metal-organic compounds
Tetra-μ3-selenido-1:2:3κ3Se;1:2:4κ3Se;1:3:4κ3Se;2:3:4κ3Se-tetrakis[(η5-methylcyclopentadienyl)molybdenum(III)](6 Mo—Mo)
aFaculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
*Correspondence e-mail: inomata@sss.fukushima-u.ac.jp
The title cluster compound, [Mo4(η5-C5H4Me)4(μ3-Se)4], was synthesized from the reaction of [Mo(η5-C5H4Me)(CO)3]2 with grey selenium in refluxing xylene solution under a nitrogen atmosphere. The complete cluster is generated by a crystallographic twofold axis and contains an Mo4Se4 cubane-like core surrounded by four η5-methylcyclopentadienyl ligands. In the core, the four molybdenum atoms are connected to each other to form a tetrahedron, with a selenium atom capping each face. The Mo—Mo bond lengths vary from 2.9857 (5) to 3.0083 (3) Å and the Mo—Se separations range from 2.4633 (4) to 2.4693 (5) Å.
Keywords: crystal structure; molybdenum cluster; selenide ligand.
CCDC reference: 2285076
Structure description
In comparison to many studies on transition-metal sulfur cubane-type clusters, which contain an M4S4 core, those on selenium analogues are relatively rare. One of the reasons for this rarity could be caused by the insolubility of grey selenium to common organic solvents, as well as water, which are employed for synthesis. We found that grey selenium easily reacts with the organometallic molybdenum compound [Mo(η5-C5H4Me)(CO)3]2 in organic media to produce a new molybdenum-selenium cubane-type cluster [Mo4(η5-C5H4Me)4(μ3-Se)4]. We now report the structural details of the cluster. The partially labeled molecular structure of the title compound is shown in Fig. 1. The cluster possess twofold symmetry because of the existence of twofold axis through the cluster. The cluster has a distorted-cubane type Mo4Se4 core surrounded by four methylcyclopentadienyl ligands. In the core, four molybdenum atoms are connected by each other through six Mo—Mo bonds to give a molybdenum tetrahedron. The distances of the Mo—Mo bonds range from 2.9857 (5) to 3.0083 (3) Å, which are somewhat longer than those in [Mo4(H2O)12(μ3-Se)4](MeC6H4SO3)5·15H2O [mean value 2.865 (4) Å; Henkel et al., 1990] and (NH4)6[Mo4(CN)12(μ3-Se)4]·6H2O [2.886 (4) Å, Td symmetry; Virovets et al., 2000]. However, the Mo—Mo distances in the title compound are quite close to those in an isoelectronic cluster [Mo4(η5-C5H4Pri)4(μ3-Se)4] (mean value of 2.9870 Å), which was synthesized by the reaction of [Mo2(η5-C5H4Pri)2(μ-Cl)4] with LiSeH (Baird et al., 1991). On each face of the Mo tetrahedron, a selenium atom is located. The Mo—Se distances are in the range 2.4633 (4) to 2.4693 (5) Å and are normal.
Synthesis and crystallization
A xylene solution (30 ml) of [Mo(η5-C5H4Me)(CO)3]2 (519 mg, 1.00 mmol) and grey selenium (180 mg, 2.28 mmol) was refluxed for 17 h under a nitrogen atmosphere. The color of the solution gradually changed from red to brown. After removal of excess selenium by filtration, evaporation of the solvent from the filtrate gave a purple–brown solid. Crystallization was performed by use of the mixed solvents CH2Cl2/diethyl ether (1:2 v/v). Yield: 300 mg (59%). A single-crystal suitable for X-ray analysis was selected from the crystallized sample.
