metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

μ-1,6-Dioxo-1,6-di­phenyl­hexane-3,4-diolato-bis­­[(2,2′-bi­pyridine)­chlorido­copper(II)] dihydrate

crossmark logo

aCarlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA, and bSchool of Natural Sciences, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
*Correspondence e-mail: mturnbull@clarku.edu

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 10 August 2023; accepted 12 August 2023; online 30 August 2023)

The reaction of CuCl2 with 1,6-diphenyl-1,3,5,6-hexa­netetrone and 2,2′-bi­pyridine (bipy) in ethanol gave crystals of the corresponding bimetallic complex, [Cu2(C18H12O4)Cl2(C10H8N2)2]·2H2O. The mol­ecule is centrosymmetric with each CuII ion coordinated to two oxygen atoms from the tetronediate, two nitro­gen atoms from a bipy ligand and one coordinated chloride ion. A water mol­ecule of crystallization forms hydrogen bonds to the chloride ions, linking the mol­ecules into a chain parallel to the bc-face diagonal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,6-Diphenyl-1,3,4,6-hexa­netetrone has been known for over 100 years (Widman & Virgin, 1909[Widman, O. & Virgin, E. (1909). Ber. Dtsch. Chem. Ges. 42, 2794-2806.]) and its structure has been reported (Kaitner et al., 1992[Kaitner, B., Jovanovski, G. & Janev, I. (1992). Acta Cryst. C48, 127-129.]). Both its synthesis by oxidation (Balenović et al., 1954[Balenović, K., Cerar, D. & Filipović, L. (1954). J. Org. Chem. 19, 1556-1561.]) and its reactions with oxidizing agents have been studied (Balenović, 1948[Balenović, K. (1948). Recl Trav. Chim. Pays Bas, 67, 282-284.]; Bird & Thorley, 1977[Bird, C. W. & Thorley, P. (1977). Chem. Ind. (London), 872.]; Poje et al., 1978[Poje, M., Gašpert, B. & Balenović, K. (1978). Recl Trav. Chim. Pays Bas, 97, 242-244.]), as well as its use as a starting material for the preparation of a variety of aminated products (Lacan et al., 1973[Lacan, M., Sehovic, Dj. & Kules, M. (1973). Croat. Chem. Acta, 45, 555-560.]; Unterhalt & Pindur, 1977[Unterhalt, B. & Pindur, U. (1977). Arch. Pharm. Pharm. Med. Chem. 310, 264-268.]; Kaitner et al., 1992[Kaitner, B., Jovanovski, G. & Janev, I. (1992). Acta Cryst. C48, 127-129.]; Waring et al., 2002[Waring, M. J., Ben-Hadda, T., Kotchevar, A. T., Ramdani, A., Touzani, R., Elkadiri, S., Hakkou, A., Bouakka, M. & Ellis, T. (2002). Molecules, 7, 641-656.]; Kobelev et al., 2019[Kobelev, A. I., Stepanova, E. E., Dmitriev, M. V. & Maslivets, A. N. (2019). Chem. Heterocycl. Cmpd, 55, 897-901.]). The backbone core resembles a bis-acac structure and and as such it has been used in the preparation of transition-metal complexes (Boucher & Bailar, 1964[Boucher, L. J. & Bailar, J. C. Jr (1964). Inorg. Chem. 3, 589-593.]; Saalfrank et al., 1998[Saalfrank, R. W., Löw, N., Demleitner, B., Stalke, D. & Teichert, M. (1998). Chem. Eur. J. 4, 1305-1311.]; Nawar, 1994[Nawar, N. (1994). Mansoura Sci. Bull. A 21, 69-77.]). However, we were surprised to find that there are no reported structures of transition-metal complexes containing this ligand (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). We investigated its coordination chemistry with CuII as part of our studies on potential magnetic ladders (Monroe et al., 2022[Monroe, J. C., Carvajal, M. A., Landee, C. P., Deumal, M., Turnbull, M. M., Wikaira, J. L. & Dawe, L. N. (2022). Dalton Trans. 51, 4653-4667.]).

