metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[bis­­[μ2-1,3-bis­­(pyridin-4-yl)urea-κ2N4:N4′]bis­­(μ2-5-methyl­isophthalato-κ2O1:O3)dizinc(II)], a parallel inter­penetrated slab-like coordination polymer with {3.648}{326.728} 4,4-connected binodal topology

crossmark logo

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by S. Parkin, University of Kentucky, USA (Received 14 July 2023; accepted 28 July 2023; online 4 August 2023)

In the title compound, [Zn2(C9H6O4)2(C11H10N4O)2]n, diperiodic coordination polymer slabs with {3.648}{326.728} 4,4-connected binodal topology are held into a parallel inter­penetrated triperiodic crystal structure by means of N—H⋯O hydrogen-bonding patterns.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was isolated during an exploratory synthetic effort aiming to produce a zinc coordination polymer containing both 5-methyl­isophthalate (mip) and 4,4′-di­pyridyl­urea (dpu) ligands. Previously our group had isolated a zinc mip coordination polymer featuring 3-pyridyl­nicotinamide coligands; this phase manifested a mono-periodic ribbon structure (Kraft et al., 2015[Kraft, P. E., Weingartz, L. E. & LaDuca, R. L. (2015). Inorg. Chim. Acta, 432, 283-288.]).

The asymmetric unit of the title compound contains two divalent Zn atoms on special positions in space group Pbcm, half of one methyl­isophthalate ligand, all of whose C and O atoms are situated on a horizontal crystallographic mirror plane (mip-A), half of a second methyl­isophthalate ligand bis­ected vertically by another crystallographic mirror plane cutting through atoms C12, C14, and C15 (mip-B), and a complete dpu ligand. The Zn1 atoms are located on a crystallographic mirror plane (Wyckoff position d), while the Zn2 atoms are located on a crystallographic twofold rotation axis (Wyckoff position c). The Zn1 atoms display a five-coordinate [N2O3] environment inter­mediate between idealized trigonal–bipyramidal and square-pyramidal arrangements, as indicated by the trigonality factor τ of 0.471 (Addison & Rao, 1984[Addison, A. W., Rao, T. N. J., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The Zn2 atoms show a pseudo-tetra­hedral [N2O2] environment. A depiction of the different coordination environments and full ligand set is shown in Fig. 1[link]; numerical details are collated in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.952 (3) Zn2—O5iii 2.004 (2)
Zn1—O3i 2.272 (3) Zn2—O5 2.004 (2)
Zn1—O4i 2.060 (3) Zn2—N4iii 2.045 (3)
Zn1—N1 2.077 (3) Zn2—N4 2.045 (3)
Zn1—N1ii 2.077 (3)    
       
O1—Zn1—O3i 154.66 (12) N1—Zn1—O3i 91.12 (9)
O1—Zn1—O4i 94.69 (13) N1ii—Zn1—N1 95.14 (14)
O1—Zn1—N1ii 105.72 (9) O5—Zn2—O5iii 145.53 (12)
O1—Zn1—N1 105.72 (9) O5—Zn2—N4iii 102.20 (9)
O4i—Zn1—O3i 59.97 (12) O5iii—Zn2—N4iii 99.41 (9)
O4i—Zn1—N1 126.42 (8) O5—Zn2—N4 99.41 (9)
O4i—Zn1—N1ii 126.42 (8) O5iii—Zn2—N4 102.20 (9)
N1ii—Zn1—O3i 91.13 (9) N4iii—Zn2—N4 101.55 (14)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, y, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
Distinct coordination environments in the title compound with full ligand sets. Displacement ellipsoids are drawn at the 50% probability level. Color code: Zn, gray; O, red; N, light blue; C, black. H atom positions are shown as sticks. Symmetry codes are as listed in Table 1[link].

