metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra-μ3-selen­ido-1:2:3κ3Se;1:2:4κ3Se;1:3:4κ3Se;2:3:4κ3Se-tetra­kis­­[(η5-methyl­cyclo­penta­dien­yl)molybdenum(III)](6 Mo—Mo)

crossmark logo

aFaculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
*Correspondence e-mail: inomata@sss.fukushima-u.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 26 July 2023; accepted 28 July 2023; online 1 August 2023)

The title cluster compound, [Mo4(η5-C5H4Me)4(μ3-Se)4], was synthesized from the reaction of [Mo(η5-C5H4Me)(CO)3]2 with grey selenium in refluxing xylene solution under a nitro­gen atmosphere. The complete cluster is generated by a crystallographic twofold axis and contains an Mo4Se4 cubane-like core surrounded by four η5-methylcyclo­pentadienyl ligands. In the core, the four molybdenum atoms are connected to each other to form a tetra­hedron, with a selenium atom capping each face. The Mo—Mo bond lengths vary from 2.9857 (5) to 3.0083 (3) Å and the Mo—Se separations range from 2.4633 (4) to 2.4693 (5) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In comparison to many studies on transition-metal sulfur cubane-type clusters, which contain an M4S4 core, those on selenium analogues are relatively rare. One of the reasons for this rarity could be caused by the insolubility of grey selenium to common organic solvents, as well as water, which are employed for synthesis. We found that grey selenium easily reacts with the organometallic molybdenum compound [Mo(η5-C5H4Me)(CO)3]2 in organic media to produce a new molybdenum-selenium cubane-type cluster [Mo4(η5-C5H4Me)4(μ3-Se)4]. We now report the structural details of the cluster. The partially labeled mol­ecular structure of the title compound is shown in Fig. 1[link]. The cluster possess twofold symmetry because of the existence of twofold axis through the cluster. The cluster has a distorted-cubane type Mo4Se4 core surrounded by four methyl­cyclo­penta­dienyl ligands. In the core, four molybdenum atoms are connected by each other through six Mo—Mo bonds to give a molybdenum tetra­hedron. The distances of the Mo—Mo bonds range from 2.9857 (5) to 3.0083 (3) Å, which are somewhat longer than those in [Mo4(H2O)12(μ3-Se)4](MeC6H4SO3)5·15H2O [mean value 2.865 (4) Å; Henkel et al., 1990[Henkel, G., Kampmann, G., Krebs, B., Lamprecht, G. J., Nasreldin, M. & Sykes, A. G. (1990). J. Chem. Soc. Chem. Commun. pp. 1014-1016.]] and (NH4)6[Mo4(CN)12(μ3-Se)4]·6H2O [2.886 (4) Å, Td symmetry; Virovets et al., 2000[Virovets, A. V., Fedin, V. P., Samsonenko, D. G. & Clegg, W. (2000). Acta Cryst. C56, 272-273.]]. However, the Mo—Mo distances in the title compound are quite close to those in an isoelectronic cluster [Mo4(η5-C5H4Pri)4(μ3-Se)4] (mean value of 2.9870 Å), which was synthesized by the reaction of [Mo2(η5-C5H4Pri)2(μ-Cl)4] with LiSeH (Baird et al., 1991[Baird, P., Bandy, J. A., Green, M. L. H., Hamnett, A., Marseglia, E., Obertelli, D. S., Prout, K. & Qin, J. (1991). J. Chem. Soc. Dalton Trans. pp. 2377-2393.]). On each face of the Mo tetra­hedron, a selenium atom is located. The Mo—Se distances are in the range 2.4633 (4) to 2.4693 (5) Å and are normal.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the asymmetric atoms labeled; unlabelled atoms are generated by the symmetry operation −x, y, [{3\over 2}] − z. Hydrogen atoms are omitted for charity. Displacement ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization

A xylene solution (30 ml) of [Mo(η5-C5H4Me)(CO)3]2 (519 mg, 1.00 mmol) and grey selenium (180 mg, 2.28 mmol) was refluxed for 17 h under a nitro­gen atmosphere. The color of the solution gradually changed from red to brown. After removal of excess selenium by filtration, evaporation of the solvent from the filtrate gave a purple–brown solid. Crystallization was performed by use of the mixed solvents CH2Cl2/diethyl ether (1:2 v/v). Yield: 300 mg (59%). A single-crystal suitable for X-ray analysis was selected from the crystallized sample.

