organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,6-Di­hydro-1,4-dithiine-2,3-di­carb­­oxy­lic anhydride

crossmark logo

aDepartment of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
*Correspondence e-mail: mbond@semo.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 19 July 2023; accepted 25 July 2023; online 4 August 2023)

In the title com­pound (systematic name: 2,3-di­hydro-1,4-dithiino[2,3-c]furan-5,7-dione), C6H4O3S2, the observed geometry agrees well with those of its phthalamide, thieno and hy­droxy analogs, and with a calculated geometry obtained by density functional theory (DFT) calculations. Specific structural features are an S—C—C—S torsion angle of −70.39 (17)° and S—C bonds to sp2-hybridized C atoms approximately 0.1 Å shorter than those to sp3-hybridized C atoms. Unlike the extended structures of the analogs, there are no directed inter­molecular inter­actions and the head-to-tail rows of mol­ecules that are a prominent structural motif of the packing can be rationalized in terms of optimized dipole–dipole inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The unit-cell parameters for the title com­pound have been reported previously [Grabowski, 1968[Grabowski, M. (1968). Soc. Sci. Lodz. Acta Chim. 13, 43.]; Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode QQQDIA], but atomic coordinates are not available. Related com­pounds with reported three-dimensional atomic coordinates are the phthalamide (DTHPIM; Kirfel et al., 1975[Kirfel, A., Will, G. & Fickentscher, K. (1975). Acta Cryst. B31, 1973-1975.]), the thieno (ZUHQUQ; Skabara et al., 2003[Skabara, P. J., Coles, S. J. & Hursthouse, M. B. (2003). CCDC deposition No. 1057366. CCDC, Cambridge, UK.]) and the monohy­droxy (USUMOL; Kurbangalieva et al., 2010[Kurbangalieva, A. R., Lodochnikova, O. A., Devyatova, N. F., Berdnikov, E. A., Gnezdilov, O. I., Litvinov, I. A. & Chmutova, G. A. (2010). Tetrahedron, 66, 9945-9953.]) analogs, all of which are reported to crystallize in the monoclinic space groups P21/c or P21/n. We report here the three-dimensional structure of 5,6-di­hydro-1,4-dithiine-2,3-di­carb­oxy­lic anhydride, which crystallizes in the triclinic space group P[\overline{1}] with unit-cell parameters in agreement with those reported by Grabowski.

The mol­ecule (Fig. 1[link]) consists of furan­dione and di­hydro-1,4-dithiine rings fused by a common carbon–carbon double bond (atoms C3 and C4) and is largely planar (r.m.s. deviation of 0.044 Å from the mean plane for all atoms except the CH2 groups). The CH2 groups are twisted about the mol­ecular plane in order to reduce angle strain, with C1 0.323 (3) Å above and C2 0.528 (3) Å below, and an S1—C1—C2—S2 torsion angle of −70.39 (17)°. The S—C bond lengths are 0.096 (7) Å shorter for bonds to sp2-hybridized C atoms than to those with sp3-hybridization (Table 1[link]). The inter­ior bond angles within the furan­dione ring are close to idealized values for a uniform penta­gon, ranging from 107.44 (17) to 108.36 (18)°. The O=C—O angles have expected values of 121–122° for an sp2-hybridized center, while the external O=C—C angles average 130.2 (7)° in order to accommodate the geometry of the planar ring. These details agree well with the geometrical parameters for maleic anhydride [MLEICA (Marsh et al., 1962[Marsh, R. E., Ubell, E. & Wilcox, H. E. (1962). Acta Cryst. 15, 35-41.]) and MLEICA01 (Lutz, 2001[Lutz, M. (2001). Acta Cryst. E57, o1136-o1138.])].