The mol­ecule sits astride a crystallographic inversion center (Fig. 1[link]). Each CuII ion is five-coordinate, including two oxygen atoms from the tetronediate ligand, two nitro­gen atoms from a bipy mol­ecule and one coordinated chloride ion. The CuN2O2 equatorial plane is nearly planar (mean deviation of the N2O2 donor set = 0.0219 Å) with the CuII ion displaced [0.2219 (15) Å] toward the chloride ion. The 1,3-dionato motif chelates a copper ion and generates a six-membered metallocyclic ring that is only slightly less planar (mean deviation of constituent atoms = 0.1207 Å). The two heterocyclic rings are co-planar as required by symmetry. The pyridyl rings are canted 0.67 (13)° from each other.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Only the asymmetric unit and Cu coordination spheres are labeled. Hydrogen atoms are shown as spheres of arbitrary size. Symmetry operation B: −x, 1 − y, 2 − z.

π-Stacking is observed between mol­ecules. The Cu1-dionato ring sits above the N11-containing bpy ring with an inter­planar distance of 3.33 (2) Å; the rings are canted 4.4 (2)° with respect to each other. The distance between the ring centroids is 3.73 (2) Å with a slip angle of 25.1 (3)°. This effectively blocks the vacant coordination site on Cu1, preventing the addition of a sixth ligand. π-Stacking is also observed between the phenyl rings of the tetrone ligand. Adjacent phenyl rings are parallel with an inter­planar distance of 3.33 (2) Å with a slip angle of 22.8 (3)°. The bimetallic units are linked into chains via hydrogen bonds between the solvent water mol­ecules and chloride ions (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯Cl1 0.82 (5) 2.41 (5) 3.224 (3) 171 (5)
O2—H2B⋯Cl1i 0.98 (4) 2.33 (5) 3.307 (4) 172 (4)
Symmetry code: (i) [-x, -y, -z+1].
[Figure 2]
Figure 2
Chain formation via hydrogen bonding. Symmetry operation B: −x, −y, 1 − z.

Synthesis and crystallization

CuCl2 (0.403 g, 2.99 mmol) was dissolved in 50 ml of absolute ethanol to generate a green solution. 2,2′-Bi­pyridine (0.469 g, 3.01 mmol) was added to the solution with stirring to make a light-blue slurry. Addition of 1,6-diphenyl-1,3,4,6-hexa­ne­tetrone (0.438 g, 1.49 mmol) generated a lime green slurry, which was stirred for 1 h. The precipitate was recovered by vacuum filtration, washed with ethanol and dried in air to yield 0.973 g of lime green powder (77%). Crystals suitable for X-ray diffraction were grown by recrystallization from DMF.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Eight reflections were omitted from the final refinement owing to poor agreement; details are included in the CIF.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C18H12O4)Cl2(C10H8N2)2]·2H2O
Mr 838.65
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 8.7211 (2), 10.4194 (2), 10.5243 (7)
α, β, γ (°) 106.426 (7), 109.090 (8), 90.373 (6)
V3) 861.67 (8)
Z 1
Radiation type Cu Kα
μ (mm−1) 3.41
Crystal size (mm) 0.13 × 0.09 × 0.02
 
Data collection
Diffractometer Rigaku Spider
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.641, 0.929
No. of measured, independent and observed [I > 2σ(I)] reflections 7470, 2552, 1901
Rint 0.046
θmax (°) 61.1
(sin θ/λ)max−1) 0.568
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.121, 1.13
No. of reflections 2552
No. of parameters 241
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.57, −0.49
Computer programs: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.]), PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015).