The Zn1 atoms and chelating/monodentate mip-A ligands form [Zn(mip)]n coordination polymer chains with a Zn1⋯Zn1 distance of 10.361 (1) Å; these chain motifs are oriented along the b axis (Fig. 2[link]). The Zn2 atoms and bis(monodentate) mip-B ligands form [Zn(mip)]n coordination polymer chains with a Zn2⋯Zn2 distance of 8.746 (1) Å; these chain motifs are oriented along the c axis (Fig. 3[link]). The Zn1-based Zn(mip)]n chains and Zn2-based Zn(mip)]n chains are oriented orthogonally to each other. In turn, these chain motifs are pillared into [Zn(mip)(bpu)]n coordination polymer slabs by tethering bpu ligands (Fig. 4[link]). The bpu ligands span a Zn⋯Zn distance of 13.803 (1) Å. Treating each of the Zn1 and Zn2 atoms as 4-connected nodes reveals an unprecedented {3.648}{326.728} 4,4-connected binodal topology (Fig. 5[link]) as determined by TOPOS software (Blatov et al., 2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.]).

[Figure 2]
Figure 2
[Zn(mip)]n coordination polymer chain in the title compound, based on Zn1 atoms and chelating/monodentate mip-A ligands.
[Figure 3]
Figure 3
[Zn(mip)]n coordination polymer chain in the title compound, based on Zn2 atoms and bis­(monodentate) mip-B ligands.
[Figure 4]
Figure 4
[Zn2(mip)2(bpu)2]n coordination polymer slab motif in the title compound. [Zn(mip)]n chains based on Zn1 and mip-A ligands are in the inter­ior of the slab and drawn in red. [Zn(mip)]n chains based on Zn2 and mip-B ligands are on the exterior of the slab and drawn in orange.
[Figure 5]
Figure 5
Topological perspective of a single [Zn2(mip)2(bpu)2]n coordination polymer slab with {3.648}{326.728} 4,4-connected binodal topology in the title compound. The 4-connected zinc atom nodes are shown as spheres. The mip and bpu ligands are rendered as rods.

Parallel inter­penetration of the slab motifs occurs within the title compound (Fig. 6[link]). N—H⋯O hydrogen-bonding patterns between the central N3—H3 and N4—H4 groups of the dpu ligands and unligated mip-B carboxyl­ate O6 atoms stabilize the entangled triperiodic crystal structure. Details regarding the hydrogen bonding patterns in the title compound are listed in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O6iv 0.88 2.12 2.919 (3) 151
N3—H3⋯O6iv 0.88 1.91 2.751 (3) 159
Symmetry code: (iv) [-x+2, y+{\script{1\over 2}}, z].
[Figure 6]
Figure 6
Topological perspective of the parallel inter­penetration of [Zn2(mip)2(bpu)2]n coordination polymer slabs in the title compound. Each slab is depicted in a different color in order to show more clearly the entanglement between neighboring slabs.

Synthesis and crystallization

Zn(NO3)2·6H2O (110 mg, 0.37 mmol), 5-methyl­isophthalic acid (mipH2) (66 mg, 0.37 mmol), 4,4′-di­pyridyl­urea (dpu) (79 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml of distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Colorless crystals of the title complex were obtained in 59% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Zn2(C9H6O4)2(C11H10N4O)2]
Mr 915.47
Crystal system, space group Orthorhombic, Pbcm
Temperature (K) 173
a, b, c (Å) 12.0755 (11), 17.7239 (16), 17.4919 (16)
V3) 3743.7 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.36
Crystal size (mm) 0.29 × 0.16 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.654, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 29050, 3546, 2731
Rint 0.068
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.04
No. of reflections 3546
No. of parameters 299
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.88, −0.34
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Crystal Maker X (Palmer, 2020[Palmer, D. (2020). Crystal Maker X. Crystal Maker Software, Begbroke, England.]), and OLEX2 (Dolomanov et al., (2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Crystal Maker X (Palmer, 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., (2009).