Refinement
Crystal data, date collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 2285076
https://doi.org/10.1107/S2414314623006570/hb4439sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623006570/hb4439Isup2.hkl
Data collection: RAPID AUTO (Rigaku, 2006); cell
RAPID AUTO (Rigaku, 2006); data reduction: RAPID AUTO (Rigaku, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: CrystalStructure 4.0 (Rigaku, 2010); software used to prepare material for publication: CrystalStructure 4.0 (Rigaku, 2010).[Mo4(C6H7)4Se4] | F(000) = 1904.00 |
Mr = 1016.09 | Dx = 2.673 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71075 Å |
a = 21.1820 (4) Å | Cell parameters from 10275 reflections |
b = 8.42496 (16) Å | θ = 3.2–27.5° |
c = 16.4482 (3) Å | µ = 7.72 mm−1 |
β = 120.6613 (7)° | T = 296 K |
V = 2524.93 (9) Å3 | Platelet, brown |
Z = 4 | 0.10 × 0.10 × 0.10 mm |
Rigaku R-AXIS RAPID diffractometer | 2617 reflections with F2 > 2.0σ(F2) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.040 |
ω scans | θmax = 27.5°, θmin = 3.3° |
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) | h = −24→27 |
Tmin = 0.201, Tmax = 0.462 | k = −10→10 |
11868 measured reflections | l = −21→21 |
2878 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.051 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0168P)2 + 4.2366P] where P = (Fo2 + 2Fc2)/3 |
2878 reflections | (Δ/σ)max = 0.002 |
147 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.79 e Å−3 |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). All hydrogen atoms were placed at calculated positions (C—H = 0.96–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). |
x | y | z | Uiso*/Ueq | ||
Mo1 | −0.05709 (2) | 0.36774 (3) | 0.77761 (2) | 0.01956 (7) | |
Mo2 | 0.05898 (2) | 0.11729 (3) | 0.85272 (2) | 0.02062 (7) | |
Se1 | −0.07420 (2) | 0.07974 (3) | 0.78522 (2) | 0.02368 (8) | |
Se2 | 0.07609 (2) | 0.40514 (3) | 0.88225 (2) | 0.02324 (8) | |
C1 | −0.16873 (18) | 0.4032 (4) | 0.7760 (2) | 0.0334 (7) | |
C2 | −0.16199 (18) | 0.5254 (4) | 0.7228 (2) | 0.0317 (7) | |
H1 | −0.197372 | 0.548621 | 0.656343 | 0.038* | |
C3 | −0.1002 (2) | 0.6197 (4) | 0.7834 (2) | 0.0344 (7) | |
H2 | −0.086145 | 0.719615 | 0.766422 | 0.041* | |
C4 | −0.0688 (2) | 0.5553 (4) | 0.8753 (2) | 0.0350 (7) | |
H3 | −0.028235 | 0.601956 | 0.932877 | 0.042* | |
C5 | −0.10922 (19) | 0.4220 (4) | 0.8715 (2) | 0.0332 (7) | |
H4 | −0.101723 | 0.359419 | 0.925903 | 0.040* | |
