metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[aqua­[μ2-1,3-bis­­(pyridin-4-yl)urea-κ2N4:N4′]bis­­(μ3-5-tert-butyl­isophthalato-κ3O1:O1′:O3)dizinc(II)] trihydrate], a double-strand coordination polymer

crossmark logo

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 14 July 2023; accepted 28 July 2023; online 4 August 2023)

In the title compound, {[Zn2(C12H12O4)2(C11H10N4O)(H2O)]·3H2O}n, monoperiodic coordination polymer double strands are held into the triperiodic crystal structure by means of N—H⋯O hydrogen-bonding patterns between the amide groups of the 1,3-di(pyridin-4-yl)urea ligands and unligated O atoms belonging to 5-tert-butyl­isophthalate ligands. One of the Zn atoms displays a tetra­hedral coordination environment, while the other Zn atom adopts a five-coordinate geometry inter­mediate between square pyramidal and trigonal bipyramidal. Additionally, O—H⋯O hydrogen-bonding patterns involving the water mol­ecules of crystallization serve as a structure-stabilizing element by aggregating the double-strand motifs.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was isolated during an exploratory synthetic effort aiming to produce a zinc coordination polymer containing both 5-tert-butyl­isophthalate (tBuip) and 1,3-di(pyridin-4-yl)urea (dpu) ligands. Previously our group had isolated a zinc tBuip coord­ination polymer featuring bis­(4-pyridyl­meth­yl)piperazine coligands; this phase manifested a twofold inter­penetrated pcu 3-D network structure (Pochodylo & LaDuca, 2011[Pochodylo, A. L. & LaDuca, R. L. (2011). CrystEngComm, 13, 2249-2261.]).

The asymmetric unit of the title compound contains two divalent Zn atoms, two crystallographically distinct fully deprotonated tBuip ligands, one water mol­ecule bound to Zn2, one complete dpu ligand, and three water mol­ecules of crystallization. The Zn1 atoms display an [NO3] pseudo-tetra­hedral coordination environment, with a pyridyl-N donor atom from a dpu ligand, and three O atom donors belonging to three different tBuip ligands. One of the tBuip ligands has a carboxyl­ate group disordered equally in two sets of positions. In one disordered conformation, O7 binds to Zn1. In the other disordered conformation, O8A binds to Zn1. In contrast, the Zn2 atoms display an [NO4] five-coordinate environment, with a trigonality factor τ of 0.443 (Addison & Rao, 1984[Addison, A. W., Rao, T. N. J., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) indicating an inter­mediate geometry between idealized square-pyramidal and trigonal–bipyramidal forms. At Zn2, the coordination environment comprises one pyridyl-N donor atom from a bpu ligand, three O atom donors belonging to three different tBuip ligands, and a ligated water mol­ecule. Bond lengths and angles within the distinct Zn coordination environments in the title compound are listed in Table 1[link]. Complete coordination environments and ligand sets of the asymmetric unit are shown in Fig. 1[link].

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.972 (4) Zn2—O2 2.025 (3)
Zn1—O5 1.986 (3) Zn2—O3ii 2.009 (3)
Zn1—O7Ai 2.074 (7) Zn2—O6 2.017 (3)
Zn1—O8i 1.951 (8) Zn2—O10 2.092 (4)
Zn1—N1 2.034 (4) Zn2—N4iii 2.140 (4)
       
O1—Zn1—O5 109.03 (15) O2—Zn2—O10 87.00 (16)
O1—Zn1—O7Ai 104.2 (2) O2—Zn2—N4iii 85.75 (15)
O1—Zn1—N1 112.35 (16) O3ii—Zn2—O2 142.77 (14)
O5—Zn1—O7Ai 93.7 (2) O3ii—Zn2—O6 103.49 (14)
O5—Zn1—N1 105.32 (15) O3ii—Zn2—O10 88.12 (15)
O8i—Zn1—O1 100.0 (3) O3ii—Zn2—N4iii 93.10 (15)
O8i—Zn1—O5 133.3 (3) O6—Zn2—O2 113.62 (14)
O8i—Zn1—O7Ai 43.0 (3) O6—Zn2—O10 93.17 (16)
O8i—Zn1—N1 95.9 (3) O6—Zn2—N4iii 96.64 (15)
N1—Zn1—O7Ai 129.6 (2) O10—Zn2—N4iii 169.53 (17)
Symmetry codes: (i) [x-1, y, z]; (ii) x+1, y, z; (iii) [-x+1, -y+1, -z].
[Figure 1]
Figure 1
Distinct coordination environments in the title compound with full ligand set and complete {Zn2(OCO)2} dimeric cluster. Water mol­ecules of crystallization are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. Color code: Zn, gray; O, red; N, light blue; C, black. H-atom positions are represented as sticks. Symmetry codes are as listed in Table 1[link].

