organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

9-(4-Meth­­oxy­phen­yl)-9H-carbazole

crossmark logo

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India, bMolecular Biophysics Unit, Indian Institute of Science, Bangalore, India, cPG & Research Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli-620 017, Tamil Nadu, India, and dDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Vallam-613403, Thanjavur, Tamil Nadu, India
*Correspondence e-mail: rrengas@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 28 July 2023; accepted 1 August 2023; online 10 August 2023)

In the title compound, C19H15NO, the dihedral angle between the benzene rings of the carbazole moiety is 1.73 (12)° and the meth­oxy-substituted phenyl ring deviates from the mean plane of the carbazole grouping (r.m.s. deviation = 0.020 Å) by 56.78 (8)°. In the crystal, weak C—H⋯π inter­actions link the mol­ecules. The two-dimensional fingerprint plots derived from the Hirshfeld surface indicate that H⋯H (51.2%) and C⋯H/H⋯C (39.9%) contacts dominate the packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Carbazole and its derivatives have attracted attention in the development of electrical and electronic materials because of their conjugated π-electron systems (Taranekar et al., 2007[Taranekar, P., Fulghum, T., Patton, D., Ponnapati, R., Clyde, G. & Advincula, R. (2007). J. Am. Chem. Soc. 129, 12537-12548.]). The N-heterocyclic carbazole mol­ecule has also been employed as a promising candidate in the treatment of cancer (Patil et al., 2022[Patil, S. A., Patil, S. A., Ble-González, E. A., Isbel, S. R., Hampton, S. M. & Bugarin, A. (2022). Molecules, 27, 6575.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound.

The title compound crystallizes in the ortho­rhom­bic space group Pbca with one mol­ecule in the asymmetric unit (Fig. 1[link]). As expected, the C1–C12/N1 carbazole-fused-ring moiety is almost planar (Moreno-Fuquen et al., 2012[Moreno-Fuquen, R., Grande, C., Advincula, R. C., Tenorio, J. C. & Ellena, J. (2012). Acta Cryst. E68, o1853.]) with a dihedral angle of 1.73 (12)° between the C1–C6 and C7–C12 rings. The dihedral angle between the C1–C12/N1 carbazole mean plane and the pendant C13–C18 ring is 56.78 (8)°. Atom C19 of the para-meth­oxy group deviates by 0.219 (3) Å from its attached ring. The crystal structure is consolidated by weak C—H⋯π inter­actions (Fig. 2[link]) [C9—H9⋯Cg(N1/C1/C6–C8) = 2.71 Å; symmetry code: 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; C17—H17⋯Cg(C7–C12) = 2.92 Å; symmetry code: x, 1 + y, z]. The crystal packing viewed along the a-axis direction is shown in Fig. 3[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
A view of the C—H⋯π inter­actions in the title compound. Cg1 is the centroid of the pyrrole ring of the carbazole mol­ecule (symmetry code: 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z) and Cg3 is the centroid of the phenyl ring of the carbazole mol­ecule (symmetry code: x, 1 + y, z).
[Figure 3]
Figure 3
Crystal packing viewed along the a-axis direction.

The Hirshfeld surface and its related two-dimensional fingerprint plots (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) were generated with Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The Hirshfeld surface mapped over dnorm within the range −0.05 to 1.63 a.u. shows a few red spots in the locales of DA (D = donor, A = acceptor) inter­actions, consistent with the presence of weak C—H⋯π inter­actions (Fig. 4[link]). The two-dimensional fingerprint plots (Fig. 5[link]) show that H⋯H (51.2%) and C⋯H/H⋯C (39.9%) contacts dominate the packing with other contacts [C⋯C (0.7%), N⋯H/H⋯N (1.9%), O⋯C/C⋯O (0.3%), O⋯H/H⋯O (6.0%)] making minor contributions.

[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm in the range −0.05 to 1.63 a.u.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots (ag) showing all inter­molecular inter­actions and delineated into C⋯H/H⋯C, C⋯C, N⋯H/H⋯N, O⋯C/C⋯O, O—H⋯H⋯O and H⋯H contacts.

