | 120.4 |
N11—Cu1—Cl1 | 98.92 (9) | C13—C12—H12 | 120.4 |
C1—O1—Cu1 | 122.0 (2) | C14—C13—C12 | 118.9 (4) |
O1—C1—C2 | 126.3 (4) | C14—C13—H13 | 120.6 |
O1—C1—C1i | 115.8 (4) | C12—C13—H13 | 120.6 |
C2—C1—C1i | 117.8 (5) | C13—C14—C15 | 119.1 (4) |
C1—C2—C3 | 125.1 (4) | C13—C14—H14 | 120.4 |
C1—C2—H2 | 117.4 | C15—C14—H14 | 120.4 |
C3—C2—H2 | 117.4 | N11—C15—C14 | 121.9 (4) |
C3—O3—Cu1 | 123.6 (3) | N11—C15—C16 | 114.7 (3) |
O3—C3—C2 | 123.4 (4) | C14—C15—C16 | 123.5 (4) |
O3—C3—C4 | 116.9 (4) | N12—C16—C17 | 121.7 (4) |
C2—C3—C4 | 119.7 (4) | N12—C16—C15 | 113.3 (3) |
C5—C4—C9 | 117.5 (4) | C17—C16—C15 | 125.0 (3) |
C5—C4—C3 | 119.9 (4) | C16—C17—C18 | 119.7 (4) |
C9—C4—C3 | 122.6 (4) | C16—C17—H17 | 120.2 |
C6—C5—C4 | 121.2 (4) | C18—C17—H17 | 120.2 |
C6—C5—H5 | 119.4 | C19—C18—C17 | 118.3 (4) |
C4—C5—H5 | 119.4 | C19—C18—H18 | 120.8 |
C5—C6—C7 | 120.5 (4) | C17—C18—H18 | 120.8 |
C5—C6—H6 | 119.7 | C20—C19—C18 | 119.4 (4) |
C7—C6—H6 | 119.7 | C20—C19—H19 | 120.3 |
C6—C7—C8 | 119.9 (4) | C18—C19—H19 | 120.3 |
C6—C7—H7 | 120.0 | N12—C20—C19 | 122.9 (4) |
C8—C7—H7 | 120.0 | N12—C20—H20 | 118.5 |
C9—C8—C7 | 119.7 (4) | C19—C20—H20 | 118.5 |
C9—C8—H8 | 120.2 | C20—N12—C16 | 118.0 (4) |
C7—C8—H8 | 120.2 | C20—N12—Cu1 | 126.2 (3) |
C8—C9—C4 | 121.2 (4) | C16—N12—Cu1 | 115.9 (3) |
C8—C9—H9 | 119.4 | H2A—O2—H2B | 96 (4) |
Cu1—O1—C1—C2 | −16.0 (6) | C11—C12—C13—C14 | −0.4 (6) |
Cu1—O1—C1—C1i | 165.1 (3) | C12—C13—C14—C15 | 0.1 (6) |
O1—C1—C2—C3 | −4.0 (7) | C11—N11—C15—C14 | 1.3 (6) |
C1i—C1—C2—C3 | 174.9 (4) | Cu1—N11—C15—C14 | −179.5 (3) |
Cu1—O3—C3—C2 | 12.9 (5) | C11—N11—C15—C16 | 179.4 (3) |
Cu1—O3—C3—C4 | −168.5 (2) | Cu1—N11—C15—C16 | −1.4 (4) |
C1—C2—C3—O3 | 5.8 (6) | C13—C14—C15—N11 | −0.6 (6) |
C1—C2—C3—C4 | −172.7 (4) | C13—C14—C15—C16 | −178.5 (4) |
O3—C3—C4—C5 | 15.4 (6) | N11—C15—C16—N12 | 1.4 (5) |
C2—C3—C4—C5 | −166.0 (4) | C14—C15—C16—N12 | 179.5 (3) |
O3—C3—C4—C9 | −165.8 (4) | N11—C15—C16—C17 | 179.8 (4) |
C2—C3—C4—C9 | 12.9 (6) | C14—C15—C16—C17 | −2.1 (6) |
C9—C4—C5—C6 | −0.7 (6) | N12—C16—C17—C18 | −1.8 (6) |
C3—C4—C5—C6 | 178.2 (4) | C15—C16—C17—C18 | 179.9 (4) |
C4—C5—C6—C7 | 1.2 (7) | C16—C17—C18—C19 | 1.8 (6) |
C5—C6—C7—C8 | −0.4 (7) | C17—C18—C19—C20 | −1.3 (6) |
C6—C7—C8—C9 | −0.8 (6) | C18—C19—C20—N12 | 0.6 (6) |
C7—C8—C9—C4 | 1.3 (6) | C19—C20—N12—C16 | −0.4 (6) |
C5—C4—C9—C8 | −0.6 (6) | C19—C20—N12—Cu1 | 179.9 (3) |
C3—C4—C9—C8 | −179.4 (4) | C17—C16—N12—C20 | 1.0 (6) |