The carboxyl­ate groups of the tBuip ligands bind to Zn1 and Zn2 atoms in a syn–anti fashion, giving rise to bridged {Zn2(OCO)2} dimeric clusters with a Zn⋯Zn distance of 3.969 (1) Å. The full span of the tBuip ligands connect the dimeric clusters into [Zn2(tbuip)2]n coordination polymer strands oriented along the a axis (Fig. 2[link]). In turn, parallel pairs of [Zn2(tbuip)2]n strand motifs are connected into [Zn2(tbuip)2(dpu)]n coordination polymer double strands by tethering dpu ligands that span a Zn⋯Zn distance of 14.394 (3) Å (Fig. 3[link]). The double strands motifs are oriented parallel to the a axis.

[Figure 2]
Figure 2
[Zn2(tbuip)2]n coordination polymer strand in the title compound, featuring {Zn2(OCO)2} dimeric clusters.
[Figure 3]
Figure 3
[Zn2(tbuip)2(dpu)]n coordination polymer double strands in the title compound, with [Zn2(tbuip)2]n strands drawn in red.

Discrete D(2) short water-mol­ecule chains and C(4) cyclic water mol­ecule tetra­mers (Infantes & Motherwell, 2002[Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454-461.]) are located between neighboring coordination polymer double strand units. These engage in O—H⋯O hydrogen-bonding patterns involving other water mol­ecules of crystallization, the water mol­ecule bound to Zn2, and unligated carboxyl­ate O atoms of the tBuip ligands. Additionally, amide groups of the dpu ligands engage in N—H⋯O hydrogen-bonding donation to unligated carboxyl­ate O atoms of the tBuip ligands. The full triperiodic crystal structure of the title compound is stabilized by these supra­molecular hydrogen-bonding inter­actions (Fig. 4[link]). Details regarding the hydrogen-bonding patterns in the title compound are listed in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10A⋯O2W 0.89 1.88 2.658 (7) 144
O10—H10B⋯O1W 0.90 1.98 2.768 (7) 146
N3—H3⋯O4iv 0.88 1.92 2.761 (5) 160
O1W—H1WA⋯O1Wv 0.87 2.34 2.918 (10) 124
O2W—H2WA⋯O7vi 0.87 1.92 2.708 (11) 149
O2W—H2WB⋯O3Wvi 0.87 2.38 2.934 (10) 122
O3W—H3WA⋯O1v 0.87 2.10 2.941 (7) 164
O3W—H3WB⋯O2W 0.87 2.11 2.912 (11) 154
Symmetry codes: (iv) x+1, y+1, z; (v) [-x+1, -y, -z+1]; (vi) [-x+2, -y, -z+1].
[Figure 4]
Figure 4
Stacking of [Zn2(tbuip)2(dpu)]n coordination polymer double strands in the title compound, viewed down the a axis. The O atoms of the water mol­ecules of crystallization located between adjacent ribbons are drawn as orange spheres.

Synthesis and crystallization

Zn(NO3)2.6H2O (110 mg, 0.37 mmol), 5-tert-butyl­isophthalic acid (tBuipH2) (82 mg, 0.37 mmol), 1,3-di(pyridin-4-yl)urea (dpu) (79 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml of distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Colorless crystals of the title complex were obtained in 55% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Zn2(C12H12O4)2(C11H10N4O)(H2O)]·3H2O
Mr 857.46
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 10.0232 (10), 10.9921 (11), 17.4698 (17)
α, β, γ (°) 100.182 (1), 100.460 (1), 101.335 (1)
V3) 1810.2 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.40
Crystal size (mm) 0.13 × 0.11 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.696, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 25998, 6575, 4380
Rint 0.077
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.155, 1.03
No. of reflections 6575
No. of parameters 493
No. of restraints 5
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.33, −0.65
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker X (Palmer, 2020[Palmer, D. (2020). CrystalMaker X. Crystal Maker Software, Begbroke, England.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: SAINT v8.34A (Bruker, 2014); data reduction: SAINT v8.34A (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CrystalMaker X (Palmer, 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[aqua[µ2-1,3-bis(pyridin-4-yl)urea-κ2N4:N4']bis(µ3-5-tert-butylisophthalato-κ3O1:O1':O3)dizinc(II)] trihydrate] top
Crystal data top
[Zn2(C12H12O4)2(C11H10N4O)(H2O)]·3H2OZ = 2
Mr = 857.46F(000) = 888
Triclinic, P1Dx = 1.573 Mg m3
a = 10.0232 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9921 (11) ÅCell parameters from 5602 reflections
c = 17.4698 (17) Åθ = 2.4–25.3°
α = 100.182 (1)°µ = 1.40 mm1
β = 100.460 (1)°T = 173 K
γ = 101.335 (1)°Chunk, colourless
V = 1810.2 (3) Å30.13 × 0.11 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
6575 independent reflections
Radiation source: sealed tube4380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 8.36 pixels mm-1θmax = 25.3°, θmin = 1.2°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.696, Tmax = 0.745l = 2021
25998 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0721P)2 + 1.4791P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6575 reflectionsΔρmax = 1.33 e Å3
493 parametersΔρmin = 0.65 e Å3
5 restraints
Special details top