µ-1,6-Dioxo-1,6-diphenylhexane-3,4-diolato-bis[(2,2'-bipyridine)chloridocopper(II)] dihydrate top
Crystal data top
[Cu2(C18H12O4)Cl2(C10H8N2)2]·2H2OZ = 1
Mr = 838.65F(000) = 428
Triclinic, P1Dx = 1.616 Mg m3
a = 8.7211 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.4194 (2) ÅCell parameters from 3450 reflections
c = 10.5243 (7) Åθ = 6.6–72.0°
α = 106.426 (7)°µ = 3.41 mm1
β = 109.090 (8)°T = 123 K
γ = 90.373 (6)°Plate, green
V = 861.67 (8) Å30.13 × 0.09 × 0.02 mm
Data collection top
Rigaku Spider
diffractometer
2552 independent reflections
Radiation source: rotating anode1901 reflections with I > 2σ(I)
Confocal optics monochromatorRint = 0.046
Detector resolution: 10 pixels mm-1θmax = 61.1°, θmin = 6.6°
ω–scansh = 99
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
k = 811
Tmin = 0.641, Tmax = 0.929l = 1111
7470 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: mixed
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.1469P]
where P = (Fo2 + 2Fc2)/3
2552 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms bonded to carbon atoms were placed geometrically and refined with fixed isotropic thermal parameters. Hydrogen atoms bonded to O2 were located in the difference map and their positions refined with fixed isotropic thermal parameters (O—H = 0.82 (5) & 0.98 (4) Å).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.33000 (7)0.32164 (6)0.96525 (6)0.0307 (2)
Cl10.11639 (12)0.13154 (10)0.77171 (10)0.0345 (3)
O10.1754 (3)0.4177 (3)1.0408 (3)0.0324 (7)
C10.0704 (5)0.4796 (4)0.9723 (4)0.0254 (10)
C20.0728 (5)0.5143 (4)0.8569 (4)0.0294 (10)
H20.0176130.5553900.8120000.035*
O30.3211 (3)0.4301 (3)0.8421 (3)0.0330 (7)
C30.2001 (5)0.4937 (4)0.7987 (4)0.0271 (10)
C40.1975 (5)0.5506 (4)0.6837 (4)0.0303 (10)
C50.2992 (5)0.5074 (4)0.6059 (4)0.0329 (11)
H50.3720260.4433410.6287450.039*
C60.2963 (5)0.5555 (5)0.4963 (5)0.0411 (12)
H60.3654250.5233060.4434540.049*
C70.1939 (6)0.6503 (5)0.4627 (5)0.0422 (12)
H70.1930550.6835110.3872220.051*
C80.0922 (5)0.6969 (4)0.5389 (5)0.0393 (12)
H80.0224380.7630640.5167880.047*
C90.0926 (5)0.6469 (4)0.6470 (4)0.0310 (10)
H90.0209390.6777970.6977300.037*
N110.5341 (4)0.2451 (3)0.9445 (3)0.0282 (8)
C110.6014 (5)0.2564 (4)0.8501 (4)0.0339 (11)
H110.5496800.3034930.7851500.041*
C120.7425 (5)0.2020 (4)0.8441 (4)0.0343 (11)
H120.7887800.2129800.7771270.041*
C130.8170 (5)0.1309 (4)0.9368 (4)0.0302 (10)
H130.9145220.0920530.9339220.036*
C140.7475 (5)0.1177 (4)1.0326 (4)0.0277 (10)
H140.7962960.0695661.0973130.033*
C150.6054 (5)0.1754 (4)1.0339 (4)0.0237 (9)
C160.5227 (5)0.1699 (4)1.1351 (4)0.0275 (10)
C170.5733 (5)0.1040 (4)1.2364 (4)0.0273 (10)