Synthesis and crystallization

A 100 ml round-bottom flask was charged with 4-iodo­anisole 1.78 g (7.6 mmol, 1 equiv), 9H-carbazole 1.143 g (6.8 mmol, 1.1 equiv), which were uniformly dispersed in 35 ml of di­methyl­formamide (DMF) and the mixture was dissolved homogeneously under an N2 atm. To the mixture, K2CO3 (5.25 g, 38 mmol, 5 equiv), CuI (0.144 g, 0.76 mmol, 0.1 equiv) and 1,10-phenanthroline (0.137 g, 0.76 mmol, 0.1 equiv) was added and the mixture was refluxed for 12 h under N2. The progress of the reaction was monitored by TLC. After the completion of the reaction, the reaction was quenched in ice–water and the solid product was dissolved in ethyl acetate and washed with brine solution. The obtained solvent was removed under reduced pressure and the obtained residue was further purified using column chromatography (100–200 mesh silica gel) to afford the title compound as shown in Fig. 6[link]. Single crystals in the form of colourless needles were grown from di­chloro­methane solution at room temperature.

[Figure 6]
Figure 6
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C19H15NO
Mr 273.32
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 300
a, b, c (Å) 16.2645 (16), 7.8297 (7), 22.819 (2)
V3) 2905.9 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.09 × 0.07
 
Data collection
Diffractometer Bruker D8 CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.665, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 23109, 2762, 1564
Rint 0.062
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.08
No. of reflections 2762
No. of parameters 192
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.16
Computer programs: APEX4 and SAINT (Bruker, 2016[Bruker (2016). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX4 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/1 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