Refinement

Crystal data, date collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Mo4(C6H7)4Se4]
Mr 1016.09
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 21.1820 (4), 8.42496 (16), 16.4482 (3)
β (°) 120.6613 (7)
V3) 2524.93 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 7.72
Crystal size (mm) 0.10 × 0.10 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.201, 0.462
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 11868, 2878, 2617
Rint 0.040
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.07
No. of reflections 2878
No. of parameters 147
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.79
Computer programs: RAPID AUTO (Rigaku, 2006[Rigaku (2006). RAPID AUTO CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Computing details top

Data collection: RAPID AUTO (Rigaku, 2006); cell refinement: RAPID AUTO (Rigaku, 2006); data reduction: RAPID AUTO (Rigaku, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: CrystalStructure 4.0 (Rigaku, 2010); software used to prepare material for publication: CrystalStructure 4.0 (Rigaku, 2010).

Tetra-µ3-selenido-1:2:3κ3Se;1:2:4κ3Se;1:3:4κ3Se;2:3:4κ3Se-tetrakis[(η5-methylcyclopentadienyl)molybdenum(III)](6 Mo—Mo) top
Crystal data top
[Mo4(C6H7)4Se4]F(000) = 1904.00
Mr = 1016.09Dx = 2.673 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 21.1820 (4) ÅCell parameters from 10275 reflections
b = 8.42496 (16) Åθ = 3.2–27.5°
c = 16.4482 (3) ŵ = 7.72 mm1
β = 120.6613 (7)°T = 296 K
V = 2524.93 (9) Å3Platelet, brown
Z = 40.10 × 0.10 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2617 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.040
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 2427
Tmin = 0.201, Tmax = 0.462k = 1010
11868 measured reflectionsl = 2121
2878 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0168P)2 + 4.2366P]
where P = (Fo2 + 2Fc2)/3
2878 reflections(Δ/σ)max = 0.002
147 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.79 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