C15—N11—C11—C12 | −1.7 (6) | C15—C16—N12—C20 | 179.5 (3) |
Cu1—N11—C11—C12 | 179.3 (3) | C17—C16—N12—Cu1 | −179.2 (3) |
N11—C11—C12—C13 | 1.2 (6) | C15—C16—N12—Cu1 | −0.7 (4) |
Symmetry code: (i) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···Cl1 | 0.82 (5) | 2.41 (5) | 3.224 (3) | 171 (5) |
O2—H2B···Cl1ii | 0.98 (4) | 2.33 (5) | 3.307 (4) | 172 (4) |
Symmetry code: (ii) −x, −y, −z+1. |
Footnotes
‡Present address: Waters Corp. 34 Maple St, Milford, MA 01757, USA.
Acknowledgements
LN is grateful for a Murdock Summer Research Fellowship. Author contributions: LN (synthesis, characterization) JLW (X-ray data) MMT (concept, writing).
Funding information
Funding for this research was provided by: National Science Foundation (grant No. IMR-0314773 to MMT).
References
Balenović, K. (1948). Recl Trav. Chim. Pays Bas, 67, 282–284. Google Scholar
Balenović, K., Cerar, D. & Filipović, L. (1954). J. Org. Chem. 19, 1556–1561. Google Scholar
Bird, C. W. & Thorley, P. (1977). Chem. Ind. (London), 872. Google Scholar
Boucher, L. J. & Bailar, J. C. Jr (1964). Inorg. Chem. 3, 589–593. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kaitner, B., Jovanovski, G. & Janev, I. (1992). Acta Cryst. C48, 127–129. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kobelev, A. I., Stepanova, E. E., Dmitriev, M. V. & Maslivets, A. N. (2019). Chem. Heterocycl. Cmpd, 55, 897–901. CrossRef CAS Google Scholar
Lacan, M., Sehovic, Dj. & Kules, M. (1973). Croat. Chem. Acta, 45, 555–560. CAS Google Scholar
Monroe, J. C., Carvajal, M. A., Landee, C. P., Deumal, M., Turnbull, M. M., Wikaira, J. L. & Dawe, L. N. (2022). Dalton Trans. 51, 4653–4667. CrossRef CAS PubMed Google Scholar
Nawar, N. (1994). Mansoura Sci. Bull. A 21, 69-77. CAS Google Scholar
Poje, M., Gašpert, B. & Balenović, K. (1978). Recl Trav. Chim. Pays Bas, 97, 242–244. CrossRef CAS Google Scholar
Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Saalfrank, R. W., Löw, N., Demleitner, B., Stalke, D. & Teichert, M. (1998). Chem. Eur. J. 4, 1305–1311. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Unterhalt, B. & Pindur, U. (1977). Arch. Pharm. Pharm. Med. Chem. 310, 264–268. CrossRef CAS Google Scholar
Waring, M. J., Ben-Hadda, T., Kotchevar, A. T., Ramdani, A., Touzani, R., Elkadiri, S., Hakkou, A., Bouakka, M. & Ellis, T. (2002). Molecules, 7, 641–656. CrossRef CAS Google Scholar
Widman, O. & Virgin, E. (1909). Ber. Dtsch. Chem. Ges. 42, 2794–2806. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.