Experimental. Data were collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was refined by Least Squares using version 2018/3 of XL (Sheldrick, 2015) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. All H atoms were placed in calculated positions with C—H = 0.98 Å for CH3 groups and 0.95 Å for phenyl and pyridyl groups, N—H = 0.88 Å, 0.88 Å for the coordinated water ligand and 0.87 Å for solvent water molecules. Hydrogen atoms were constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N) for aromatic hydrogen atoms and N—H groups and with Uiso(H) = 1.2 Ueq(C,O) for methyl groups and all oxygen atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.38132 (6)0.30660 (6)0.39727 (3)0.02965 (19)
Zn20.61061 (6)0.11823 (6)0.28134 (3)0.03045 (19)
O10.3106 (4)0.1265 (3)0.3413 (2)0.0403 (9)
O20.4073 (3)0.0235 (3)0.2530 (2)0.0359 (9)
O30.1993 (3)0.1023 (3)0.26575 (19)0.0326 (8)
O40.3317 (3)0.0717 (3)0.1824 (2)0.0341 (8)
O50.5679 (3)0.3284 (3)0.46735 (18)0.0330 (8)
O60.6496 (4)0.2880 (3)0.35802 (19)0.0355 (9)
O71.2637 (7)0.2507 (7)0.5132 (4)0.0328 (10)0.5
O7A1.2822 (8)0.3242 (7)0.4917 (4)0.0328 (10)0.5
O81.2077 (9)0.3474 (8)0.4165 (5)0.039 (2)0.5
O8A1.1426 (8)0.3094 (8)0.3755 (5)0.0328 (10)0.5
O90.3808 (4)0.5378 (4)0.0421 (2)0.0488 (11)
O100.6375 (4)0.0199 (4)0.3730 (3)0.0614 (12)
H10A0.6957200.0304520.3642700.092*
H10B0.5588900.0362720.3722500.092*
N10.4125 (4)0.4238 (4)0.3209 (2)0.0308 (10)
N20.5062 (4)0.6579 (4)0.1645 (2)0.0343 (10)
H20.5645030.7315600.1879500.041*
N30.5180 (4)0.7370 (4)0.0532 (2)0.0351 (11)
H30.5813030.7986380.0879190.042*
N40.4375 (4)0.8144 (4)0.1743 (2)0.0309 (10)
C10.3507 (5)0.3873 (5)0.2435 (3)0.0341 (12)
H10.2859120.3069660.2252440.041*
C20.3760 (5)0.4602 (5)0.1885 (3)0.0341 (12)
H2A0.3290370.4300440.1339890.041*
C30.4702 (5)0.5774 (5)0.2135 (3)0.0328 (12)
C40.5331 (5)0.6168 (5)0.2951 (3)0.0349 (13)
H40.5966770.6975170.3152020.042*
C50.5028 (5)0.5386 (5)0.3456 (3)0.0338 (12)
H50.5473610.5666300.4005650.041*
C60.4606 (5)0.6357 (5)0.0825 (3)0.0332 (12)
C70.3781 (5)0.7017 (5)0.1630 (3)0.0359 (13)
H70.3167760.6415380.2073800.043*
C80.4006 (6)0.6666 (5)0.0894 (3)0.0377 (13)
H80.3566020.5845120.0843160.045*
C90.4883 (5)0.7540 (5)0.0244 (3)0.0319 (12)
C100.5527 (5)0.8704 (5)0.0363 (3)0.0338 (12)
H100.6163750.9315500.0067660.041*
C110.5243 (5)0.8970 (5)0.1101 (3)0.0352 (13)
H110.5682310.9782280.1165610.042*
C120.3050 (5)0.0536 (5)0.2759 (3)0.0270 (11)
C130.1629 (5)0.0044 (4)0.2218 (3)0.0248 (11)
C140.1506 (5)0.0888 (5)0.1498 (3)0.0280 (11)
H140.2322210.1100720.1364860.034*
C150.0222 (5)0.1428 (4)0.0969 (3)0.0257 (11)
C160.0950 (5)0.1130 (4)0.1203 (3)0.0265 (11)
H160.1844520.1523630.0866020.032*
C170.0862 (5)0.0276 (4)0.1912 (3)0.0255 (11)
C180.0447 (5)0.0293 (4)0.2418 (3)0.0255 (11)
H180.0529380.0903660.2893250.031*