H170.6677670.0574821.2449060.033*
C180.4850 (5)0.1061 (4)1.3261 (4)0.0318 (11)
H180.5198260.0636591.3981030.038*
C190.3447 (5)0.1721 (4)1.3075 (4)0.0362 (11)
H190.2807830.1737651.3656350.043*
C200.2994 (5)0.2349 (4)1.2041 (4)0.0316 (11)
H200.2039080.2802151.1931390.038*
N120.3846 (4)0.2349 (3)1.1175 (3)0.0282 (8)
O20.2128 (4)0.0355 (4)0.4911 (4)0.0538 (10)
H2A0.178 (6)0.059 (5)0.557 (5)0.065*
H2B0.110 (6)0.013 (4)0.420 (5)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0320 (4)0.0347 (4)0.0347 (4)0.0178 (3)0.0164 (3)0.0183 (3)
Cl10.0317 (6)0.0400 (7)0.0367 (6)0.0129 (5)0.0136 (5)0.0164 (5)
O10.0366 (17)0.0391 (18)0.0347 (17)0.0202 (14)0.0200 (14)0.0217 (14)
C10.030 (2)0.022 (2)0.027 (2)0.0052 (19)0.012 (2)0.0094 (19)
C20.027 (2)0.034 (3)0.032 (2)0.0130 (19)0.011 (2)0.016 (2)
O30.0297 (16)0.0351 (17)0.0388 (17)0.0198 (14)0.0135 (13)0.0156 (14)
C30.031 (3)0.024 (2)0.026 (2)0.0026 (19)0.009 (2)0.0098 (19)
C40.025 (2)0.032 (3)0.030 (2)0.0030 (19)0.0050 (19)0.009 (2)
C50.029 (2)0.039 (3)0.038 (3)0.011 (2)0.014 (2)0.021 (2)
C60.039 (3)0.050 (3)0.042 (3)0.004 (2)0.018 (2)0.021 (2)
C70.052 (3)0.046 (3)0.036 (3)0.005 (2)0.013 (2)0.025 (2)
C80.036 (3)0.035 (3)0.048 (3)0.008 (2)0.008 (2)0.020 (2)
C90.031 (2)0.038 (3)0.030 (2)0.008 (2)0.010 (2)0.020 (2)
N110.027 (2)0.032 (2)0.031 (2)0.0111 (16)0.0163 (17)0.0114 (17)
C110.038 (3)0.032 (3)0.034 (3)0.013 (2)0.014 (2)0.012 (2)
C120.038 (3)0.037 (3)0.037 (3)0.012 (2)0.022 (2)0.013 (2)
C130.032 (2)0.028 (2)0.036 (3)0.0114 (19)0.015 (2)0.013 (2)
C140.034 (2)0.028 (2)0.027 (2)0.0105 (19)0.011 (2)0.017 (2)
C150.028 (2)0.021 (2)0.025 (2)0.0064 (18)0.0106 (19)0.0097 (19)
C160.024 (2)0.027 (2)0.034 (2)0.0078 (18)0.0102 (19)0.013 (2)
C170.034 (2)0.024 (2)0.034 (3)0.0095 (19)0.011 (2)0.023 (2)
C180.043 (3)0.030 (3)0.029 (2)0.006 (2)0.013 (2)0.019 (2)
C190.038 (3)0.037 (3)0.041 (3)0.013 (2)0.022 (2)0.013 (2)
C200.038 (3)0.029 (3)0.039 (3)0.013 (2)0.019 (2)0.021 (2)
N120.031 (2)0.027 (2)0.032 (2)0.0085 (16)0.0155 (17)0.0119 (17)
O20.044 (2)0.079 (3)0.046 (2)0.0153 (18)0.0187 (17)0.028 (2)
Geometric parameters (Å, º) top
Cu1—O11.929 (3)N11—C111.338 (5)
Cu1—O31.930 (3)N11—C151.345 (5)
Cu1—N121.984 (3)C11—C121.371 (5)
Cu1—N112.006 (3)C11—H110.9500
Cu1—Cl12.5944 (12)C12—C131.387 (5)
O1—C11.270 (4)C12—H120.9500
C1—C21.369 (5)C13—C141.372 (5)
C1—C1i1.537 (7)C13—H130.9500
C2—C31.424 (5)C14—C151.383 (5)
C2—H20.9500C14—H140.9500
O3—C31.275 (4)C15—C161.481 (5)
C3—C41.485 (5)C16—N121.371 (5)
C4—C51.390 (5)C16—C171.384 (5)
C4—C91.412 (5)C17—C181.396 (5)
C5—C61.374 (6)C17—H170.9500
C5—H50.9500C18—C191.393 (5)
C6—C71.378 (6)C18—H180.9500
C6—H60.9500C19—C201.375 (5)
C7—C81.385 (6)C19—H190.9500