C6 | 0.0722 (2) | −0.0631 (4) | 0.9693 (2) | 0.0380 (8) | |
H5 | 0.032142 | −0.108311 | 0.975354 | 0.046* | |
C7 | 0.1045 (2) | −0.1336 (4) | 0.9208 (2) | 0.0362 (8) | |
H6 | 0.090569 | −0.235528 | 0.887498 | 0.043* | |
C8 | 0.16702 (18) | −0.0398 (4) | 0.9400 (2) | 0.0335 (7) | |
C9 | 0.1704 (2) | 0.0874 (4) | 0.9965 (2) | 0.0381 (8) | |
H7 | 0.209754 | 0.166436 | 1.024598 | 0.046* | |
C10 | 0.1123 (2) | 0.0738 (4) | 1.0150 (2) | 0.0401 (9) | |
H8 | 0.105439 | 0.139947 | 1.058922 | 0.048* | |
C11 | −0.2285 (2) | 0.2840 (5) | 0.7442 (3) | 0.0524 (10) | |
H9 | −0.213781 | 0.202041 | 0.791047 | 0.063* | |
H10 | −0.238348 | 0.238212 | 0.685470 | 0.063* | |
H11 | −0.272079 | 0.334778 | 0.735713 | 0.063* | |
C12 | 0.2244 (2) | −0.0779 (5) | 0.9148 (3) | 0.0509 (10) | |
H12 | 0.250562 | 0.017026 | 0.917858 | 0.061* | |
H13 | 0.201080 | −0.120411 | 0.851841 | 0.061* | |
H14 | 0.258069 | −0.154750 | 0.958472 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.02236 (13) | 0.01507 (12) | 0.01911 (12) | 0.00142 (9) | 0.00902 (10) | −0.00024 (9) |
Mo2 | 0.02366 (13) | 0.01577 (12) | 0.01921 (12) | 0.00191 (9) | 0.00860 (10) | 0.00260 (9) |
Se1 | 0.02711 (16) | 0.01821 (15) | 0.02549 (15) | −0.00290 (11) | 0.01325 (12) | 0.00020 (11) |
Se2 | 0.02603 (16) | 0.01916 (14) | 0.01959 (14) | −0.00302 (11) | 0.00805 (12) | −0.00285 (11) |
C1 | 0.0301 (17) | 0.0359 (18) | 0.0375 (17) | 0.0050 (14) | 0.0196 (14) | −0.0026 (14) |
C2 | 0.0305 (17) | 0.0322 (17) | 0.0314 (16) | 0.0127 (14) | 0.0151 (13) | 0.0036 (14) |
C3 | 0.042 (2) | 0.0175 (14) | 0.0447 (19) | 0.0097 (14) | 0.0232 (16) | 0.0006 (14) |
C4 | 0.0388 (19) | 0.0307 (17) | 0.0322 (16) | 0.0051 (14) | 0.0157 (14) | −0.0109 (14) |
C5 | 0.0404 (19) | 0.0358 (18) | 0.0283 (15) | 0.0116 (15) | 0.0210 (14) | 0.0031 (14) |
C6 | 0.044 (2) | 0.0360 (19) | 0.0345 (17) | 0.0073 (15) | 0.0200 (15) | 0.0200 (15) |
C7 | 0.046 (2) | 0.0199 (15) | 0.0370 (17) | 0.0100 (14) | 0.0169 (16) | 0.0127 (13) |
C8 | 0.0306 (17) | 0.0340 (18) | 0.0287 (15) | 0.0130 (14) | 0.0099 (13) | 0.0145 (14) |
C9 | 0.0344 (19) | 0.0376 (19) | 0.0261 (15) | 0.0056 (15) | 0.0036 (14) | 0.0067 (14) |
C10 | 0.051 (2) | 0.041 (2) | 0.0208 (14) | 0.0139 (17) | 0.0122 (15) | 0.0095 (14) |
C11 | 0.039 (2) | 0.055 (2) | 0.068 (3) | −0.0036 (19) | 0.031 (2) | −0.006 (2) |
C12 | 0.046 (2) | 0.052 (2) | 0.052 (2) | 0.0155 (19) | 0.0230 (19) | 0.0129 (19) |
Mo1—C3 | 2.332 (3) | C2—C3 | 1.416 (5) |
Mo1—C2 | 2.339 (3) | C2—H1 | 0.9800 |