Poly[bis[µ2-1,3-bis(pyridin-4-yl)urea-κ2N4:N4']bis(µ2-5-methylisophthalato-κ2O1:O3)dizinc(II)] top
Crystal data top
[Zn2(C9H6O4)2(C11H10N4O)2]Dx = 1.624 Mg m3
Mr = 915.47Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcmCell parameters from 8405 reflections
a = 12.0755 (11) Åθ = 2.3–25.2°
b = 17.7239 (16) ŵ = 1.36 mm1
c = 17.4919 (16) ÅT = 173 K
V = 3743.7 (6) Å3Block, colourless
Z = 40.29 × 0.16 × 0.11 mm
F(000) = 1872
Data collection top
Bruker APEXII CCD
diffractometer
3546 independent reflections
Radiation source: sealed tube2731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 8.36 pixels mm-1θmax = 25.3°, θmin = 1.7°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2021
Tmin = 0.654, Tmax = 0.745l = 2121
29050 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0396P)2 + 4.9027P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3546 reflectionsΔρmax = 0.88 e Å3
299 parametersΔρmin = 0.34 e Å3
0 restraints
Special details top

Experimental. Data were collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was refined by Least Squares using version 2018/3 of SHELXL (Sheldrick, 2015b) incorporated in OLEX2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.22230 (4)0.72239 (3)0.25000.02069 (15)
Zn21.05581 (4)0.25000.50000.02236 (15)
O10.1090 (2)0.64386 (17)0.25000.0286 (7)
O20.1735 (3)0.52565 (17)0.25000.0319 (8)
O30.2841 (3)0.34350 (18)0.25000.0424 (9)
O40.1108 (3)0.31038 (17)0.25000.0338 (8)
O51.10499 (17)0.24973 (12)0.60942 (12)0.0261 (5)
O61.21086 (18)0.17083 (12)0.54534 (11)0.0282 (5)
O70.59432 (19)0.48433 (13)0.42346 (14)0.0378 (6)
N10.3308 (2)0.69427 (14)0.33766 (15)0.0245 (6)
N20.6071 (2)0.60954 (15)0.45472 (15)0.0280 (6)
H20.64730.64250.48020.034*
N30.7414 (2)0.52788 (15)0.49375 (15)0.0273 (6)
H30.76470.56730.51970.033*
N40.9487 (2)0.33934 (14)0.50316 (14)0.0242 (6)
C10.0980 (4)0.5716 (2)0.25000.0226 (10)
C20.0202 (3)0.5443 (2)0.25000.0205 (9)
C30.0429 (4)0.4671 (2)0.25000.0232 (10)
H3A0.01590.43150.25000.028*
C40.1522 (4)0.4429 (2)0.25000.0236 (10)
C50.2375 (4)0.4956 (3)0.25000.0277 (10)
H50.31210.47850.25000.033*
C60.2167 (4)0.5721 (3)0.25000.0283 (11)
C70.1065 (3)0.5954 (2)0.25000.0232 (10)
H70.09030.64780.25000.028*
C80.1840 (4)0.3612 (3)0.25000.0246 (10)
C90.3097 (4)0.6291 (3)0.25000.0403 (13)
H9A0.31050.65600.29890.061*0.5
H9B0.38050.60300.24280.061*0.5
