organic compounds
6,8-Dichloro-3-(pyridin-2-yl)-2-[1-(pyridin-2-yl)ethyl]-1,2-dihydroquinoxaline
aDepartment of Chemistry, University of Pretoria, 0002, Pretoria, South Africa, bDepartment of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt, and cDepartment of Chemistry, Tshwane, University of Technology, 0001, Pretoria, South Africa
*Correspondence e-mail: ManicumAE@tut.ac.za
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The 20H16Cl2N4 is described, where the formation of a di-substituted 6,8-dichloro quinoxaline, containing two stereogenic centres, is confirmed.
of the racemic title compound, CKeywords: crystal structure; quinoxaline derivative; chiral compound.
CCDC reference: 2285764
Structure description
The family of functionalized quinoxaline compounds is an important class of et al., 2015). The gradually expanding library of active compounds has lead to a growing interest into their solid- and solution-state characterization, including single-crystal X-ray diffraction. As part of our studies in this area, we now describe the synthesis and structure of the title compound, C20H16Cl2N4.
because of their synthetic utility and electroluminescent properties, as well as the different biological properties they have been found to exhibit (PereiraThe compound crystallizes in the monoclinic P21/c with Z = 4. The (Fig. 1) contains one molecule, featuring the 6,8-dichloroquinoxaline-based skeleton with two pyridyl-based substituents attached to positions 2 and 3 (atoms C1 and C2, respectively). The compound contains two chiral centres, namely atoms C3 and C14: in the arbitrarily chosen these both have an R configuration, but crystal symmetry generates a The quinoxalinyl ring system and the 2-pyridyl groups are close to co-planar [N3—C9—C1—N1 = −179.61 (14), C8—N1—C1—C9 = 175.17 (13)°], with the third picolyl-containing substituent more notably rotated out of plane [C1—C2—C14—C16 = −166.73 (12)°] with respect to the quinoxalinyl group. In the quinoxaline moiety, partial saturation on C2 (position 3) occurs and C2 is sp3-hybridized with bond angles of 113.58 (12)° (N2—C2—C14), 108.58 (12)° (N2—C2—C1) and 112.34 (12)° (C1—C2—C14). This leads C2 to be displaced by 0.383 (3) Å from the quinoxalinyl mean plane. Bonds lengths supporting the partially saturated character include: 1.290 (2) Å (N1—C1), 1.522 (2) Å (C1—C2), 1.4586 (19) Å (C2—N2) and 1.550 (2) Å (C2—C14). The remaining C—C, C—Cl, and C—N bond lengths and angles agree well with similar pyridyl-containing quinoxaline systems (Wang et al., 2015). A weak bifurcated intramolecular N—H⋯(N,Cl) hydrogen bond occurs (Table 1).
|
In the crystal, the compound packs as layers that extend down the c-axis interlinked by weak C—H⋯N hydrogen-bonding interactions (Fig. 2). No aromatic π–π stacking interactions were observed.
Synthesis and crystallization
Picolylamine (1 mmol), 2-methyl-2-(2-pyridyl)ethylamine (1 mmol) and 3,5-dichlorocyclohexan-1,2-dione (1 mmol) were added to a round-bottom flask with methanol (20 ml). The resulting solution was carefully heated to 50°C for approximately 2 h. The yellow solution was left to crystallize, after which yellow crystals of the title compound (which in this case represents the major product) were obtained.
Refinement
Crystal data, data collection and structure . The highest calculated residual electron density is 0.62 e Å−3 at 0.91 Å from N2.
details are summarized in Table 2Structural data
CCDC reference: 2285764
https://doi.org/10.1107/S241431462300665X/hb4436sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462300665X/hb4436Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431462300665X/hb4436Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S241431462300665X/hb4436Isup4.cml
Data collection: CrysAlis PRO 1.171.42.89a (Rigaku OD, 2023); cell
CrysAlis PRO 1.171.42.89a (Rigaku OD, 2023); data reduction: CrysAlis PRO 1.171.42.89a (Rigaku OD, 2023); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).C20H16Cl2N4 | F(000) = 792 |