C190.2145 (5)0.0018 (5)0.2143 (3)0.0256 (11)
C200.0077 (5)0.2321 (5)0.0162 (3)0.0375 (13)
C210.1438 (8)0.2552 (7)0.0016 (4)0.0754 (13)
H21A0.2009430.1770360.0061370.113*
H21B0.1267740.3229760.0461800.113*
H21C0.1931230.2807470.0477010.113*
C220.0783 (8)0.3659 (7)0.0180 (4)0.0754 (13)
H22A0.0255050.4007000.0582770.113*
H22B0.0958530.4228860.0344950.113*
H22C0.1674380.3580480.0314550.113*
C230.0777 (8)0.1923 (7)0.0508 (4)0.0754 (13)
H23A0.1708080.1921970.0408410.113*
H23B0.0863230.2520840.1012220.113*
H23C0.0317020.1066200.0540910.113*
C240.6671 (5)0.3144 (4)0.4332 (3)0.0273 (11)
C250.8089 (5)0.3317 (4)0.4840 (3)0.0272 (11)
C260.9219 (5)0.3176 (4)0.4499 (3)0.0298 (12)
H260.9100610.2992180.3935640.036*
C271.0512 (5)0.3304 (5)0.4988 (3)0.0358 (13)
C281.0671 (5)0.3553 (5)0.5811 (3)0.0343 (12)
H281.1559450.3613940.6138170.041*
C290.9571 (5)0.3715 (5)0.6173 (3)0.0279 (11)
C300.8288 (5)0.3610 (4)0.5669 (3)0.0261 (11)
H300.7523070.3741660.5896680.031*
C311.1850 (15)0.3084 (12)0.4767 (7)0.0328 (10)0.5
C31A1.1618 (14)0.3207 (14)0.4492 (8)0.0328 (10)0.5
C320.9775 (6)0.4005 (5)0.7085 (3)0.0369 (13)
C330.8481 (6)0.3313 (6)0.7321 (3)0.0513 (16)
H33A0.7671000.3623340.7106700.077*
H33B0.8638680.3475160.7904440.077*
H33C0.8306260.2396330.7104210.077*
C340.9951 (7)0.5441 (6)0.7375 (4)0.0598 (18)
H34A1.0798810.5900800.7252120.090*
H34B1.0027330.5641100.7953370.090*
H34C0.9139400.5697120.7106350.090*
C351.1038 (7)0.3611 (7)0.7494 (4)0.0589 (18)
H35A1.0917520.2691020.7315350.088*
H35B1.1134700.3825670.8073330.088*
H35C1.1877800.4059710.7357570.088*
O2W0.8558 (8)0.0788 (8)0.4110 (5)0.131 (3)
H2WA0.8498570.1316130.4425630.196*
H2WB0.9288810.0183180.4356480.196*
O3W0.8410 (7)0.0382 (6)0.5714 (4)0.104 (2)
H3WA0.7907990.0212270.5881470.156*
H3WB0.8208150.0121240.5197910.156*
O1W0.4387 (6)0.1147 (5)0.4373 (3)0.0763 (15)
H1WA0.4108880.0612260.4702480.114*
H1WB0.5099990.1313850.4665400.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0193 (3)0.0393 (4)0.0255 (3)0.0067 (3)0.0028 (2)0.0030 (3)
Zn20.0175 (3)0.0445 (4)0.0246 (3)0.0073 (3)0.0027 (2)0.0023 (3)
O10.031 (2)0.044 (2)0.033 (2)0.0044 (17)0.0022 (17)0.0139 (17)
O20.0170 (19)0.053 (2)0.031 (2)0.0054 (17)0.0032 (15)0.0033 (17)
O30.0206 (19)0.041 (2)0.0295 (19)0.0087 (16)0.0035 (15)0.0086 (16)
O40.0195 (19)0.041 (2)0.032 (2)0.0019 (16)0.0032 (16)0.0066 (16)
O50.0188 (18)0.057 (2)0.0183 (17)0.0039 (17)0.0055 (14)0.0003 (16)
O60.044 (2)0.038 (2)0.0202 (18)0.0099 (18)0.0049 (16)0.0021 (15)
O70.020 (2)0.045 (3)0.031 (2)0.009 (2)0.0063 (19)0.001 (2)
O7A0.020 (2)0.045 (3)0.031 (2)0.009 (2)0.0063 (19)0.001 (2)
O80.041 (6)0.040 (5)0.049 (5)0.015 (4)0.031 (4)0.010 (4)
O8A0.020 (2)0.045 (3)0.031 (2)0.009 (2)0.0063 (19)0.001 (2)
O90.054 (3)0.047 (2)0.028 (2)0.009 (2)0.0043 (19)0.0015 (18)