Table 1
Selected geometric parameters (Å, °)

S1—C1 1.805 (2) C3—C5 1.469 (3)
S1—C3 1.7136 (19) C4—C6 1.472 (3)
S2—C2 1.817 (2) O1—C5 1.193 (3)
S2—C4 1.7160 (19) O2—C5 1.376 (3)
C1—C2 1.510 (3) O2—C6 1.386 (3)
C3—C4 1.345 (3) O3—C6 1.186 (3)
       
C1—S1—C3 99.54 (10) C3—C4—C6 107.44 (17)
C2—S2—C4 98.30 (10) O1—C5—C3 129.7 (2)
S1—C1—C2 114.41 (15) O2—C5—C3 108.36 (18)
C1—C2—S2 115.01 (15) O1—C5—O2 121.98 (19)
S1—C3—C4 131.57 (14) O2—C6—C4 108.13 (18)
S1—C3—C5 120.60 (16) O3—C6—C4 130.7 (2)
C4—C3—C5 107.83 (17) O2—C6—O3 121.2 (2)
C3—C4—S2 129.27 (14) C5—O2—C6 108.14 (15)
C6—C4—S2 123.28 (16)    
[Figure 1]
Figure 1
Displacement ellipsoid plot at the 50% probability level of the formula unit of the title com­pound, showing labels for non-H atoms.

The geometrical details for the related com­pounds listed above agree closely with those of the title com­pound. In particular, the S—C—C—S torsion-angle magnitudes range from 68.10 to 70.75° and the S—C bond lengths to sp2-hybridized C atoms average 0.087 (14) Å shorter than those to sp3-hybridized C atoms, with the phthalamide analog providing the closest agreement [average sp3sp2 bond length difference = 0.0995 (7) Å]. A DFT geometry optimization in vacuo [B3LYP functional, cc-pTVZ basis set; GAMESS (Schmidt et al., 1993[Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347-1363.])] yields similar results, with an S—C—C—S torsion angle of −69.6° and S—C bond lengths of 1.730 and 1.829 Å to sp2- and sp3-hybridized C atoms, respectively. An electrostatic potential plot with the optimized mol­ecule visible is presented in Fig. 2[link].

[Figure 2]
Figure 2
Electrostatic potential plot of the title mol­ecule with the optimized geometry visible. Red represents the most negatively charged regions, while blue represents the most positively charged.

The unit-cell packing of the title com­pound consists of sheets of mol­ecules lying parallel to (11[\overline{2}]), with neighboring sheets related by inversion. The mol­ecular planes are approximately coplanar with the sheet, with mol­ecules forming head-to-tail rows parallel to [1[\overline{1}]0] within the sheet. Neighboring rows within the sheet have opposite orientations, while rows on neighboring sheets straddle each other. This packing differs from that of similar mol­ecules, where directed hydrogen bonding or short S⋯O contacts feature prominently, with the head-to-tail rows of mol­ecules in the title com­pound rationalized in terms of optimized dipole–dipole inter­actions. A ball-and-stick diagram of a sheet is presented in Fig. 3[link] and a unit-cell packing diagram viewed edge on to the sheets is presented in Fig. 4[link].

[Figure 3]
Figure 3
Ball-and stick diagram of the sheet structure viewed perpendiciular to (11[\overline{2}]).
[Figure 4]
Figure 4
Ball-and-stick packing diagram of a unit cell, with axis labels viewed along [1[\overline{1}]0], showing the stacking of four sheets to generate the three-dimensional structure.

Synthesis and crystallization

5,6-Di­hydro-1,4-dithiin-2,3-di­carb­oxy­lic anhydride (98+%) was purchased from Fisher Scientific and recrystalized by slow evaporation at room temperature from tetra­hydro­furan solution to yield yellow block-like crystals.

Refinement

Crystal data, data collection, and structure refinement details are listed in Table 2[link]. The final structure refinement was carried out within the OLEX2 system via Hirshfeld atom refinement with nonspherical atomic form factors using NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, M., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]; Midgley et al., 2021[Midgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). Acta Cryst. A77, 519-533.]) derived from electron density from DFT calculations using ORCA (B3LYP functional, def2-SVP basis set; Neese, 2022[Neese, F. (2022). WIREs Comput. Mol. Sci. 12, e1606.]). All atoms were refined anisotropically.