H9C0.29840.66520.20830.061*0.5
C101.1788 (2)0.19887 (16)0.60787 (17)0.0223 (7)
C111.2281 (2)0.17337 (16)0.68140 (16)0.0190 (6)
C121.1792 (3)0.1945 (2)0.75000.0191 (9)
H121.11280.22320.75000.023*
C131.3233 (2)0.12961 (16)0.68196 (17)0.0217 (7)
H131.35550.11460.63480.026*
C141.3722 (3)0.1073 (2)0.75000.0230 (10)
C151.4743 (4)0.0582 (3)0.75000.0322 (11)
H15A1.45370.00640.73650.048*0.5
H15B1.50800.05870.80100.048*0.5
H15C1.52760.07750.71250.048*0.5
C160.3396 (3)0.62065 (18)0.35476 (19)0.0283 (7)
H160.28190.58790.33850.034*
C170.4266 (3)0.58995 (19)0.39417 (18)0.0292 (8)
H170.42840.53740.40500.035*
C180.5121 (3)0.63642 (18)0.41805 (17)0.0241 (7)
C190.5028 (3)0.71332 (18)0.40297 (19)0.0285 (7)
H190.55850.74730.41990.034*
C200.4126 (3)0.73950 (18)0.36345 (19)0.0293 (8)
H200.40740.79210.35370.035*
C210.6433 (3)0.53544 (19)0.45420 (18)0.0287 (8)
C220.8676 (3)0.34385 (19)0.45077 (19)0.0342 (8)
H220.86000.30360.41530.041*
C230.7952 (3)0.40320 (19)0.44552 (19)0.0323 (8)
H230.73820.40340.40810.039*
C240.8071 (3)0.46316 (17)0.49621 (18)0.0241 (7)
C250.8906 (3)0.45927 (18)0.55071 (18)0.0263 (7)
H250.90080.49920.58630.032*
C260.9581 (3)0.39689 (18)0.55249 (18)0.0266 (7)
H261.01420.39440.59050.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0175 (3)0.0172 (3)0.0274 (3)0.0009 (2)0.0000.000
Zn20.0250 (3)0.0248 (3)0.0173 (3)0.0000.0000.0021 (2)
O10.0233 (16)0.0167 (17)0.046 (2)0.0039 (13)0.0000.000
O20.0214 (17)0.0210 (17)0.053 (2)0.0003 (14)0.0000.000
O30.031 (2)0.0230 (19)0.074 (3)0.0118 (15)0.0000.000
O40.0318 (19)0.0166 (17)0.053 (2)0.0057 (14)0.0000.000
O50.0301 (12)0.0267 (12)0.0216 (11)0.0084 (10)0.0043 (9)0.0007 (9)
O60.0387 (14)0.0292 (13)0.0167 (11)0.0069 (10)0.0021 (10)0.0012 (9)
O70.0370 (14)0.0308 (14)0.0455 (15)0.0031 (11)0.0199 (12)0.0093 (12)
N10.0207 (14)0.0236 (15)0.0292 (14)0.0009 (11)0.0001 (11)0.0004 (12)
N20.0271 (15)0.0243 (15)0.0326 (16)0.0021 (12)0.0129 (12)0.0045 (12)
N30.0299 (15)0.0224 (14)0.0295 (15)0.0024 (11)0.0088 (12)0.0028 (12)
N40.0263 (14)0.0250 (15)0.0213 (14)0.0024 (11)0.0020 (11)0.0004 (11)
C10.027 (2)0.021 (2)0.020 (2)0.003 (2)0.0000.000
C20.023 (2)0.021 (2)0.018 (2)0.0049 (18)0.0000.000
C30.025 (2)0.023 (2)0.022 (2)0.0022 (19)0.0000.000
C40.029 (2)0.020 (2)0.022 (2)0.0045 (19)0.0000.000
C50.023 (2)0.023 (3)0.037 (3)0.0068 (19)0.0000.000
C60.021 (2)0.028 (3)0.036 (3)0.001 (2)0.0000.000