C7—H70.9500C20—N121.352 (5)
C8—C91.378 (5)C20—H200.9500
C8—H80.9500O2—H2A0.82 (5)
C9—H90.9500O2—H2B0.98 (4)
O1—Cu1—O393.44 (11)C4—C9—H9119.4
O1—Cu1—N1289.27 (12)C11—N11—C15118.8 (3)
O3—Cu1—N12167.52 (12)C11—N11—Cu1125.9 (3)
O1—Cu1—N11163.37 (13)C15—N11—Cu1115.3 (3)
O3—Cu1—N1193.59 (12)N11—C11—C12122.1 (4)
N12—Cu1—N1180.78 (13)N11—C11—H11118.9
O1—Cu1—Cl195.59 (9)C12—C11—H11118.9
O3—Cu1—Cl194.10 (9)C11—C12—C13119.3 (4)
N12—Cu1—Cl197.76 (10)C11—C12—H12120.4
N11—Cu1—Cl198.92 (9)C13—C12—H12120.4
C1—O1—Cu1122.0 (2)C14—C13—C12118.9 (4)
O1—C1—C2126.3 (4)C14—C13—H13120.6
O1—C1—C1i115.8 (4)C12—C13—H13120.6
C2—C1—C1i117.8 (5)C13—C14—C15119.1 (4)
C1—C2—C3125.1 (4)C13—C14—H14120.4
C1—C2—H2117.4C15—C14—H14120.4
C3—C2—H2117.4N11—C15—C14121.9 (4)
C3—O3—Cu1123.6 (3)N11—C15—C16114.7 (3)
O3—C3—C2123.4 (4)C14—C15—C16123.5 (4)
O3—C3—C4116.9 (4)N12—C16—C17121.7 (4)
C2—C3—C4119.7 (4)N12—C16—C15113.3 (3)
C5—C4—C9117.5 (4)C17—C16—C15125.0 (3)
C5—C4—C3119.9 (4)C16—C17—C18119.7 (4)
C9—C4—C3122.6 (4)C16—C17—H17120.2
C6—C5—C4121.2 (4)C18—C17—H17120.2
C6—C5—H5119.4C19—C18—C17118.3 (4)
C4—C5—H5119.4C19—C18—H18120.8
C5—C6—C7120.5 (4)C17—C18—H18120.8
C5—C6—H6119.7C20—C19—C18119.4 (4)
C7—C6—H6119.7C20—C19—H19120.3
C6—C7—C8119.9 (4)C18—C19—H19120.3
C6—C7—H7120.0N12—C20—C19122.9 (4)
C8—C7—H7120.0N12—C20—H20118.5
C9—C8—C7119.7 (4)C19—C20—H20118.5
C9—C8—H8120.2C20—N12—C16118.0 (4)
C7—C8—H8120.2C20—N12—Cu1126.2 (3)
C8—C9—C4121.2 (4)C16—N12—Cu1115.9 (3)
C8—C9—H9119.4H2A—O2—H2B96 (4)
Cu1—O1—C1—C216.0 (6)C11—C12—C13—C140.4 (6)
Cu1—O1—C1—C1i165.1 (3)C12—C13—C14—C150.1 (6)
O1—C1—C2—C34.0 (7)C11—N11—C15—C141.3 (6)
C1i—C1—C2—C3174.9 (4)Cu1—N11—C15—C14179.5 (3)
Cu1—O3—C3—C212.9 (5)C11—N11—C15—C16179.4 (3)
Cu1—O3—C3—C4168.5 (2)Cu1—N11—C15—C161.4 (4)
C1—C2—C3—O35.8 (6)C13—C14—C15—N110.6 (6)
C1—C2—C3—C4172.7 (4)C13—C14—C15—C16178.5 (4)
O3—C3—C4—C515.4 (6)N11—C15—C16—N121.4 (5)
C2—C3—C4—C5166.0 (4)C14—C15—C16—N12179.5 (3)
O3—C3—C4—C9165.8 (4)N11—C15—C16—C17179.8 (4)
C2—C3—C4—C912.9 (6)C14—C15—C16—C172.1 (6)
C9—C4—C5—C60.7 (6)N12—C16—C17—C181.8 (6)
C3—C4—C5—C6178.2 (4)C15—C16—C17—C18179.9 (4)
C4—C5—C6—C71.2 (7)C16—C17—C18—C191.8 (6)
C5—C6—C7—C80.4 (7)C17—C18—C19—C201.3 (6)
C6—C7—C8—C90.8 (6)C18—C19—C20—N120.6 (6)
C7—C8—C9—C41.3 (6)C19—C20—N12—C160.4 (6)
C5—C4—C9—C80.6 (6)C19—C20—N12—Cu1179.9 (3)
C3—C4—C9—C8179.4 (4)C17—C16—N12—C201.0 (6)
C15—N11—C11—C121.7 (6)C15—C16—N12—C20179.5 (3)
Cu1—N11—C11—C12179.3 (3)C17—C16—N12—Cu1179.2 (3)
N11—C11—C12—C131.2 (6)C15—C16—N12—Cu10.7 (4)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···Cl10.82 (5)2.41 (5)3.224 (3)171 (5)
O2—H2B···Cl1ii0.98 (4)2.33 (5)3.307 (4)172 (4)
Symmetry code: (ii) x, y, z+1.
 