All hydrogen atoms were placed at calculated positions (C—H = 0.96–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.05709 (2)0.36774 (3)0.77761 (2)0.01956 (7)
Mo20.05898 (2)0.11729 (3)0.85272 (2)0.02062 (7)
Se10.07420 (2)0.07974 (3)0.78522 (2)0.02368 (8)
Se20.07609 (2)0.40514 (3)0.88225 (2)0.02324 (8)
C10.16873 (18)0.4032 (4)0.7760 (2)0.0334 (7)
C20.16199 (18)0.5254 (4)0.7228 (2)0.0317 (7)
H10.1973720.5486210.6563430.038*
C30.1002 (2)0.6197 (4)0.7834 (2)0.0344 (7)
H20.0861450.7196150.7664220.041*
C40.0688 (2)0.5553 (4)0.8753 (2)0.0350 (7)
H30.0282350.6019560.9328770.042*
C50.10922 (19)0.4220 (4)0.8715 (2)0.0332 (7)
H40.1017230.3594190.9259030.040*
C60.0722 (2)0.0631 (4)0.9693 (2)0.0380 (8)
H50.0321420.1083110.9753540.046*
C70.1045 (2)0.1336 (4)0.9208 (2)0.0362 (8)
H60.0905690.2355280.8874980.043*
C80.16702 (18)0.0398 (4)0.9400 (2)0.0335 (7)
C90.1704 (2)0.0874 (4)0.9965 (2)0.0381 (8)
H70.2097540.1664361.0245980.046*
C100.1123 (2)0.0738 (4)1.0150 (2)0.0401 (9)
H80.1054390.1399471.0589220.048*
C110.2285 (2)0.2840 (5)0.7442 (3)0.0524 (10)
H90.2137810.2020410.7910470.063*
H100.2383480.2382120.6854700.063*
H110.2720790.3347780.7357130.063*
C120.2244 (2)0.0779 (5)0.9148 (3)0.0509 (10)
H120.2505620.0170260.9178580.061*
H130.2010800.1204110.8518410.061*
H140.2580690.1547500.9584720.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02236 (13)0.01507 (12)0.01911 (12)0.00142 (9)0.00902 (10)0.00024 (9)
Mo20.02366 (13)0.01577 (12)0.01921 (12)0.00191 (9)0.00860 (10)0.00260 (9)
Se10.02711 (16)0.01821 (15)0.02549 (15)0.00290 (11)0.01325 (12)0.00020 (11)
Se20.02603 (16)0.01916 (14)0.01959 (14)0.00302 (11)0.00805 (12)0.00285 (11)
C10.0301 (17)0.0359 (18)0.0375 (17)0.0050 (14)0.0196 (14)0.0026 (14)
C20.0305 (17)0.0322 (17)0.0314 (16)0.0127 (14)0.0151 (13)0.0036 (14)
C30.042 (2)0.0175 (14)0.0447 (19)0.0097 (14)0.0232 (16)0.0006 (14)
C40.0388 (19)0.0307 (17)0.0322 (16)0.0051 (14)0.0157 (14)0.0109 (14)
C50.0404 (19)0.0358 (18)0.0283 (15)0.0116 (15)0.0210 (14)0.0031 (14)
C60.044 (2)0.0360 (19)0.0345 (17)0.0073 (15)0.0200 (15)0.0200 (15)
C70.046 (2)0.0199 (15)0.0370 (17)0.0100 (14)0.0169 (16)0.0127 (13)
C80.0306 (17)0.0340 (18)0.0287 (15)0.0130 (14)0.0099 (13)0.0145 (14)
C90.0344 (19)0.0376 (19)0.0261 (15)0.0056 (15)0.0036 (14)0.0067 (14)
C100.051 (2)0.041 (2)0.0208 (14)0.0139 (17)0.0122 (15)0.0095 (14)
C110.039 (2)0.055 (2)0.068 (3)0.0036 (19)0.031 (2)0.006 (2)
C120.046 (2)0.052 (2)0.052 (2)0.0155 (19)0.0230 (19)0.0129 (19)
Geometric parameters (Å, º) top
Mo1—C32.332 (3)C2—C31.416 (5)
Mo1—C22.339 (3)C2—H10.9800
Mo1—C42.355 (3)C3—C41.413 (5)
Mo1—C52.356 (3)C3—H20.9800
Mo1—C12.370 (3)C4—C51.394 (5)
Mo1—Se22.4633 (4)C4—H30.9800
Mo1—Se12.4659 (4)C5—H40.9800
Mo1—Se2i2.4689 (3)C6—C101.402 (5)
Mo1—Mo1i2.9857 (5)C6—C71.419 (5)
Mo1—Mo22.9875 (3)C6—H50.9800