9-(4-Methoxyphenyl)-9H-carbazole top
Crystal data top
C19H15NODx = 1.249 Mg m3
Mr = 273.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4004 reflections
a = 16.2645 (16) Åθ = 2.5–21.3°
b = 7.8297 (7) ŵ = 0.08 mm1
c = 22.819 (2) ÅT = 300 K
V = 2905.9 (5) Å3Needle, colourless
Z = 80.30 × 0.09 × 0.07 mm
F(000) = 1152
Data collection top
Bruker D8 CCD
diffractometer
1564 reflections with I > 2σ(I)
Radiation source: i-mu-s microfocus sourceRint = 0.062
φ and ω scansθmax = 25.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1719
Tmin = 0.665, Tmax = 0.745k = 98
23109 measured reflectionsl = 2727
2762 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.7157P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.16 e Å3
2762 reflectionsΔρmin = 0.16 e Å3
192 parametersExtinction correction: SHELXL2019/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0059 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65084 (10)0.6420 (2)0.51323 (7)0.0716 (5)
N10.53757 (11)0.0699 (2)0.63305 (7)0.0556 (5)
C10.46058 (13)0.0072 (3)0.62775 (9)0.0549 (6)
C20.39388 (14)0.0412 (3)0.59364 (10)0.0635 (6)
H20.3959770.1375310.5698510.076*
C30.32440 (16)0.0593 (4)0.59644 (11)0.0751 (7)
H30.2788530.0308300.5738190.090*
C40.32109 (18)0.2021 (4)0.63231 (12)0.0824 (8)
H40.2733440.2674280.6331990.099*
C50.38662 (17)0.2493 (3)0.66653 (11)0.0738 (7)
H50.3835980.3453440.6904060.089*
C60.45791 (14)0.1502 (3)0.66481 (9)0.0576 (6)
C70.53597 (14)0.1588 (3)0.69436 (9)0.0570 (6)
C80.58357 (14)0.0225 (3)0.67375 (9)0.0546 (6)
C90.56892 (18)0.2696 (3)0.73589 (10)0.0705 (7)
H90.5376810.3592820.7506510.085*
C100.64787 (19)0.2448 (4)0.75469 (11)0.0795 (8)
H100.6702100.3177690.7826150.095*
C110.69510 (16)0.1116 (3)0.73253 (11)0.0746 (7)
H110.7489200.0982790.7455080.089*
C120.66401 (14)0.0014 (3)0.69172 (10)0.0638 (6)
H120.6958690.0900720.6768920.077*
C130.56442 (12)0.2203 (3)0.60315 (9)0.0516 (6)
C140.56432 (13)0.2272 (3)0.54252 (9)0.0586 (6)
H140.5453210.1342540.5210510.070*
C150.59196 (14)0.3697 (3)0.51393 (9)0.0611 (6)
H150.5911650.3737990.4732050.073*
C160.62103 (12)0.5076 (3)0.54551 (9)0.0537 (6)
C170.62057 (13)0.5029 (3)0.60578 (10)0.0592 (6)
H170.6398200.5957230.6272030.071*
C180.59139 (14)0.3598 (3)0.63427 (9)0.0601 (6)
H180.5899630.3576110.6750110.072*
C190.68915 (18)0.7775 (3)0.54377 (13)0.0909 (9)
H19A0.7112150.8579350.5161750.136*
H19B0.7327950.7330900.5676350.136*
H19C0.6494380.8336000.5682440.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0844 (11)0.0660 (11)0.0644 (10)0.0169 (9)0.0010 (8)0.0117 (9)
N10.0580 (12)0.0545 (11)0.0542 (11)0.0044 (10)0.0001 (9)0.0066 (9)
C10.0562 (14)0.0549 (14)0.0536 (13)0.0036 (12)0.0058 (11)0.0073 (11)
C20.0610 (15)0.0695 (16)0.0602 (14)0.0034 (13)0.0033 (12)0.0064 (12)
C30.0639 (17)0.093 (2)0.0688 (16)0.0055 (15)0.0041 (13)0.0164 (16)
C40.0749 (19)0.096 (2)0.0758 (18)0.0262 (16)0.0184 (16)0.0219 (17)
C50.0855 (19)0.0682 (16)0.0678 (17)0.0190 (15)0.0196 (15)0.0063 (14)
C60.0686 (16)0.0521 (14)0.0521 (13)0.0033 (12)0.0149 (12)0.0058 (11)
C70.0701 (16)0.0509 (13)0.0500 (12)0.0042 (12)0.0148 (12)0.0004 (11)
C80.0606 (14)0.0560 (14)0.0473 (12)0.0053 (12)0.0051 (11)0.0015 (11)
C90.095 (2)0.0605 (16)0.0564 (15)0.0038 (14)0.0129 (14)0.0084 (12)
C100.100 (2)0.0733 (18)0.0646 (16)0.0181 (17)0.0011 (15)0.0085 (14)
C110.0751 (17)0.0827 (19)0.0658 (16)0.0164 (15)0.0052 (13)0.0009 (15)
C120.0655 (16)0.0662 (15)0.0596 (14)0.0036 (13)0.0039 (12)0.0032 (13)
C130.0537 (13)0.0495 (13)0.0517 (13)0.0010 (10)0.0008 (10)0.0035 (11)
C140.0675 (15)0.0564 (14)0.0519 (13)0.0082 (12)0.0000 (11)0.0044 (11)
C150.0713 (16)0.0668 (16)0.0452 (13)0.0062 (13)0.0025 (11)0.0006 (12)
C160.0533 (13)0.0542 (14)0.0538 (14)0.0003 (11)0.0036 (10)0.0070 (12)
C170.0712 (15)0.0509 (14)0.0557 (14)0.0066 (12)0.0018 (11)0.0055 (12)
C180.0753 (16)0.0578 (14)0.0471 (12)0.0026 (13)0.0034 (11)0.0008 (12)
C190.113 (2)0.0664 (18)0.093 (2)0.0338 (16)0.0148 (17)0.0135 (16)