O100.035 (2)0.086 (3)0.072 (3)0.018 (2)0.010 (2)0.037 (3)
N10.021 (2)0.039 (3)0.031 (2)0.006 (2)0.0085 (19)0.002 (2)
N20.032 (3)0.035 (2)0.026 (2)0.003 (2)0.0008 (19)0.0005 (19)
N30.032 (3)0.037 (3)0.028 (2)0.000 (2)0.001 (2)0.001 (2)
N40.024 (2)0.039 (3)0.026 (2)0.007 (2)0.0038 (19)0.0009 (19)
C10.019 (3)0.039 (3)0.037 (3)0.005 (2)0.001 (2)0.002 (2)
C20.027 (3)0.041 (3)0.026 (3)0.006 (2)0.002 (2)0.003 (2)
C30.021 (3)0.041 (3)0.036 (3)0.007 (2)0.007 (2)0.006 (2)
C40.023 (3)0.042 (3)0.033 (3)0.002 (2)0.003 (2)0.001 (2)
C50.024 (3)0.043 (3)0.028 (3)0.004 (2)0.002 (2)0.001 (2)
C60.029 (3)0.036 (3)0.031 (3)0.006 (3)0.003 (2)0.004 (2)
C70.026 (3)0.040 (3)0.030 (3)0.002 (2)0.001 (2)0.009 (2)
C80.029 (3)0.045 (3)0.032 (3)0.004 (3)0.001 (2)0.002 (3)
C90.025 (3)0.043 (3)0.027 (3)0.012 (2)0.005 (2)0.001 (2)
C100.028 (3)0.043 (3)0.021 (3)0.005 (2)0.002 (2)0.007 (2)
C110.030 (3)0.040 (3)0.027 (3)0.001 (2)0.001 (2)0.001 (2)
C120.019 (3)0.033 (3)0.024 (3)0.004 (2)0.003 (2)0.001 (2)
C130.025 (3)0.027 (3)0.019 (2)0.003 (2)0.003 (2)0.001 (2)
C140.021 (3)0.033 (3)0.029 (3)0.008 (2)0.005 (2)0.002 (2)
C150.023 (3)0.028 (3)0.022 (2)0.003 (2)0.004 (2)0.001 (2)
C160.013 (2)0.034 (3)0.027 (3)0.000 (2)0.001 (2)0.002 (2)
C170.026 (3)0.026 (3)0.023 (3)0.007 (2)0.006 (2)0.002 (2)
C180.021 (3)0.027 (3)0.026 (3)0.004 (2)0.002 (2)0.002 (2)
C190.022 (3)0.029 (3)0.022 (3)0.004 (2)0.002 (2)0.000 (2)
C200.019 (3)0.045 (3)0.038 (3)0.009 (2)0.002 (2)0.013 (3)
C210.089 (3)0.075 (3)0.048 (2)0.023 (3)0.009 (2)0.020 (2)
C220.089 (3)0.075 (3)0.048 (2)0.023 (3)0.009 (2)0.020 (2)
C230.089 (3)0.075 (3)0.048 (2)0.023 (3)0.009 (2)0.020 (2)
C240.029 (3)0.024 (3)0.026 (3)0.002 (2)0.007 (2)0.003 (2)
C250.030 (3)0.024 (3)0.027 (3)0.005 (2)0.009 (2)0.004 (2)
C260.032 (3)0.026 (3)0.031 (3)0.003 (2)0.016 (2)0.001 (2)
C270.027 (3)0.022 (3)0.055 (4)0.002 (2)0.019 (3)0.002 (2)
C280.022 (3)0.035 (3)0.040 (3)0.004 (2)0.002 (2)0.001 (2)
C290.019 (3)0.031 (3)0.033 (3)0.007 (2)0.005 (2)0.006 (2)
C300.022 (3)0.031 (3)0.027 (3)0.006 (2)0.010 (2)0.005 (2)
C310.020 (2)0.045 (3)0.031 (2)0.009 (2)0.0063 (19)0.001 (2)
C31A0.020 (2)0.045 (3)0.031 (2)0.009 (2)0.0063 (19)0.001 (2)
C320.031 (3)0.048 (3)0.031 (3)0.013 (3)0.001 (2)0.007 (2)
C330.043 (4)0.074 (5)0.032 (3)0.007 (3)0.004 (3)0.013 (3)
C340.063 (5)0.060 (4)0.044 (4)0.015 (4)0.002 (3)0.007 (3)
C350.043 (4)0.094 (5)0.045 (4)0.029 (4)0.000 (3)0.022 (4)
O2W0.111 (6)0.140 (6)0.190 (7)0.071 (5)0.044 (5)0.104 (6)
O3W0.113 (5)0.104 (5)0.094 (4)0.004 (4)0.025 (4)0.038 (4)
O1W0.095 (4)0.068 (3)0.065 (3)0.004 (3)0.023 (3)0.021 (3)
Geometric parameters (Å, º) top
Zn1—O11.972 (4)C14—H140.9500
Zn1—O51.986 (3)C14—C151.392 (6)
Zn1—O7Ai2.074 (7)C15—C161.390 (6)
Zn1—O8i1.951 (8)C15—C201.533 (7)
Zn1—O8Ai2.361 (8)C16—H160.9500
Zn1—N12.034 (4)C16—C171.394 (6)