Table 2
Experimental details

Crystal data
Chemical formula C6H4O3S2
Mr 188.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 5.398 (1), 7.5537 (15), 9.2566 (18)
α, β, γ (°) 89.273 (6), 87.361 (6), 75.701 (5)
V3) 365.36 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.68
Crystal size (mm) 0.42 × 0.38 × 0.17
 
Data collection
Diffractometer Bruker D8 Quest Eco
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.648, 0.746
No. of measured, independent and observed [I ≥ 2u(I)] reflections 16978, 1669, 1338
Rint 0.046
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.074, 1.11
No. of reflections 1669
No. of parameters 136
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.45, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WebMO (Schmidt & Polik, 2016[Schmidt, J. R. & Polik, W. F. (2016). WebMO Enterprise. Version 20.0.011e. WebMO LLC, Holland, MI, USA.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b) and olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 1(Dolomanov et al., 2009), Mercury (Macrae et al., 2020) and WebMO (Schmidt & Polik, 2016); software used to prepare material for publication: publCIF (Westrip, 2010).

5,6-Dihydro-1,4-dithiine-2,3-dicarboxylic anhydride top
Crystal data top
C6H4O3S2Z = 2
Mr = 188.23F(000) = 192.603
Triclinic, P1Dx = 1.711 Mg m3
a = 5.398 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5537 (15) ÅCell parameters from 7641 reflections
c = 9.2566 (18) Åθ = 2.8–27.4°
α = 89.273 (6)°µ = 0.68 mm1
β = 87.361 (6)°T = 295 K
γ = 75.701 (5)°Plate, yellow
V = 365.36 (12) Å30.42 × 0.38 × 0.17 mm
Data collection top
Bruker D8 Quest Eco
diffractometer
1338 reflections with I 2u(I)
φ and ω scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 27.6°, θmin = 3.6°
Tmin = 0.648, Tmax = 0.746h = 77
16978 measured reflectionsk = 99
1669 independent reflectionsl = 1212
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.033All H-atom parameters refined
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.1706P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.0002
1669 reflectionsΔρmax = 0.45 e Å3
136 parametersΔρmin = 0.25 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.87227 (9)0.35661 (7)0.38382 (6)0.04127 (16)
S20.45568 (10)0.23942 (8)0.13318 (6)0.04824 (17)
C10.8444 (5)0.1333 (3)0.3315 (2)0.0440 (5)
H1a1.028 (5)0.039 (4)0.347 (3)0.091 (10)
H1b0.700 (5)0.098 (3)0.400 (3)0.072 (8)
C20.7794 (4)0.1195 (3)0.1758 (2)0.0440 (5)
H2a0.793 (6)0.019 (4)0.152 (3)0.086 (9)
H2b0.909 (5)0.169 (4)0.102 (3)0.064 (8)
C30.6129 (3)0.4890 (2)0.3010 (2)0.0338 (4)
C40.4505 (3)0.4463 (2)0.2093 (2)0.0347 (4)
C50.5328 (4)0.6869 (3)0.3268 (2)0.0457 (5)
C60.2545 (4)0.6150 (3)0.1802 (2)0.0478 (5)
O10.6268 (4)0.7808 (2)0.3987 (2)0.0682 (5)
O20.3162 (3)0.75751 (18)0.25156 (17)0.0558 (4)
O30.0695 (3)0.6399 (2)0.11090 (19)0.0695 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0364 (3)0.0389 (3)0.0489 (3)0.0100 (2)0.0021 (2)0.0005 (2)
S20.0401 (3)0.0441 (3)0.0610 (4)0.0107 (2)0.0014 (2)0.0144 (3)
C10.0523 (14)0.0263 (10)0.0484 (13)0.0007 (10)0.0016 (11)0.0030 (9)
H1a0.08 (2)0.057 (19)0.10 (2)0.045 (17)0.031 (18)0.019 (17)
H1b0.09 (2)0.033 (15)0.10 (2)0.030 (15)0.015 (18)0.009 (15)