Mo1—Mo2i2.9935 (3)C7—C81.432 (5)
Mo2—C102.337 (3)C7—H60.9800
Mo2—C62.350 (3)C8—C91.396 (5)
Mo2—C92.352 (3)C8—C121.506 (5)
Mo2—C72.356 (3)C9—C101.414 (5)
Mo2—C82.387 (3)C9—H70.9800
Mo2—Se22.4635 (4)C10—H80.9800
Mo2—Se12.4691 (4)C11—H90.9600
Mo2—Se1i2.4692 (4)C11—H100.9600
Mo2—Mo2i3.0083 (5)C11—H110.9600
C1—C21.404 (5)C12—H120.9600
C1—C51.435 (5)C12—H130.9600
C1—C111.487 (5)C12—H140.9600
C3—Mo1—C235.30 (12)C7—Mo2—Mo1i145.65 (9)
C3—Mo1—C435.09 (12)C8—Mo2—Mo1i118.70 (8)
C2—Mo1—C458.11 (11)Se2—Mo2—Mo1i52.718 (9)
C3—Mo1—C558.16 (12)Se1—Mo2—Mo1i99.982 (11)
C2—Mo1—C558.09 (11)Se1i—Mo2—Mo1i52.606 (9)
C4—Mo1—C534.41 (12)Mo1—Mo2—Mo1i59.894 (10)
C3—Mo1—C158.43 (12)C10—Mo2—Mo2i157.50 (10)
C2—Mo1—C134.69 (12)C6—Mo2—Mo2i127.01 (9)
C4—Mo1—C158.08 (12)C9—Mo2—Mo2i164.17 (9)
C5—Mo1—C135.36 (11)C7—Mo2—Mo2i115.98 (9)
C3—Mo1—Se2100.84 (9)C8—Mo2—Mo2i131.90 (8)
C2—Mo1—Se2136.14 (9)Se2—Mo2—Mo2i100.132 (8)
C4—Mo1—Se285.36 (9)Se1—Mo2—Mo2i52.472 (10)
C5—Mo1—Se2105.65 (9)Se1i—Mo2—Mo2i52.471 (10)
C1—Mo1—Se2140.55 (8)Mo1—Mo2—Mo2i59.902 (8)
C3—Mo1—Se1145.37 (9)Mo1i—Mo2—Mo2i59.705 (8)
C2—Mo1—Se1116.29 (9)Mo1—Se1—Mo274.510 (12)
C4—Mo1—Se1123.79 (9)Mo1—Se1—Mo2i74.684 (11)
C5—Mo1—Se191.58 (9)Mo2—Se1—Mo2i75.060 (13)
C1—Mo1—Se187.30 (8)Mo1—Se2—Mo274.656 (12)
Se2—Mo1—Se1103.651 (13)Mo1—Se2—Mo1i74.507 (12)
C3—Mo1—Se2i94.16 (9)Mo2—Se2—Mo1i74.730 (11)
C2—Mo1—Se2i84.87 (8)C2—C1—C5106.8 (3)
C4—Mo1—Se2i128.63 (9)C2—C1—C11128.0 (3)
C5—Mo1—Se2i142.82 (8)C5—C1—C11125.1 (3)
C1—Mo1—Se2i110.62 (8)C2—C1—Mo171.44 (19)
Se2—Mo1—Se2i103.560 (13)C5—C1—Mo171.77 (18)
Se1—Mo1—Se2i103.372 (13)C11—C1—Mo1125.8 (2)
C3—Mo1—Mo1i114.04 (9)C1—C2—C3108.9 (3)
C2—Mo1—Mo1i129.84 (8)C1—C2—Mo173.87 (18)
C4—Mo1—Mo1i126.24 (9)C3—C2—Mo172.07 (17)
C5—Mo1—Mo1i157.28 (9)C1—C2—H1125.4
C1—Mo1—Mo1i162.73 (8)C3—C2—H1125.4
Se2—Mo1—Mo1i52.834 (10)Mo1—C2—H1125.4
Se1—Mo1—Mo1i100.268 (9)C4—C3—C2107.4 (3)
Se2i—Mo1—Mo1i52.659 (10)C4—C3—Mo173.37 (18)
C3—Mo1—Mo2152.01 (9)C2—C3—Mo172.64 (17)
C2—Mo1—Mo2168.55 (9)C4—C3—H2126.0
C4—Mo1—Mo2122.87 (8)C2—C3—H2126.0
C5—Mo1—Mo2115.34 (8)Mo1—C3—H2126.0
C1—Mo1—Mo2134.39 (8)C5—C4—C3108.5 (3)
Se2—Mo1—Mo252.676 (10)C5—C4—Mo172.81 (18)
Se1—Mo1—Mo252.794 (10)C3—C4—Mo171.54 (17)
Se2i—Mo1—Mo2100.565 (11)C5—C4—H3125.6
Mo1i—Mo1—Mo260.153 (8)C3—C4—H3125.6
C3—Mo1—Mo2i143.92 (9)Mo1—C4—H3125.6
C2—Mo1—Mo2i117.47 (8)C4—C5—C1108.4 (3)
C4—Mo1—Mo2i173.63 (9)C4—C5—Mo172.78 (18)
C5—Mo1—Mo2i140.04 (9)C1—C5—Mo172.87 (17)
C1—Mo1—Mo2i115.58 (8)C4—C5—H4125.6
Se2—Mo1—Mo2i100.539 (11)C1—C5—H4125.6
Se1—Mo1—Mo2i52.709 (9)Mo1—C5—H4125.6
Se2i—Mo1—Mo2i52.551 (9)C10—C6—C7108.1 (3)
Mo1i—Mo1—Mo2i59.954 (8)C10—C6—Mo272.11 (18)
Mo2—Mo1—Mo2i60.394 (10)C7—C6—Mo272.68 (17)
C10—Mo2—C634.82 (13)C10—C6—H5125.8
C10—Mo2—C935.10 (13)C7—C6—H5125.8
C6—Mo2—C957.92 (13)Mo2—C6—H5125.8
C10—Mo2—C758.26 (13)C6—C7—C8107.6 (3)
C6—Mo2—C735.11 (12)C6—C7—Mo272.22 (18)