Geometric parameters (Å, º) top
O1—C161.373 (2)C9—H90.9300
O1—C191.414 (3)C10—C111.390 (3)
N1—C81.395 (3)C10—H100.9300
N1—C11.396 (3)C11—C121.380 (3)
N1—C131.429 (3)C11—H110.9300
C1—C21.388 (3)C12—H120.9300
C1—C61.404 (3)C13—C181.374 (3)
C2—C31.379 (3)C13—C141.385 (3)
C2—H20.9300C14—C151.369 (3)
C3—C41.387 (4)C14—H140.9300
C3—H30.9300C15—C161.381 (3)
C4—C51.372 (4)C15—H150.9300
C4—H40.9300C16—C171.376 (3)
C5—C61.395 (3)C17—C181.380 (3)
C5—H50.9300C17—H170.9300
C6—C71.439 (3)C18—H180.9300
C7—C91.392 (3)C19—H19A0.9600
C7—C81.400 (3)C19—H19B0.9600
C8—C121.384 (3)C19—H19C0.9600
C9—C101.368 (3)
C16—O1—C19117.80 (18)C9—C10—H10119.6
C8—N1—C1108.32 (17)C11—C10—H10119.6
C8—N1—C13125.53 (18)C12—C11—C10121.6 (2)
C1—N1—C13126.13 (18)C12—C11—H11119.2
C2—C1—N1129.2 (2)C10—C11—H11119.2
C2—C1—C6122.1 (2)C11—C12—C8117.4 (2)
N1—C1—C6108.73 (19)C11—C12—H12121.3
C3—C2—C1117.3 (2)C8—C12—H12121.3
C3—C2—H2121.3C18—C13—C14119.1 (2)
C1—C2—H2121.3C18—C13—N1120.36 (18)
C2—C3—C4121.3 (3)C14—C13—N1120.57 (19)
C2—C3—H3119.4C15—C14—C13120.5 (2)
C4—C3—H3119.4C15—C14—H14119.8
C5—C4—C3121.5 (2)C13—C14—H14119.8
C5—C4—H4119.2C14—C15—C16120.1 (2)
C3—C4—H4119.2C14—C15—H15120.0
C4—C5—C6118.7 (2)C16—C15—H15120.0
C4—C5—H5120.7O1—C16—C17123.9 (2)
C6—C5—H5120.7O1—C16—C15116.10 (19)
C5—C6—C1119.1 (2)C17—C16—C15119.9 (2)
C5—C6—C7133.9 (2)C16—C17—C18119.6 (2)
C1—C6—C7106.99 (19)C16—C17—H17120.2
C9—C7—C8119.4 (2)C18—C17—H17120.2
C9—C7—C6133.5 (2)C13—C18—C17120.8 (2)
C8—C7—C6107.15 (19)C13—C18—H18119.6
C12—C8—N1129.4 (2)C17—C18—H18119.6
C12—C8—C7121.8 (2)O1—C19—H19A109.5
N1—C8—C7108.81 (19)O1—C19—H19B109.5
C10—C9—C7119.1 (2)H19A—C19—H19B109.5
C10—C9—H9120.4O1—C19—H19C109.5
C7—C9—H9120.4H19A—C19—H19C109.5
C9—C10—C11120.7 (2)H19B—C19—H19C109.5
C8—N1—C1—C2178.5 (2)C9—C7—C8—N1179.75 (18)
C13—N1—C1—C20.1 (3)C6—C7—C8—N10.4 (2)
C8—N1—C1—C60.6 (2)C8—C7—C9—C101.4 (3)
C13—N1—C1—C6179.14 (18)C6—C7—C9—C10178.4 (2)
N1—C1—C2—C3179.7 (2)C7—C9—C10—C110.4 (4)
C6—C1—C2—C31.3 (3)C9—C10—C11—C121.0 (4)
C1—C2—C3—C40.6 (3)C10—C11—C12—C80.2 (3)
C2—C3—C4—C50.1 (4)N1—C8—C12—C11179.1 (2)
C3—C4—C5—C60.0 (4)C7—C8—C12—C112.1 (3)
C4—C5—C6—C10.7 (3)C8—N1—C13—C1855.6 (3)
C4—C5—C6—C7178.9 (2)C1—N1—C13—C18122.8 (2)
C2—C1—C6—C51.4 (3)C8—N1—C13—C14123.9 (2)
N1—C1—C6—C5179.44 (19)C1—N1—C13—C1457.8 (3)
C2—C1—C6—C7178.32 (19)C18—C13—C14—C151.1 (3)
N1—C1—C6—C70.8 (2)N1—C13—C14—C15178.38 (19)
C5—C6—C7—C90.3 (4)C13—C14—C15—C160.7 (3)
C1—C6—C7—C9179.5 (2)C19—O1—C16—C175.2 (3)
C5—C6—C7—C8179.6 (2)C19—O1—C16—C15173.4 (2)
C1—C6—C7—C80.7 (2)C14—C15—C16—O1177.25 (19)
C1—N1—C8—C12177.4 (2)C14—C15—C16—C171.4 (3)
C13—N1—C8—C124.1 (3)O1—C16—C17—C18178.16 (19)
C1—N1—C8—C70.1 (2)C15—C16—C17—C180.4 (3)
C13—N1—C8—C7178.68 (18)C14—C13—C18—C172.1 (3)
C9—C7—C8—C122.7 (3)N1—C13—C18—C17177.35 (19)
C6—C7—C8—C12177.11 (19)C16—C17—C18—C131.4 (3)
 

Acknowledgements

The authors thank DST–FIST for instrument facilities at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. The authors also thank the SC-XRD Lab, SAS, VIT Vellore, Tamil Nadu, India.

Funding information

Funding for this research was provided by: UGC-BSR-RFSMS (scholarship to PG); UGC-EMERITUS (award to RR); UGC-DSK-PDF [award No. F.4-2/2006 (BSR)/CH/18-19/0165(80th List)/18th March 2019 to NJJ]; Bishop Heber College {grant No. [MRP/1911/2019 (BHC)] to RSD}.

References

First citationBruker (2016). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Grande, C., Advincula, R. C., Tenorio, J. C. & Ellena, J. (2012). Acta Cryst. E68, o1853.  CSD CrossRef IUCr Journals Google Scholar
First citationPatil, S. A., Patil, S. A., Ble-González, E. A., Isbel, S. R., Hampton, S. M. & Bugarin, A. (2022). Molecules, 27, 6575.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTaranekar, P., Fulghum, T., Patton, D., Ponnapati, R., Clyde, G. & Advincula, R. (2007). J. Am. Chem. Soc. 129, 12537–12548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146