organic compounds
5,6-Dihydro-1,4-dithiine-2,3-dicarboxylic anhydride
aDepartment of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
*Correspondence e-mail: mbond@semo.edu
In the title compound (systematic name: 2,3-dihydro-1,4-dithiino[2,3-c]furan-5,7-dione), C6H4O3S2, the observed geometry agrees well with those of its phthalamide, thieno and hydroxy analogs, and with a calculated geometry obtained by density functional theory (DFT) calculations. Specific structural features are an S—C—C—S torsion angle of −70.39 (17)° and S—C bonds to sp2-hybridized C atoms approximately 0.1 Å shorter than those to sp3-hybridized C atoms. Unlike the extended structures of the analogs, there are no directed intermolecular interactions and the head-to-tail rows of molecules that are a prominent structural motif of the packing can be rationalized in terms of optimized dipole–dipole interactions.
Keywords: crystal structure; fused ring; heterocycle; dithiine; anhydride.
CCDC reference: 2284875
Structure description
The unit-cell parameters for the title compound have been reported previously [Grabowski, 1968; Cambridge Structural Database (CSD; Groom et al., 2016) refcode QQQDIA], but atomic coordinates are not available. Related compounds with reported three-dimensional atomic coordinates are the phthalamide (DTHPIM; Kirfel et al., 1975), the thieno (ZUHQUQ; Skabara et al., 2003) and the monohydroxy (USUMOL; Kurbangalieva et al., 2010) analogs, all of which are reported to crystallize in the monoclinic space groups P21/c or P21/n. We report here the three-dimensional structure of 5,6-dihydro-1,4-dithiine-2,3-dicarboxylic anhydride, which crystallizes in the triclinic P with unit-cell parameters in agreement with those reported by Grabowski.
The molecule (Fig. 1) consists of furandione and dihydro-1,4-dithiine rings fused by a common carbon–carbon double bond (atoms C3 and C4) and is largely planar (r.m.s. deviation of 0.044 Å from the mean plane for all atoms except the CH2 groups). The CH2 groups are twisted about the molecular plane in order to reduce angle strain, with C1 0.323 (3) Å above and C2 0.528 (3) Å below, and an S1—C1—C2—S2 torsion angle of −70.39 (17)°. The S—C bond lengths are 0.096 (7) Å shorter for bonds to sp2-hybridized C atoms than to those with sp3-hybridization (Table 1). The interior bond angles within the furandione ring are close to idealized values for a uniform pentagon, ranging from 107.44 (17) to 108.36 (18)°. The O=C—O angles have expected values of 121–122° for an sp2-hybridized center, while the external O=C—C angles average 130.2 (7)° in order to accommodate the geometry of the planar ring. These details agree well with the geometrical parameters for maleic anhydride [MLEICA (Marsh et al., 1962) and MLEICA01 (Lutz, 2001)].
|
The geometrical details for the related compounds listed above agree closely with those of the title compound. In particular, the S—C—C—S torsion-angle magnitudes range from 68.10 to 70.75° and the S—C bond lengths to sp2-hybridized C atoms average 0.087 (14) Å shorter than those to sp3-hybridized C atoms, with the phthalamide analog providing the closest agreement [average sp3–sp2 bond length difference = 0.0995 (7) Å]. A DFT geometry optimization in vacuo [B3LYP functional, cc-pTVZ basis set; GAMESS (Schmidt et al., 1993)] yields similar results, with an S—C—C—S torsion angle of −69.6° and S—C bond lengths of 1.730 and 1.829 Å to sp2- and sp3-hybridized C atoms, respectively. An electrostatic potential plot with the optimized molecule visible is presented in Fig. 2.
The unit-cell packing of the title compound consists of sheets of molecules lying parallel to (11), with neighboring sheets related by inversion. The molecular planes are approximately coplanar with the sheet, with molecules forming head-to-tail rows parallel to [10] within the sheet. Neighboring rows within the sheet have opposite orientations, while rows on neighboring sheets straddle each other. This packing differs from that of similar molecules, where directed hydrogen bonding or short S⋯O contacts feature prominently, with the head-to-tail rows of molecules in the title compound rationalized in terms of optimized dipole–dipole interactions. A ball-and-stick diagram of a sheet is presented in Fig. 3 and a unit-cell packing diagram viewed edge on to the sheets is presented in Fig. 4.
Synthesis and crystallization
5,6-Dihydro-1,4-dithiin-2,3-dicarboxylic anhydride (98+%) was purchased from Fisher Scientific and recrystalized by slow evaporation at room temperature from tetrahydrofuran solution to yield yellow block-like crystals.