Mo1—C4 | 2.355 (3) | C3—C4 | 1.413 (5) |
Mo1—C5 | 2.356 (3) | C3—H2 | 0.9800 |
Mo1—C1 | 2.370 (3) | C4—C5 | 1.394 (5) |
Mo1—Se2 | 2.4633 (4) | C4—H3 | 0.9800 |
Mo1—Se1 | 2.4659 (4) | C5—H4 | 0.9800 |
Mo1—Se2i | 2.4689 (3) | C6—C10 | 1.402 (5) |
Mo1—Mo1i | 2.9857 (5) | C6—C7 | 1.419 (5) |
Mo1—Mo2 | 2.9875 (3) | C6—H5 | 0.9800 |
Mo1—Mo2i | 2.9935 (3) | C7—C8 | 1.432 (5) |
Mo2—C10 | 2.337 (3) | C7—H6 | 0.9800 |
Mo2—C6 | 2.350 (3) | C8—C9 | 1.396 (5) |
Mo2—C9 | 2.352 (3) | C8—C12 | 1.506 (5) |
Mo2—C7 | 2.356 (3) | C9—C10 | 1.414 (5) |
Mo2—C8 | 2.387 (3) | C9—H7 | 0.9800 |
Mo2—Se2 | 2.4635 (4) | C10—H8 | 0.9800 |
Mo2—Se1 | 2.4691 (4) | C11—H9 | 0.9600 |
Mo2—Se1i | 2.4692 (4) | C11—H10 | 0.9600 |
Mo2—Mo2i | 3.0083 (5) | C11—H11 | 0.9600 |
C1—C2 | 1.404 (5) | C12—H12 | 0.9600 |
C1—C5 | 1.435 (5) | C12—H13 | 0.9600 |
C1—C11 | 1.487 (5) | C12—H14 | 0.9600 |
C3—Mo1—C2 | 35.30 (12) | C7—Mo2—Mo1i | 145.65 (9) |
C3—Mo1—C4 | 35.09 (12) | C8—Mo2—Mo1i | 118.70 (8) |
C2—Mo1—C4 | 58.11 (11) | Se2—Mo2—Mo1i | 52.718 (9) |
C3—Mo1—C5 | 58.16 (12) | Se1—Mo2—Mo1i | 99.982 (11) |
C2—Mo1—C5 | 58.09 (11) | Se1i—Mo2—Mo1i | 52.606 (9) |
C4—Mo1—C5 | 34.41 (12) | Mo1—Mo2—Mo1i | 59.894 (10) |
C3—Mo1—C1 | 58.43 (12) | C10—Mo2—Mo2i | 157.50 (10) |
C2—Mo1—C1 | 34.69 (12) | C6—Mo2—Mo2i | 127.01 (9) |
C4—Mo1—C1 | 58.08 (12) | C9—Mo2—Mo2i | 164.17 (9) |
C5—Mo1—C1 | 35.36 (11) | C7—Mo2—Mo2i | 115.98 (9) |
C3—Mo1—Se2 | 100.84 (9) | C8—Mo2—Mo2i | 131.90 (8) |
C2—Mo1—Se2 | 136.14 (9) | Se2—Mo2—Mo2i | 100.132 (8) |
C4—Mo1—Se2 | 85.36 (9) | Se1—Mo2—Mo2i | 52.472 (10) |
C5—Mo1—Se2 | 105.65 (9) | Se1i—Mo2—Mo2i | 52.471 (10) |
C1—Mo1—Se2 | 140.55 (8) | Mo1—Mo2—Mo2i | 59.902 (8) |
C3—Mo1—Se1 | 145.37 (9) | Mo1i—Mo2—Mo2i | 59.705 (8) |
C2—Mo1—Se1 | 116.29 (9) | Mo1—Se1—Mo2 | 74.510 (12) |
C4—Mo1—Se1 | 123.79 (9) | Mo1—Se1—Mo2i | 74.684 (11) |
C5—Mo1—Se1 | 91.58 (9) | Mo2—Se1—Mo2i | 75.060 (13) |
C1—Mo1—Se1 | 87.30 (8) | Mo1—Se2—Mo2 | 74.656 (12) |
Se2—Mo1—Se1 | 103.651 (13) | Mo1—Se2—Mo1i | 74.507 (12) |
C3—Mo1—Se2i | 94.16 (9) | Mo2—Se2—Mo1i | 74.730 (11) |
C2—Mo1—Se2i | 84.87 (8) | C2—C1—C5 | 106.8 (3) |
C4—Mo1—Se2i | 128.63 (9) | C2—C1—C11 | 128.0 (3) |
C5—Mo1—Se2i | 142.82 (8) | C5—C1—C11 | 125.1 (3) |
C1—Mo1—Se2i | 110.62 (8) | C2—C1—Mo1 | 71.44 (19) |
Se2—Mo1—Se2i | 103.560 (13) | C5—C1—Mo1 | 71.77 (18) |
Se1—Mo1—Se2i | 103.372 (13) | C11—C1—Mo1 | 125.8 (2) |
C3—Mo1—Mo1i | 114.04 (9) | C1—C2—C3 | 108.9 (3) |
C2—Mo1—Mo1i | 129.84 (8) | C1—C2—Mo1 | 73.87 (18) |