Footnotes

Present address: Waters Corp. 34 Maple St, Milford, MA 01757, USA.

Acknowledgements

LN is grateful for a Murdock Summer Research Fellowship. Author contributions: LN (synthesis, characterization) JLW (X-ray data) MMT (concept, writing).

Funding information

Funding for this research was provided by: National Science Foundation (grant No. IMR-0314773 to MMT).

References

First citationBalenović, K. (1948). Recl Trav. Chim. Pays Bas, 67, 282–284.  Google Scholar
First citationBalenović, K., Cerar, D. & Filipović, L. (1954). J. Org. Chem. 19, 1556–1561.  Google Scholar
First citationBird, C. W. & Thorley, P. (1977). Chem. Ind. (London), 872.  Google Scholar
First citationBoucher, L. J. & Bailar, J. C. Jr (1964). Inorg. Chem. 3, 589–593.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaitner, B., Jovanovski, G. & Janev, I. (1992). Acta Cryst. C48, 127–129.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKobelev, A. I., Stepanova, E. E., Dmitriev, M. V. & Maslivets, A. N. (2019). Chem. Heterocycl. Cmpd, 55, 897–901.  CrossRef CAS Google Scholar
First citationLacan, M., Sehovic, Dj. & Kules, M. (1973). Croat. Chem. Acta, 45, 555–560.  CAS Google Scholar
First citationMonroe, J. C., Carvajal, M. A., Landee, C. P., Deumal, M., Turnbull, M. M., Wikaira, J. L. & Dawe, L. N. (2022). Dalton Trans. 51, 4653–4667.  CrossRef CAS PubMed Google Scholar
First citationNawar, N. (1994). Mansoura Sci. Bull. A 21, 69-77.  CAS Google Scholar
First citationPoje, M., Gašpert, B. & Balenović, K. (1978). Recl Trav. Chim. Pays Bas, 97, 242–244.  CrossRef CAS Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSaalfrank, R. W., Löw, N., Demleitner, B., Stalke, D. & Teichert, M. (1998). Chem. Eur. J. 4, 1305–1311.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUnterhalt, B. & Pindur, U. (1977). Arch. Pharm. Pharm. Med. Chem. 310, 264–268.  CrossRef CAS Google Scholar
First citationWaring, M. J., Ben-Hadda, T., Kotchevar, A. T., Ramdani, A., Touzani, R., Elkadiri, S., Hakkou, A., Bouakka, M. & Ellis, T. (2002). Molecules, 7, 641–656.  CrossRef CAS Google Scholar
First citationWidman, O. & Virgin, E. (1909). Ber. Dtsch. Chem. Ges. 42, 2794–2806.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146