Refinement
Crystal data, data collection, and structure . The final structure was carried out within the OLEX2 system via Hirshfeld atom with nonspherical atomic form factors using NoSpherA2 (Kleemiss et al., 2021; Midgley et al., 2021) derived from electron density from DFT calculations using ORCA (B3LYP functional, def2-SVP basis set; Neese, 2022). All atoms were refined anisotropically.
details are listed in Table 2Structural data
CCDC reference: 2284875
https://doi.org/10.1107/S2414314623006478/hb4438sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623006478/hb4438Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314623006478/hb4438Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b) and olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 1(Dolomanov et al., 2009), Mercury (Macrae et al., 2020) and WebMO (Schmidt & Polik, 2016); software used to prepare material for publication: publCIF (Westrip, 2010).C6H4O3S2 | Z = 2 |
Mr = 188.23 | F(000) = 192.603 |
Triclinic, P1 | Dx = 1.711 Mg m−3 |
a = 5.398 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.5537 (15) Å | Cell parameters from 7641 reflections |
c = 9.2566 (18) Å | θ = 2.8–27.4° |
α = 89.273 (6)° | µ = 0.68 mm−1 |
β = 87.361 (6)° | T = 295 K |
γ = 75.701 (5)° | Plate, yellow |
V = 365.36 (12) Å3 | 0.42 × 0.38 × 0.17 mm |
Bruker D8 Quest Eco diffractometer | 1338 reflections with I ≥ 2u(I) |
φ and ω scans | Rint = 0.046 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 27.6°, θmin = 3.6° |
Tmin = 0.648, Tmax = 0.746 | h = −7→7 |
16978 measured reflections | k = −9→9 |
1669 independent reflections | l = −12→12 |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Primary atom site location: dual |
R[F2 > 2σ(F2)] = 0.033 | All H-atom parameters refined |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.0229P)2 + 0.1706P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.0002 |
1669 reflections | Δρmax = 0.45 e Å−3 |
136 parameters | Δρmin = −0.25 e Å−3 |
0 restraints |
x | y | z | Uiso*/Ueq | ||
S1 | 0.87227 (9) | 0.35661 (7) | 0.38382 (6) | 0.04127 (16) | |
S2 | 0.45568 (10) | 0.23942 (8) | 0.13318 (6) | 0.04824 (17) | |
C1 | 0.8444 (5) | 0.1333 (3) | 0.3315 (2) | 0.0440 (5) | |
H1a | 1.028 (5) | 0.039 (4) | 0.347 (3) | 0.091 (10) | |
H1b | 0.700 (5) | 0.098 (3) | 0.400 (3) | 0.072 (8) | |
C2 | 0.7794 (4) | 0.1195 (3) | 0.1758 (2) | 0.0440 (5) | |
H2a | 0.793 (6) | −0.019 (4) | 0.152 (3) | 0.086 (9) | |
H2b | 0.909 (5) | 0.169 (4) | 0.102 (3) | 0.064 (8) | |
C3 | 0.6129 (3) | 0.4890 (2) | 0.3010 (2) | 0.0338 (4) | |
C4 | 0.4505 (3) | 0.4463 (2) | 0.2093 (2) | 0.0347 (4) | |
C5 | 0.5328 (4) | 0.6869 (3) | 0.3268 (2) | 0.0457 (5) | |
C6 | 0.2545 (4) | 0.6150 (3) | 0.1802 (2) | 0.0478 (5) | |
O1 | 0.6268 (4) | 0.7808 (2) | 0.3987 (2) | 0.0682 (5) | |
O2 | 0.3162 (3) | 0.75751 (18) | 0.25156 (17) | 0.0558 (4) | |
O3 | 0.0695 (3) | 0.6399 (2) | 0.11090 (19) | 0.0695 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0364 (3) | 0.0389 (3) | 0.0489 (3) | −0.0100 (2) | −0.0021 (2) | −0.0005 (2) |
S2 | 0.0401 (3) | 0.0441 (3) | 0.0610 (4) | −0.0107 (2) | −0.0014 (2) | −0.0144 (3) |
C1 | 0.0523 (14) | 0.0263 (10) | 0.0484 (13) | −0.0007 (10) | 0.0016 (11) | 0.0030 (9) |
H1a | 0.08 (2) | 0.057 (19) | 0.10 (2) | 0.045 (17) | −0.031 (18) | 0.019 (17) |
H1b | 0.09 (2) | 0.033 (15) | 0.10 (2) | −0.030 (15) | 0.015 (18) | −0.009 (15) |
C2 | 0.0464 (12) | 0.0299 (11) | 0.0496 (13) | 0.0014 (9) | 0.0061 (10) | −0.0076 (10) |
H2a | 0.13 (3) | 0.038 (16) | 0.09 (2) | −0.012 (17) | 0.007 (18) | −0.021 (15) |