C70.023 (2)0.017 (2)0.029 (2)0.0037 (18)0.0000.000
C80.028 (2)0.026 (3)0.021 (2)0.005 (2)0.0000.000
C90.023 (3)0.031 (3)0.067 (4)0.001 (2)0.0000.000
C100.0242 (16)0.0190 (16)0.0237 (17)0.0008 (13)0.0014 (13)0.0003 (13)
C110.0194 (15)0.0186 (16)0.0190 (15)0.0021 (12)0.0011 (12)0.0024 (12)
C120.018 (2)0.013 (2)0.026 (2)0.0001 (17)0.0000.000
C130.0239 (16)0.0192 (16)0.0221 (16)0.0002 (13)0.0028 (13)0.0007 (13)
C140.018 (2)0.021 (2)0.030 (2)0.0011 (18)0.0000.000
C150.031 (3)0.037 (3)0.028 (3)0.014 (2)0.0000.000
C160.0245 (17)0.0278 (19)0.0327 (18)0.0048 (14)0.0017 (14)0.0039 (15)
C170.0270 (18)0.0270 (18)0.0335 (19)0.0026 (14)0.0053 (15)0.0034 (15)
C180.0243 (16)0.0272 (18)0.0206 (15)0.0014 (14)0.0014 (13)0.0022 (13)
C190.0250 (17)0.0260 (18)0.0344 (19)0.0002 (14)0.0105 (15)0.0062 (15)
C200.0290 (18)0.0217 (18)0.037 (2)0.0013 (14)0.0022 (15)0.0044 (14)
C210.0314 (18)0.031 (2)0.0240 (17)0.0037 (15)0.0047 (15)0.0031 (15)
C220.045 (2)0.030 (2)0.0277 (18)0.0054 (16)0.0134 (16)0.0094 (15)
C230.0356 (19)0.035 (2)0.0265 (18)0.0082 (15)0.0113 (15)0.0035 (15)
C240.0233 (16)0.0253 (17)0.0238 (16)0.0002 (13)0.0016 (13)0.0028 (14)
C250.0273 (17)0.0286 (19)0.0230 (17)0.0019 (14)0.0041 (13)0.0037 (14)
C260.0259 (17)0.0315 (19)0.0224 (16)0.0005 (14)0.0044 (13)0.0004 (14)
Geometric parameters (Å, º) top
Zn1—O11.952 (3)C5—C61.379 (6)
Zn1—O3i2.272 (3)C6—C71.393 (6)
Zn1—O4i2.060 (3)C6—C91.510 (6)
Zn1—N12.077 (3)C7—H70.9500
Zn1—N1ii2.077 (3)C8—Zn1iv2.503 (5)
Zn2—O5iii2.004 (2)C9—H9A0.9800
Zn2—O52.004 (2)C9—H9B0.9800
Zn2—N4iii2.045 (3)C9—H9C0.9800
Zn2—N42.045 (3)C10—C111.488 (4)
O1—C11.287 (5)C11—C121.388 (4)
O2—C11.223 (5)C11—C131.387 (4)
O3—Zn1iv2.272 (3)C12—C11v1.389 (4)
O3—C81.248 (5)C12—H120.9500
O4—Zn1iv2.060 (3)C13—H130.9500
O4—C81.262 (5)C13—C141.386 (4)
O5—C101.268 (4)C14—C13v1.386 (4)
O6—C101.262 (4)C14—C151.510 (6)
O7—C211.208 (4)C15—H15A0.9800
N1—C161.343 (4)C15—H15B0.9800
N1—C201.350 (4)C15—H15C0.9800
N2—H20.8800C16—H160.9500
N2—C181.399 (4)C16—C171.370 (4)
N2—C211.384 (4)C17—H170.9500
N3—H30.8800C17—C181.385 (4)
N3—C211.378 (4)C18—C191.393 (4)
N3—C241.395 (4)C19—H190.9500
N4—C221.343 (4)C19—C201.371 (4)
N4—C261.341 (4)C20—H200.9500
C1—C21.507 (6)C22—H220.9500
C2—C31.395 (6)C22—C231.371 (5)
C2—C71.380 (6)C23—H230.9500
C3—H3A0.9500C23—C241.391 (4)
C3—C41.389 (6)C24—C251.389 (4)