C20.0464 (12)0.0299 (11)0.0496 (13)0.0014 (9)0.0061 (10)0.0076 (10)
H2a0.13 (3)0.038 (16)0.09 (2)0.012 (17)0.007 (18)0.021 (15)
H2b0.053 (17)0.076 (19)0.060 (17)0.013 (15)0.022 (13)0.014 (15)
C30.0335 (9)0.0236 (9)0.0427 (10)0.0055 (7)0.0074 (8)0.0008 (8)
C40.0306 (9)0.0281 (9)0.0415 (10)0.0011 (7)0.0060 (8)0.0003 (8)
C50.0551 (13)0.0245 (10)0.0556 (13)0.0096 (9)0.0171 (10)0.0021 (9)
C60.0370 (11)0.0442 (12)0.0528 (12)0.0054 (9)0.0076 (10)0.0118 (10)
O10.0867 (13)0.0358 (9)0.0862 (12)0.0262 (9)0.0178 (10)0.0185 (9)
O20.0611 (10)0.0270 (7)0.0673 (10)0.0084 (7)0.0161 (8)0.0070 (7)
O30.0467 (9)0.0712 (12)0.0784 (12)0.0086 (8)0.0076 (9)0.0218 (10)
Geometric parameters (Å, º) top
S1—C11.805 (2)C2—H2b1.08 (2)
S1—C31.7136 (19)C3—C41.345 (3)
S2—C21.817 (2)C3—C51.469 (3)
S2—C41.7160 (19)C4—C61.472 (3)
C1—H1a1.08 (2)O1—C51.193 (3)
C1—H1b1.06 (2)O2—C51.376 (3)
C1—C21.510 (3)O2—C61.386 (3)
C2—H2a1.06 (2)O3—C61.186 (3)
C1—S1—C399.54 (10)S1—C3—C4131.57 (14)
C2—S2—C498.30 (10)S1—C3—C5120.60 (16)
S1—C1—H1a107.2 (15)C4—C3—C5107.83 (17)
S1—C1—H1b108.1 (12)C3—C4—S2129.27 (14)
H1a—C1—H1b110 (2)C6—C4—S2123.28 (16)
S1—C1—C2114.41 (15)C3—C4—C6107.44 (17)
C2—C1—H1a107.8 (16)O1—C5—C3129.7 (2)
C2—C1—H1b108.9 (15)O2—C5—C3108.36 (18)
C1—C2—S2115.01 (15)O1—C5—O2121.98 (19)
S2—C2—H2a105.1 (17)O2—C6—C4108.13 (18)
S2—C2—H2b107.5 (13)O3—C6—C4130.7 (2)
C1—C2—H2a108.8 (16)O2—C6—O3121.2 (2)
C1—C2—H2b111.8 (14)C5—O2—C6108.14 (15)
H2a—C2—H2b108 (2)
S1—C1—C2—S270.39 (17)S2—C4—C6—O34.1 (2)
S1—C3—C4—S23.9 (2)C3—C4—C6—O23.05 (16)
S1—C3—C4—C6176.69 (19)C3—C4—C6—O3176.50 (17)
S1—C3—C5—O11.95 (19)C3—C5—O2—C60.24 (18)
S1—C3—C5—O2177.86 (15)C4—C6—O2—C51.95 (18)
S2—C4—C3—C5176.57 (18)C5—O2—C6—O3177.65 (17)
S2—C4—C6—O2176.39 (17)
 

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrabowski, M. (1968). Soc. Sci. Lodz. Acta Chim. 13, 43.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKirfel, A., Will, G. & Fickentscher, K. (1975). Acta Cryst. B31, 1973–1975.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, M., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692.  Web of Science CSD CrossRef CAS Google Scholar
First citationKurbangalieva, A. R., Lodochnikova, O. A., Devyatova, N. F., Berdnikov, E. A., Gnezdilov, O. I., Litvinov, I. A. & Chmutova, G. A. (2010). Tetrahedron, 66, 9945–9953.  Web of Science CSD CrossRef CAS Google Scholar
First citationLutz, M. (2001). Acta Cryst. E57, o1136–o1138.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarsh, R. E., Ubell, E. & Wilcox, H. E. (1962). Acta Cryst. 15, 35–41.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMidgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). Acta Cryst. A77, 519–533.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNeese, F. (2022). WIREs Comput. Mol. Sci. 12, e1606.  Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2016). WebMO Enterprise. Version 20.0.011e. WebMO LLC, Holland, MI, USA.  Google Scholar
First citationSchmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347–1363.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkabara, P. J., Coles, S. J. & Hursthouse, M. B. (2003). CCDC deposition No. 1057366. CCDC, Cambridge, UK.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146