C4—Mo1—Mo1i | 126.24 (9) | C3—C2—Mo1 | 72.07 (17) |
C5—Mo1—Mo1i | 157.28 (9) | C1—C2—H1 | 125.4 |
C1—Mo1—Mo1i | 162.73 (8) | C3—C2—H1 | 125.4 |
Se2—Mo1—Mo1i | 52.834 (10) | Mo1—C2—H1 | 125.4 |
Se1—Mo1—Mo1i | 100.268 (9) | C4—C3—C2 | 107.4 (3) |
Se2i—Mo1—Mo1i | 52.659 (10) | C4—C3—Mo1 | 73.37 (18) |
C3—Mo1—Mo2 | 152.01 (9) | C2—C3—Mo1 | 72.64 (17) |
C2—Mo1—Mo2 | 168.55 (9) | C4—C3—H2 | 126.0 |
C4—Mo1—Mo2 | 122.87 (8) | C2—C3—H2 | 126.0 |
C5—Mo1—Mo2 | 115.34 (8) | Mo1—C3—H2 | 126.0 |
C1—Mo1—Mo2 | 134.39 (8) | C5—C4—C3 | 108.5 (3) |
Se2—Mo1—Mo2 | 52.676 (10) | C5—C4—Mo1 | 72.81 (18) |
Se1—Mo1—Mo2 | 52.794 (10) | C3—C4—Mo1 | 71.54 (17) |
Se2i—Mo1—Mo2 | 100.565 (11) | C5—C4—H3 | 125.6 |
Mo1i—Mo1—Mo2 | 60.153 (8) | C3—C4—H3 | 125.6 |
C3—Mo1—Mo2i | 143.92 (9) | Mo1—C4—H3 | 125.6 |
C2—Mo1—Mo2i | 117.47 (8) | C4—C5—C1 | 108.4 (3) |
C4—Mo1—Mo2i | 173.63 (9) | C4—C5—Mo1 | 72.78 (18) |
C5—Mo1—Mo2i | 140.04 (9) | C1—C5—Mo1 | 72.87 (17) |
C1—Mo1—Mo2i | 115.58 (8) | C4—C5—H4 | 125.6 |
Se2—Mo1—Mo2i | 100.539 (11) | C1—C5—H4 | 125.6 |
Se1—Mo1—Mo2i | 52.709 (9) | Mo1—C5—H4 | 125.6 |
Se2i—Mo1—Mo2i | 52.551 (9) | C10—C6—C7 | 108.1 (3) |
Mo1i—Mo1—Mo2i | 59.954 (8) | C10—C6—Mo2 | 72.11 (18) |
Mo2—Mo1—Mo2i | 60.394 (10) | C7—C6—Mo2 | 72.68 (17) |
C10—Mo2—C6 | 34.82 (13) | C10—C6—H5 | 125.8 |
C10—Mo2—C9 | 35.10 (13) | C7—C6—H5 | 125.8 |
C6—Mo2—C9 | 57.92 (13) | Mo2—C6—H5 | 125.8 |
C10—Mo2—C7 | 58.26 (13) | C6—C7—C8 | 107.6 (3) |
C6—Mo2—C7 | 35.11 (12) | C6—C7—Mo2 | 72.22 (18) |
C9—Mo2—C7 | 57.88 (13) | C8—C7—Mo2 | 73.65 (18) |
C10—Mo2—C8 | 57.94 (12) | C6—C7—H6 | 126.0 |
C6—Mo2—C8 | 58.10 (12) | C8—C7—H6 | 126.0 |
C9—Mo2—C8 | 34.26 (12) | Mo2—C7—H6 | 126.0 |
C7—Mo2—C8 | 35.14 (12) | C9—C8—C7 | 107.3 (3) |
C10—Mo2—Se2 | 89.56 (9) | C9—C8—C12 | 125.0 (3) |
C6—Mo2—Se2 | 122.11 (9) | C7—C8—C12 | 127.4 (3) |
C9—Mo2—Se2 | 86.33 (9) | C9—C8—Mo2 | 71.47 (18) |
C7—Mo2—Se2 | 143.71 (9) | C7—C8—Mo2 | 71.21 (18) |
C8—Mo2—Se2 | 115.33 (9) | C12—C8—Mo2 | 127.8 (2) |
C10—Mo2—Se1 | 105.64 (10) | C8—C9—C10 | 109.1 (3) |
C6—Mo2—Se1 | 85.26 (9) | C8—C9—Mo2 | 74.27 (18) |
C9—Mo2—Se1 | 140.23 (9) | C10—C9—Mo2 | 71.88 (18) |
C7—Mo2—Se1 | 101.27 (9) | C8—C9—H7 | 125.3 |
C8—Mo2—Se1 | 136.41 (9) | C10—C9—H7 | 125.3 |
Se2—Mo2—Se1 | 103.549 (13) | Mo2—C9—H7 | 125.3 |
C10—Mo2—Se1i | 144.67 (10) | C6—C10—C9 | 107.9 (3) |
C6—Mo2—Se1i | 130.55 (9) | C6—C10—Mo2 | 73.08 (18) |
C9—Mo2—Se1i | 112.09 (9) | C9—C10—Mo2 | 73.01 (18) |