Zn2—O22.025 (3)C17—C181.398 (7)
Zn2—O3ii2.009 (3)C17—C191.491 (7)
Zn2—O62.017 (3)C18—H180.9500
Zn2—O102.092 (4)C20—C211.494 (9)
Zn2—N4iii2.140 (4)C20—C221.561 (9)
O1—C121.259 (6)C20—C231.503 (9)
O2—C121.247 (6)C21—H21A0.9800
O3—C191.259 (5)C21—H21B0.9800
O4—C191.254 (6)C21—H21C0.9800
O5—C241.270 (6)C22—H22A0.9800
O6—C241.265 (5)C22—H22B0.9800
O7—C311.259 (14)C22—H22C0.9800
O7A—C31A1.287 (14)C23—H23A0.9800
O8—C311.246 (14)C23—H23B0.9800
O8A—C31A1.246 (15)C23—H23C0.9800
O9—C61.218 (6)C24—C251.490 (7)
O10—H10A0.8944C25—C261.394 (7)
O10—H10B0.8969C25—C301.393 (6)
N1—C11.334 (6)C26—H260.9500
N1—C51.347 (6)C26—C271.383 (7)
N2—H20.8800C27—C281.389 (7)
N2—C31.379 (7)C27—C311.512 (15)
N2—C61.384 (6)C27—C31A1.534 (16)
N3—H30.8800C28—H280.9500
N3—C61.374 (7)C28—C291.391 (7)
N3—C91.388 (6)C29—C301.392 (6)
N4—C71.330 (7)C29—C321.537 (7)
N4—C111.347 (6)C30—H300.9500
C1—H10.9500C32—C331.533 (8)
C1—C21.382 (7)C32—C341.534 (8)
C2—H2A0.9500C32—C351.516 (7)
C2—C31.384 (7)C33—H33A0.9800
C3—C41.402 (7)C33—H33B0.9800
C4—H40.9500C33—H33C0.9800
C4—C51.369 (7)C34—H34A0.9800
C5—H50.9500C34—H34B0.9800
C7—H70.9500C34—H34C0.9800
C7—C81.398 (7)C35—H35A0.9800
C8—H80.9500C35—H35B0.9800
C8—C91.381 (7)C35—H35C0.9800
C9—C101.384 (7)O2W—H2WA0.8697
C10—H100.9500O2W—H2WB0.8701
C10—C111.365 (7)O3W—H3WA0.8700
C11—H110.9500O3W—H3WB0.8699
C12—C131.507 (6)O1W—H1WA0.8698
C13—C141.395 (6)O1W—H1WB0.8702
C13—C181.392 (6)
O1—Zn1—O5109.03 (15)C16—C15—C20120.5 (4)
O1—Zn1—O7Ai104.2 (2)C15—C16—H16118.8
O1—Zn1—O8Ai84.1 (2)C15—C16—C17122.5 (4)
O1—Zn1—N1112.35 (16)C17—C16—H16118.8
O1—Zn1—C31Ai94.5 (3)C16—C17—C18119.2 (4)
O5—Zn1—O7Ai93.7 (2)C16—C17—C19120.8 (4)
O5—Zn1—O8Ai152.6 (2)C18—C17—C19119.9 (4)
O5—Zn1—N1105.32 (15)C13—C18—C17119.3 (4)
O5—Zn1—C31Ai123.8 (3)C13—C18—H18120.3
O7Ai—Zn1—C31Ai30.1 (3)C17—C18—H18120.3
O8i—Zn1—O1100.0 (3)O3—C19—C17117.3 (4)
O8i—Zn1—O5133.3 (3)O4—C19—O3122.5 (4)
O8i—Zn1—O7Ai43.0 (3)O4—C19—C17120.2 (4)
O8i—Zn1—O8Ai20.1 (3)C15—C20—C22107.9 (5)
O8i—Zn1—N195.9 (3)C21—C20—C15113.2 (4)
O8i—Zn1—C31Ai15.7 (4)C21—C20—C22104.2 (5)
O8Ai—Zn1—C31Ai29.1 (3)C21—C20—C23114.3 (6)
N1—Zn1—O7Ai129.6 (2)C23—C20—C15111.6 (4)
N1—Zn1—O8Ai90.7 (2)C23—C20—C22104.9 (5)
N1—Zn1—C31Ai111.5 (3)C20—C21—H21A109.5
O2—Zn2—O1087.00 (16)C20—C21—H21B109.5
O2—Zn2—N4iii85.75 (15)C20—C21—H21C109.5
O3ii—Zn2—O2142.77 (14)H21A—C21—H21B109.5
O3ii—Zn2—O6103.49 (14)H21A—C21—H21C109.5
O3ii—Zn2—O1088.12 (15)H21B—C21—H21C109.5
O3ii—Zn2—N4iii93.10 (15)C20—C22—H22A109.5
O6—Zn2—O2113.62 (14)C20—C22—H22B109.5
O6—Zn2—O1093.17 (16)C20—C22—H22C109.5
O6—Zn2—N4iii96.64 (15)H22A—C22—H22B109.5
O10—Zn2—N4iii169.53 (17)H22A—C22—H22C109.5
C12—O1—Zn1140.4 (4)H22B—C22—H22C109.5
C12—O2—Zn2130.1 (3)C20—C23—H23A109.5
C19—O3—Zn2i108.0 (3)C20—C23—H23B109.5
C24—O5—Zn1116.9 (3)C20—C23—H23C109.5
C24—O6—Zn2130.1 (3)H23A—C23—H23B109.5