C4—C51.391 (6)C25—H250.9500
C4—C81.497 (6)C25—C261.374 (4)
C5—H50.9500C26—H260.9500
O1—Zn1—O3i154.66 (12)C6—C9—H9C109.5
O1—Zn1—O4i94.69 (13)H9A—C9—H9B109.5
O1—Zn1—N1ii105.72 (9)H9A—C9—H9C109.5
O1—Zn1—N1105.72 (9)H9B—C9—H9C109.5
O4i—Zn1—O3i59.97 (12)O5—C10—Zn250.06 (14)
O4i—Zn1—N1126.42 (8)O5—C10—C11118.6 (3)
O4i—Zn1—N1ii126.42 (8)O6—C10—Zn271.31 (16)
N1ii—Zn1—O3i91.13 (9)O6—C10—O5120.9 (3)
N1—Zn1—O3i91.12 (9)O6—C10—C11120.5 (3)
N1ii—Zn1—N195.14 (14)C11—C10—Zn2167.0 (2)
O5—Zn2—O5iii145.53 (12)C12—C11—C10119.7 (3)
O5—Zn2—N4iii102.20 (9)C13—C11—C10120.5 (3)
O5iii—Zn2—N4iii99.41 (9)C13—C11—C12119.8 (3)
O5—Zn2—N499.41 (9)C11—C12—C11v119.6 (4)
O5iii—Zn2—N4102.20 (9)C11v—C12—H12120.2
N4iii—Zn2—N4101.55 (14)C11—C12—H12120.2
C1—O1—Zn1141.4 (3)C11—C13—H13119.4
C8—O3—Zn1iv85.4 (3)C14—C13—C11121.3 (3)
C8—O4—Zn1iv94.7 (3)C14—C13—H13119.4
C10—O5—Zn2100.92 (18)C13v—C14—C13118.3 (4)
C10—O6—Zn279.75 (17)C13v—C14—C15120.85 (19)
C16—N1—Zn1116.6 (2)C13—C14—C15120.85 (19)
C16—N1—C20116.4 (3)C14—C15—H15A109.5
C20—N1—Zn1124.5 (2)C14—C15—H15B109.5
C18—N2—H2117.3C14—C15—H15C109.5
C21—N2—H2117.3H15A—C15—H15B109.5
C21—N2—C18125.4 (3)H15A—C15—H15C109.5
C21—N3—H3117.1H15B—C15—H15C109.5
C21—N3—C24125.7 (3)N1—C16—H16118.0
C24—N3—H3117.1N1—C16—C17124.0 (3)
C22—N4—Zn2119.2 (2)C17—C16—H16118.0
C26—N4—Zn2123.6 (2)C16—C17—H17120.4
C26—N4—C22117.1 (3)C16—C17—C18119.2 (3)
O1—C1—C2114.7 (4)C18—C17—H17120.4
O2—C1—O1125.8 (4)C17—C18—N2123.2 (3)
O2—C1—C2119.5 (4)C17—C18—C19117.7 (3)
C3—C2—C1120.0 (4)C19—C18—N2119.1 (3)
C7—C2—C1120.3 (4)C18—C19—H19120.3
C7—C2—C3119.7 (4)C20—C19—C18119.4 (3)
C2—C3—H3A120.3C20—C19—H19120.3
C4—C3—C2119.3 (4)N1—C20—C19123.3 (3)
C4—C3—H3A120.3N1—C20—H20118.3
C3—C4—C5119.7 (4)C19—C20—H20118.3
C3—C4—C8122.9 (4)O7—C21—N2124.0 (3)
C5—C4—C8117.4 (4)O7—C21—N3124.9 (3)
C4—C5—H5119.1N3—C21—N2111.1 (3)
C6—C5—C4121.7 (4)N4—C22—H22118.1
C6—C5—H5119.1N4—C22—C23123.8 (3)
C5—C6—C7117.7 (4)C23—C22—H22118.1
C5—C6—C9121.5 (4)C22—C23—H23120.7
C7—C6—C9120.8 (4)C22—C23—C24118.5 (3)
C2—C7—C6121.8 (4)C24—C23—H23120.7
C2—C7—H7119.1C23—C24—N3123.4 (3)
C6—C7—H7119.1C25—C24—N3118.3 (3)
O3—C8—Zn1iv64.8 (2)C25—C24—C23118.3 (3)
O3—C8—O4119.9 (4)C24—C25—H25120.5
O3—C8—C4119.4 (4)C26—C25—C24119.1 (3)
O4—C8—Zn1iv55.1 (2)C26—C25—H25120.5
O4—C8—C4120.7 (4)N4—C26—C25123.2 (3)
C4—C8—Zn1iv175.8 (3)N4—C26—H26118.4
C6—C9—H9A109.5C25—C26—H26118.4