C7—Mo2—Se1i | 96.22 (9) | C6—C10—H8 | 125.8 |
C8—Mo2—Se1i | 86.98 (8) | C9—C10—H8 | 125.8 |
Se2—Mo2—Se1i | 103.434 (13) | Mo2—C10—H8 | 125.8 |
Se1—Mo2—Se1i | 103.004 (13) | C1—C11—H9 | 109.5 |
C10—Mo2—Mo1 | 113.56 (9) | C1—C11—H10 | 109.5 |
C6—Mo2—Mo1 | 121.66 (9) | H9—C11—H10 | 109.5 |
C9—Mo2—Mo1 | 133.12 (9) | C1—C11—H11 | 109.5 |
C7—Mo2—Mo1 | 151.79 (9) | H9—C11—H11 | 109.5 |
C8—Mo2—Mo1 | 167.07 (9) | H10—C11—H11 | 109.5 |
Se2—Mo2—Mo1 | 52.668 (10) | C8—C12—H12 | 109.5 |
Se1—Mo2—Mo1 | 52.696 (9) | C8—C12—H13 | 109.5 |
Se1i—Mo2—Mo1 | 100.141 (11) | H12—C12—H13 | 109.5 |
C10—Mo2—Mo1i | 138.65 (10) | C8—C12—H14 | 109.5 |
C6—Mo2—Mo1i | 173.27 (10) | H12—C12—H14 | 109.5 |
C9—Mo2—Mo1i | 115.84 (9) | H13—C12—H14 | 109.5 |
C5—C1—C2—C3 | −0.5 (4) | C10—C6—C7—C8 | 1.8 (4) |
C11—C1—C2—C3 | 174.6 (3) | Mo2—C6—C7—C8 | 65.7 (2) |
Mo1—C1—C2—C3 | −64.0 (2) | C10—C6—C7—Mo2 | −63.8 (2) |
C5—C1—C2—Mo1 | 63.5 (2) | C6—C7—C8—C9 | −2.0 (3) |
C11—C1—C2—Mo1 | −121.4 (4) | Mo2—C7—C8—C9 | 62.8 (2) |
C1—C2—C3—C4 | −0.5 (4) | C6—C7—C8—C12 | 171.5 (3) |
Mo1—C2—C3—C4 | −65.7 (2) | Mo2—C7—C8—C12 | −123.7 (3) |
C1—C2—C3—Mo1 | 65.2 (2) | C6—C7—C8—Mo2 | −64.7 (2) |
C2—C3—C4—C5 | 1.3 (4) | C7—C8—C9—C10 | 1.3 (3) |
Mo1—C3—C4—C5 | −63.9 (2) | C12—C8—C9—C10 | −172.4 (3) |
C2—C3—C4—Mo1 | 65.2 (2) | Mo2—C8—C9—C10 | 63.9 (2) |
C3—C4—C5—C1 | −1.6 (4) | C7—C8—C9—Mo2 | −62.6 (2) |
Mo1—C4—C5—C1 | −64.7 (2) | C12—C8—C9—Mo2 | 123.7 (3) |
C3—C4—C5—Mo1 | 63.0 (2) | C7—C6—C10—C9 | −1.0 (4) |
C2—C1—C5—C4 | 1.3 (4) | Mo2—C6—C10—C9 | −65.2 (2) |
C11—C1—C5—C4 | −173.9 (3) | C7—C6—C10—Mo2 | 64.2 (2) |
Mo1—C1—C5—C4 | 64.6 (2) | C8—C9—C10—C6 | −0.2 (4) |
C2—C1—C5—Mo1 | −63.3 (2) | Mo2—C9—C10—C6 | 65.3 (2) |
C11—C1—C5—Mo1 | 121.4 (3) | C8—C9—C10—Mo2 | −65.5 (2) |
Symmetry code: (i) −x, y, −z+3/2. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Baird, P., Bandy, J. A., Green, M. L. H., Hamnett, A., Marseglia, E., Obertelli, D. S., Prout, K. & Qin, J. (1991). J. Chem. Soc. Dalton Trans. pp. 2377–2393. CSD CrossRef Web of Science Google Scholar
Henkel, G., Kampmann, G., Krebs, B., Lamprecht, G. J., Nasreldin, M. & Sykes, A. G. (1990). J. Chem. Soc. Chem. Commun. pp. 1014–1016. CrossRef Web of Science Google Scholar
Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2006). RAPID AUTO CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Virovets, A. V., Fedin, V. P., Samsonenko, D. G. & Clegg, W. (2000). Acta Cryst. C56, 272–273. CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.