C31—O8—Zn1ii107.2 (8)H23A—C23—H23C109.5
Zn2—O10—H10A109.6H23B—C23—H23C109.5
Zn2—O10—H10B111.9O5—C24—C25118.3 (4)
H10A—O10—H10B102.2O6—C24—O5122.3 (5)
C1—N1—Zn1121.4 (4)O6—C24—C25119.5 (4)
C1—N1—C5117.2 (4)C26—C25—C24120.9 (4)
C5—N1—Zn1121.2 (3)C30—C25—C24119.7 (4)
C3—N2—H2116.4C30—C25—C26119.4 (5)
C3—N2—C6127.1 (4)C25—C26—H26120.2
C6—N2—H2116.4C27—C26—C25119.5 (5)
C6—N3—H3116.1C27—C26—H26120.2
C6—N3—C9127.9 (4)C26—C27—C28119.9 (5)
C9—N3—H3116.1C26—C27—C31129.5 (6)
C7—N4—Zn2iii125.5 (3)C26—C27—C31A110.7 (6)
C7—N4—C11116.5 (4)C28—C27—C31110.3 (6)
C11—N4—Zn2iii117.7 (4)C28—C27—C31A129.3 (6)
N1—C1—H1118.3C27—C28—H28118.9
N1—C1—C2123.4 (5)C27—C28—C29122.2 (5)
C2—C1—H1118.3C29—C28—H28118.9
C1—C2—H2A120.3C28—C29—C30116.8 (5)
C1—C2—C3119.5 (5)C28—C29—C32121.3 (4)
C3—C2—H2A120.3C30—C29—C32121.9 (4)
N2—C3—C2125.1 (5)C25—C30—H30118.9
N2—C3—C4117.8 (5)C29—C30—C25122.2 (4)
C2—C3—C4117.1 (5)C29—C30—H30118.9
C3—C4—H4120.1O7—C31—C27123.7 (10)
C5—C4—C3119.8 (5)O8—C31—O7122.4 (12)
C5—C4—H4120.1O8—C31—C27113.8 (10)
N1—C5—C4123.0 (5)O7A—C31A—C27112.9 (10)
N1—C5—H5118.5O8A—C31A—O7A121.1 (13)
C4—C5—H5118.5O8A—C31A—C27126.0 (10)
O9—C6—N2123.6 (5)C27—C31A—Zn1ii166.9 (7)
O9—C6—N3125.0 (5)C33—C32—C29110.2 (4)
N3—C6—N2111.3 (4)C33—C32—C34108.2 (5)
N4—C7—H7118.1C34—C32—C29108.1 (4)
N4—C7—C8123.8 (5)C35—C32—C29112.3 (4)
C8—C7—H7118.1C35—C32—C33108.5 (5)
C7—C8—H8120.8C35—C32—C34109.5 (5)
C9—C8—C7118.4 (5)C32—C33—H33A109.5
C9—C8—H8120.8C32—C33—H33B109.5
C8—C9—N3126.1 (5)C32—C33—H33C109.5
C8—C9—C10118.0 (5)H33A—C33—H33B109.5
C10—C9—N3115.9 (4)H33A—C33—H33C109.5
C9—C10—H10120.2H33B—C33—H33C109.5
C11—C10—C9119.7 (5)C32—C34—H34A109.5
C11—C10—H10120.2C32—C34—H34B109.5
N4—C11—C10123.6 (5)C32—C34—H34C109.5
N4—C11—H11118.2H34A—C34—H34B109.5
C10—C11—H11118.2H34A—C34—H34C109.5
O1—C12—C13117.3 (4)H34B—C34—H34C109.5
O2—C12—O1125.3 (4)C32—C35—H35A109.5
O2—C12—C13117.4 (4)C32—C35—H35B109.5
C14—C13—C12119.5 (4)C32—C35—H35C109.5
C18—C13—C12120.5 (4)H35A—C35—H35B109.5
C18—C13—C14119.9 (4)H35A—C35—H35C109.5
C13—C14—H14119.1H35B—C35—H35C109.5
C15—C14—C13121.8 (4)H2WA—O2W—H2WB104.5
C15—C14—H14119.1H3WA—O3W—H3WB104.5
C14—C15—C20122.4 (4)H1WA—O1W—H1WB104.5
C16—C15—C14117.1 (4)
Zn1—O1—C12—O267.4 (8)C12—C13—C14—C15178.5 (4)
Zn1—O1—C12—C13114.1 (5)C12—C13—C18—C17178.9 (4)
Zn1—O5—C24—O60.1 (6)C13—C14—C15—C162.5 (7)
Zn1—O5—C24—C25179.2 (3)C13—C14—C15—C20177.8 (5)
Zn1ii—O7A—C31A—O8A0.1 (14)C14—C13—C18—C173.5 (7)
Zn1ii—O7A—C31A—C27179.5 (8)C14—C15—C16—C173.5 (7)
Zn1ii—O8—C31—O71.9 (15)C14—C15—C20—C210.7 (8)
Zn1ii—O8—C31—C27178.7 (7)C14—C15—C20—C22115.4 (6)
Zn1ii—O8A—C31A—O7A0.1 (12)C14—C15—C20—C23129.9 (6)
Zn1ii—O8A—C31A—C27179.4 (13)C15—C16—C17—C181.0 (7)
Zn1—N1—C1—C2175.5 (4)C15—C16—C17—C19179.9 (4)
Zn1—N1—C5—C4175.8 (4)C16—C15—C20—C21179.0 (5)
Zn2—O2—C12—O126.6 (8)C16—C15—C20—C2264.3 (6)