C9—Mo2—C757.88 (13)C8—C7—Mo273.65 (18)
C10—Mo2—C857.94 (12)C6—C7—H6126.0
C6—Mo2—C858.10 (12)C8—C7—H6126.0
C9—Mo2—C834.26 (12)Mo2—C7—H6126.0
C7—Mo2—C835.14 (12)C9—C8—C7107.3 (3)
C10—Mo2—Se289.56 (9)C9—C8—C12125.0 (3)
C6—Mo2—Se2122.11 (9)C7—C8—C12127.4 (3)
C9—Mo2—Se286.33 (9)C9—C8—Mo271.47 (18)
C7—Mo2—Se2143.71 (9)C7—C8—Mo271.21 (18)
C8—Mo2—Se2115.33 (9)C12—C8—Mo2127.8 (2)
C10—Mo2—Se1105.64 (10)C8—C9—C10109.1 (3)
C6—Mo2—Se185.26 (9)C8—C9—Mo274.27 (18)
C9—Mo2—Se1140.23 (9)C10—C9—Mo271.88 (18)
C7—Mo2—Se1101.27 (9)C8—C9—H7125.3
C8—Mo2—Se1136.41 (9)C10—C9—H7125.3
Se2—Mo2—Se1103.549 (13)Mo2—C9—H7125.3
C10—Mo2—Se1i144.67 (10)C6—C10—C9107.9 (3)
C6—Mo2—Se1i130.55 (9)C6—C10—Mo273.08 (18)
C9—Mo2—Se1i112.09 (9)C9—C10—Mo273.01 (18)
C7—Mo2—Se1i96.22 (9)C6—C10—H8125.8
C8—Mo2—Se1i86.98 (8)C9—C10—H8125.8
Se2—Mo2—Se1i103.434 (13)Mo2—C10—H8125.8
Se1—Mo2—Se1i103.004 (13)C1—C11—H9109.5
C10—Mo2—Mo1113.56 (9)C1—C11—H10109.5
C6—Mo2—Mo1121.66 (9)H9—C11—H10109.5
C9—Mo2—Mo1133.12 (9)C1—C11—H11109.5
C7—Mo2—Mo1151.79 (9)H9—C11—H11109.5
C8—Mo2—Mo1167.07 (9)H10—C11—H11109.5
Se2—Mo2—Mo152.668 (10)C8—C12—H12109.5
Se1—Mo2—Mo152.696 (9)C8—C12—H13109.5
Se1i—Mo2—Mo1100.141 (11)H12—C12—H13109.5
C10—Mo2—Mo1i138.65 (10)C8—C12—H14109.5
C6—Mo2—Mo1i173.27 (10)H12—C12—H14109.5
C9—Mo2—Mo1i115.84 (9)H13—C12—H14109.5
C5—C1—C2—C30.5 (4)C10—C6—C7—C81.8 (4)
C11—C1—C2—C3174.6 (3)Mo2—C6—C7—C865.7 (2)
Mo1—C1—C2—C364.0 (2)C10—C6—C7—Mo263.8 (2)
C5—C1—C2—Mo163.5 (2)C6—C7—C8—C92.0 (3)
C11—C1—C2—Mo1121.4 (4)Mo2—C7—C8—C962.8 (2)
C1—C2—C3—C40.5 (4)C6—C7—C8—C12171.5 (3)
Mo1—C2—C3—C465.7 (2)Mo2—C7—C8—C12123.7 (3)
C1—C2—C3—Mo165.2 (2)C6—C7—C8—Mo264.7 (2)
C2—C3—C4—C51.3 (4)C7—C8—C9—C101.3 (3)
Mo1—C3—C4—C563.9 (2)C12—C8—C9—C10172.4 (3)
C2—C3—C4—Mo165.2 (2)Mo2—C8—C9—C1063.9 (2)
C3—C4—C5—C11.6 (4)C7—C8—C9—Mo262.6 (2)
Mo1—C4—C5—C164.7 (2)C12—C8—C9—Mo2123.7 (3)
C3—C4—C5—Mo163.0 (2)C7—C6—C10—C91.0 (4)
C2—C1—C5—C41.3 (4)Mo2—C6—C10—C965.2 (2)
C11—C1—C5—C4173.9 (3)C7—C6—C10—Mo264.2 (2)
Mo1—C1—C5—C464.6 (2)C8—C9—C10—C60.2 (4)
C2—C1—C5—Mo163.3 (2)Mo2—C9—C10—C665.3 (2)
C11—C1—C5—Mo1121.4 (3)C8—C9—C10—Mo265.5 (2)
Symmetry code: (i) x, y, z+3/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaird, P., Bandy, J. A., Green, M. L. H., Hamnett, A., Marseglia, E., Obertelli, D. S., Prout, K. & Qin, J. (1991). J. Chem. Soc. Dalton Trans. pp. 2377–2393.  CSD CrossRef Web of Science Google Scholar
First citationHenkel, G., Kampmann, G., Krebs, B., Lamprecht, G. J., Nasreldin, M. & Sykes, A. G. (1990). J. Chem. Soc. Chem. Commun. pp. 1014–1016.  CrossRef Web of Science Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID AUTO CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVirovets, A. V., Fedin, V. P., Samsonenko, D. G. & Clegg, W. (2000). Acta Cryst. C56, 272–273.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146