H2b | 0.053 (17) | 0.076 (19) | 0.060 (17) | −0.013 (15) | 0.022 (13) | 0.014 (15) |
C3 | 0.0335 (9) | 0.0236 (9) | 0.0427 (10) | −0.0055 (7) | 0.0074 (8) | −0.0008 (8) |
C4 | 0.0306 (9) | 0.0281 (9) | 0.0415 (10) | −0.0011 (7) | 0.0060 (8) | 0.0003 (8) |
C5 | 0.0551 (13) | 0.0245 (10) | 0.0556 (13) | −0.0096 (9) | 0.0171 (10) | −0.0021 (9) |
C6 | 0.0370 (11) | 0.0442 (12) | 0.0528 (12) | 0.0054 (9) | 0.0076 (10) | 0.0118 (10) |
O1 | 0.0867 (13) | 0.0358 (9) | 0.0862 (12) | −0.0262 (9) | 0.0178 (10) | −0.0185 (9) |
O2 | 0.0611 (10) | 0.0270 (7) | 0.0673 (10) | 0.0084 (7) | 0.0161 (8) | 0.0070 (7) |
O3 | 0.0467 (9) | 0.0712 (12) | 0.0784 (12) | 0.0086 (8) | −0.0076 (9) | 0.0218 (10) |
S1—C1 | 1.805 (2) | C2—H2b | 1.08 (2) |
S1—C3 | 1.7136 (19) | C3—C4 | 1.345 (3) |
S2—C2 | 1.817 (2) | C3—C5 | 1.469 (3) |
S2—C4 | 1.7160 (19) | C4—C6 | 1.472 (3) |
C1—H1a | 1.08 (2) | O1—C5 | 1.193 (3) |
C1—H1b | 1.06 (2) | O2—C5 | 1.376 (3) |
C1—C2 | 1.510 (3) | O2—C6 | 1.386 (3) |
C2—H2a | 1.06 (2) | O3—C6 | 1.186 (3) |
C1—S1—C3 | 99.54 (10) | S1—C3—C4 | 131.57 (14) |
C2—S2—C4 | 98.30 (10) | S1—C3—C5 | 120.60 (16) |
S1—C1—H1a | 107.2 (15) | C4—C3—C5 | 107.83 (17) |
S1—C1—H1b | 108.1 (12) | C3—C4—S2 | 129.27 (14) |
H1a—C1—H1b | 110 (2) | C6—C4—S2 | 123.28 (16) |
S1—C1—C2 | 114.41 (15) | C3—C4—C6 | 107.44 (17) |
C2—C1—H1a | 107.8 (16) | O1—C5—C3 | 129.7 (2) |
C2—C1—H1b | 108.9 (15) | O2—C5—C3 | 108.36 (18) |
C1—C2—S2 | 115.01 (15) | O1—C5—O2 | 121.98 (19) |
S2—C2—H2a | 105.1 (17) | O2—C6—C4 | 108.13 (18) |
S2—C2—H2b | 107.5 (13) | O3—C6—C4 | 130.7 (2) |
C1—C2—H2a | 108.8 (16) | O2—C6—O3 | 121.2 (2) |
C1—C2—H2b | 111.8 (14) | C5—O2—C6 | 108.14 (15) |
H2a—C2—H2b | 108 (2) | ||
S1—C1—C2—S2 | −70.39 (17) | S2—C4—C6—O3 | 4.1 (2) |
S1—C3—C4—S2 | −3.9 (2) | C3—C4—C6—O2 | 3.05 (16) |
S1—C3—C4—C6 | 176.69 (19) | C3—C4—C6—O3 | −176.50 (17) |
S1—C3—C5—O1 | 1.95 (19) | C3—C5—O2—C6 | 0.24 (18) |
S1—C3—C5—O2 | −177.86 (15) | C4—C6—O2—C5 | −1.95 (18) |
S2—C4—C3—C5 | 176.57 (18) | C5—O2—C6—O3 | 177.65 (17) |
S2—C4—C6—O2 | −176.39 (17) |
References
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grabowski, M. (1968). Soc. Sci. Lodz. Acta Chim. 13, 43. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kirfel, A., Will, G. & Fickentscher, K. (1975). Acta Cryst. B31, 1973–1975. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, M., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692. Web of Science CSD CrossRef CAS Google Scholar
Kurbangalieva, A. R., Lodochnikova, O. A., Devyatova, N. F., Berdnikov, E. A., Gnezdilov, O. I., Litvinov, I. A. & Chmutova, G. A. (2010). Tetrahedron, 66, 9945–9953. Web of Science CSD CrossRef CAS Google Scholar
Lutz, M. (2001). Acta Cryst. E57, o1136–o1138. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marsh, R. E., Ubell, E. & Wilcox, H. E. (1962). Acta Cryst. 15, 35–41. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Midgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). Acta Cryst. A77, 519–533. Web of Science CrossRef IUCr Journals Google Scholar
Neese, F. (2022). WIREs Comput. Mol. Sci. 12, e1606. Google Scholar
Schmidt, J. R. & Polik, W. F. (2016). WebMO Enterprise. Version 20.0.011e. WebMO LLC, Holland, MI, USA. Google Scholar
Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347–1363. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skabara, P. J., Coles, S. J. & Hursthouse, M. B. (2003). CCDC deposition No. 1057366. CCDC, Cambridge, UK. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.