Zn2—O2—C12—C13155.0 (3)C16—C15—C20—C2350.4 (7)
Zn2i—O3—C19—O41.4 (6)C16—C17—C18—C132.6 (7)
Zn2i—O3—C19—C17178.2 (3)C16—C17—C19—O3161.0 (4)
Zn2—O6—C24—O594.7 (5)C16—C17—C19—O418.6 (7)
Zn2—O6—C24—C2586.2 (5)C18—C13—C14—C150.9 (7)
Zn2iii—N4—C7—C8172.4 (4)C18—C17—C19—O320.1 (7)
Zn2iii—N4—C11—C10173.3 (4)C18—C17—C19—O4160.3 (4)
O1—C12—C13—C14178.1 (5)C19—C17—C18—C13176.4 (4)
O1—C12—C13—C184.4 (7)C20—C15—C16—C17176.8 (5)
O2—C12—C13—C140.5 (7)C24—C25—C26—C27178.0 (4)
O2—C12—C13—C18177.1 (4)C24—C25—C30—C29176.5 (4)
O5—C24—C25—C26180.0 (4)C25—C26—C27—C281.0 (7)
O5—C24—C25—C300.8 (7)C25—C26—C27—C31174.0 (8)
O6—C24—C25—C260.9 (7)C25—C26—C27—C31A175.9 (7)
O6—C24—C25—C30179.9 (4)C26—C25—C30—C292.7 (7)
N1—C1—C2—C30.2 (8)C26—C27—C28—C291.8 (8)
N2—C3—C4—C5178.6 (5)C26—C27—C31—O7136.4 (10)
N3—C9—C10—C11177.1 (5)C26—C27—C31—O840.4 (14)
N4—C7—C8—C90.7 (8)C26—C27—C31A—Zn1ii174 (4)
C1—N1—C5—C40.4 (7)C26—C27—C31A—O7A175.9 (9)
C1—C2—C3—N2178.9 (5)C26—C27—C31A—O8A3.5 (16)
C1—C2—C3—C41.4 (7)C27—C28—C29—C300.3 (7)
C2—C3—C4—C51.6 (7)C27—C28—C29—C32179.2 (5)
C3—N2—C6—O90.7 (9)C28—C27—C31—O737.2 (14)
C3—N2—C6—N3179.9 (5)C28—C27—C31—O8146.0 (9)
C3—C4—C5—N10.7 (8)C28—C27—C31A—Zn1ii9 (4)
C5—N1—C1—C20.7 (7)C28—C27—C31A—O7A7.5 (15)
C6—N2—C3—C22.7 (8)C28—C27—C31A—O8A173.1 (10)
C6—N2—C3—C4177.5 (5)C28—C29—C30—C252.0 (7)
C6—N3—C9—C84.8 (8)C28—C29—C32—C33142.4 (5)
C6—N3—C9—C10174.5 (5)C28—C29—C32—C3499.6 (6)
C7—N4—C11—C100.0 (8)C28—C29—C32—C3521.4 (7)
C7—C8—C9—N3177.3 (5)C30—C25—C26—C271.2 (7)
C7—C8—C9—C102.0 (7)C30—C29—C32—C3338.0 (7)
C8—C9—C10—C112.3 (7)C30—C29—C32—C3480.0 (6)
C9—N3—C6—O96.6 (9)C30—C29—C32—C35159.1 (5)
C9—N3—C6—N2174.2 (5)C31—C27—C28—C29176.1 (7)
C9—C10—C11—N41.3 (8)C31A—C27—C28—C29174.5 (8)
C11—N4—C7—C80.3 (8)C32—C29—C30—C25178.5 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O2W0.891.882.658 (7)144
O10—H10B···O1W0.901.982.768 (7)146
N3—H3···O4iv0.881.922.761 (5)160
C2—H2A···O90.952.232.840 (6)121
C8—H8···O90.952.342.921 (7)119
C11—H11···O2iii0.952.442.936 (6)113
C26—H26···O8A0.952.392.770 (9)103
O1W—H1WA···O1Wv0.872.342.918 (10)124
O2W—H2WA···O7vi0.871.922.708 (11)149
O2W—H2WB···O3Wvi0.872.382.934 (10)122
O3W—H3WA···O1v0.872.102.941 (7)164
O3W—H3WB···O2W0.872.112.912 (11)154
Symmetry codes: (iii) x+1, y+1, z; (iv) x+1, y+1, z; (v) x+1, y, z+1; (vi) x+2, y, z+1.
 

Funding information

Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.

References

First citationAddison, A. W., Rao, T. N. J., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationInfantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPalmer, D. (2020). CrystalMaker X. Crystal Maker Software, Begbroke, England.  Google Scholar
First citationPochodylo, A. L. & LaDuca, R. L. (2011). CrystEngComm, 13, 2249–2261.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146