C6—C9—H9B109.5
Zn1—O1—C1—O20.0C3—C4—C8—O40.0
Zn1—O1—C1—C2180.0C4—C5—C6—C70.0
Zn1iv—O3—C8—O40.0C4—C5—C6—C9180.0
Zn1iv—O3—C8—C4180.0C5—C4—C8—O30.0
Zn1iv—O4—C8—O30.0C5—C4—C8—O4180.0
Zn1iv—O4—C8—C4180.0C5—C6—C7—C20.0
Zn1—N1—C16—C17160.9 (3)C7—C2—C3—C40.0
Zn1—N1—C20—C19159.1 (3)C8—C4—C5—C6180.0
Zn2—O5—C10—O68.4 (3)C9—C6—C7—C2180.0
Zn2—O5—C10—C11172.3 (2)C10—C11—C12—C11v177.2 (2)
Zn2—O6—C10—O56.8 (3)C10—C11—C13—C14177.9 (3)
Zn2—O6—C10—C11174.0 (3)C11—C13—C14—C13v0.3 (6)
Zn2—N4—C22—C23176.6 (3)C11—C13—C14—C15178.6 (4)
Zn2—N4—C26—C25175.2 (2)C12—C11—C13—C141.1 (5)
Zn2—C10—C11—C1215.1 (11)C13—C11—C12—C11v1.9 (6)
Zn2—C10—C11—C13165.9 (8)C16—N1—C20—C192.1 (5)
O1—C1—C2—C3180.0C16—C17—C18—N2176.2 (3)
O1—C1—C2—C70.0C16—C17—C18—C192.3 (5)
O2—C1—C2—C30.0C17—C18—C19—C202.1 (5)
O2—C1—C2—C7180.0C18—N2—C21—O72.4 (5)
O5—C10—C11—C1212.0 (5)C18—N2—C21—N3178.2 (3)
O5—C10—C11—C13167.0 (3)C18—C19—C20—N10.2 (5)
O6—C10—C11—C12168.7 (3)C20—N1—C16—C171.8 (5)
O6—C10—C11—C1312.3 (4)C21—N2—C18—C1718.2 (5)
N1—C16—C17—C180.4 (5)C21—N2—C18—C19160.4 (3)
N2—C18—C19—C20176.6 (3)C21—N3—C24—C2315.0 (5)
N3—C24—C25—C26178.1 (3)C21—N3—C24—C25166.9 (3)
N4—C22—C23—C241.3 (6)C22—N4—C26—C251.0 (5)
C1—C2—C3—C4180.0C22—C23—C24—N3176.9 (3)
C1—C2—C7—C6180.0C22—C23—C24—C251.2 (5)
C2—C3—C4—C50.0C23—C24—C25—C260.1 (5)
C2—C3—C4—C8180.0C24—N3—C21—O79.0 (5)
C3—C2—C7—C60.0C24—N3—C21—N2171.5 (3)
C3—C4—C5—C60.0C24—C25—C26—N41.0 (5)
C3—C4—C8—O3180.0C26—N4—C22—C230.2 (5)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z+1/2; (iii) x, y+1/2, z+1; (iv) x, y1/2, z+1/2; (v) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6vi0.882.122.919 (3)151
N3—H3···O6vi0.881.912.751 (3)159
C5—H5···O30.952.422.754 (5)101
C7—H7···O10.952.412.741 (5)100
C17—H17···O70.952.242.805 (4)117
C23—H23···O70.952.272.846 (4)118
Symmetry code: (vi) x+2, y+1/2, z.
 

Funding information

Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.

References

First citationAddison, A. W., Rao, T. N. J., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBlatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKraft, P. E., Weingartz, L. E. & LaDuca, R. L. (2015). Inorg. Chim. Acta, 432, 283–288.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPalmer, D. (2020). Crystal Maker X. Crystal Maker Software, Begbroke, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146