Mr = 383.27 | Dx = 1.439 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4245 (3) Å | Cell parameters from 18589 reflections |
b = 20.7040 (6) Å | θ = 2.6–31.0° |
c = 10.2055 (3) Å | µ = 0.38 mm−1 |
β = 96.448 (3)° | T = 150 K |
V = 1768.79 (10) Å3 | Blade, yellow |
Z = 4 | 0.27 × 0.19 × 0.09 mm |
XtaLAB Synergy R, DW system, HyPix diffractometer | 4742 independent reflections |
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source | 3981 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.112 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 30.8°, θmin = 2.4° |
ω scans | h = −12→10 |
Absorption correction: multi-scan (CrysalisPro; Rigaku OD, 2019) | k = −28→26 |
Tmin = 0.576, Tmax = 1.000 | l = −14→13 |
29036 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.137 | w = 1/[σ2(Fo2) + (0.0676P)2 + 0.7299P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
4742 reflections | Δρmax = 0.62 e Å−3 |
236 parameters | Δρmin = −0.58 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms. |
x | y | z | Uiso*/Ueq | ||
Cl2 | 1.12383 (5) | 0.09926 (2) | 0.40380 (4) | 0.02882 (13) | |
Cl1 | 0.83348 (6) | 0.03634 (2) | 0.83287 (5) | 0.03650 (15) | |
N1 | 0.81871 (15) | 0.26674 (6) | 0.64452 (13) | 0.0189 (3) | |
N2 | 0.73638 (16) | 0.17552 (6) | 0.82624 (13) | 0.0201 (3) | |
H2 | 0.7411 | 0.1527 | 0.8994 | 0.024* | |
N3 | 0.59274 (18) | 0.36766 (7) | 0.83720 (15) | 0.0261 (3) | |
N4 | 0.45284 (17) | 0.14108 (7) | 0.93078 (16) | 0.0279 (3) | |
C16 | 0.37494 (18) | 0.18777 (7) | 0.85957 (15) | 0.0179 (3) | |
C8 | 0.85917 (17) | 0.20116 (7) | 0.63224 (15) | 0.0181 (3) | |
C3 | 0.81853 (18) | 0.15560 (7) | 0.72517 (15) | 0.0187 (3) | |
C9 | 0.69244 (18) | 0.35242 (7) | 0.74782 (15) | 0.0189 (3) | |
C1 | 0.72267 (17) | 0.28236 (7) | 0.72928 (15) | 0.0175 (3) | |
C2 | 0.64108 (17) | 0.23446 (7) | 0.81296 (14) | 0.0169 (3) | |
H2A | 0.6423 | 0.2536 | 0.9030 | 0.020* | |
C6 | 1.00485 (19) | 0.12035 (8) | 0.52627 (16) | 0.0215 (3) | |
C14 | 0.46394 (18) | 0.22276 (7) | 0.75909 (15) | 0.0190 (3) | |
H14 | 0.4123 | 0.2659 | 0.7422 | 0.023* | |
C7 | 0.95056 (18) | 0.18329 (8) | 0.53247 (15) | 0.0205 (3) | |
H7 | 0.9755 | 0.2141 | 0.4690 | 0.025* | |
C10 | 0.76783 (19) | 0.39916 (8) | 0.67700 (17) | 0.0224 (3) | |
H10 | 0.8372 | 0.3868 | 0.6142 | 0.027* | |
C5 | 0.96985 (19) | 0.07447 (8) | 0.61717 (16) | 0.0236 (3) | |
H5 | 1.0082 | 0.0315 | 0.6126 | 0.028* | |
C4 | 0.8772 (2) | 0.09267 (8) | 0.71550 (17) | 0.0230 (3) | |
C17 | 0.2167 (2) | 0.20287 (8) | 0.87252 (19) | 0.0271 (4) | |
H17 | 0.1635 | 0.2360 | 0.8203 | 0.033* | |
C19 | 0.2179 (2) | 0.12117 (8) | 1.03820 (18) | 0.0263 (3) | |
H19 | 0.1672 | 0.0977 | 1.1018 | 0.032* | |
C20 | 0.3742 (2) | 0.10886 (9) | 1.01806 (19) | 0.0300 (4) | |
H20 | 0.4295 | 0.0757 | 1.0688 | 0.036* | |
C11 | 0.7391 (2) | 0.46377 (8) | 0.70050 (19) | 0.0288 (4) | |
H11 | 0.7886 | 0.4965 | 0.6541 | 0.035* | |
C12 | 0.6367 (2) | 0.47994 (9) | 0.7931 (2) | 0.0325 (4) | |
H12 | 0.6154 | 0.5238 | 0.8118 | 0.039* | |
C13 | 0.5664 (2) | 0.43017 (9) | 0.8576 (2) | 0.0330 (4) | |
H13 | 0.4954 | 0.4414 | 0.9199 | 0.040* | |
C18 | 0.1374 (2) | 0.16896 (9) | 0.9625 (2) | 0.0305 (4) | |
H18 | 0.0290 | 0.1784 | 0.9722 | 0.037* | |
C15 | 0.4450 (2) | 0.18517 (10) | 0.62926 (16) | 0.0290 (4) | |
H15A | 0.4889 | 0.1416 | 0.6441 | 0.044* | |
H15B | 0.5026 | 0.2076 | 0.5644 | 0.044* | |
H15C | 0.3315 | 0.1822 | 0.5961 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl2 | 0.0285 (2) | 0.0321 (2) | 0.0284 (2) | 0.00069 (15) | 0.01460 (17) | −0.00866 (15) |
Cl1 | 0.0531 (3) | 0.0222 (2) | 0.0386 (3) | 0.00890 (18) | 0.0247 (2) | 0.00922 (17) |
N1 | 0.0183 (6) | 0.0205 (6) | 0.0189 (6) | 0.0000 (5) | 0.0063 (5) | 0.0003 (5) |
N2 | 0.0214 (6) | 0.0216 (6) | 0.0188 (6) | 0.0054 (5) | 0.0087 (5) | 0.0045 (5) |
N3 | 0.0305 (7) | 0.0215 (7) | 0.0287 (7) | 0.0010 (5) | 0.0135 (6) | −0.0030 (5) |
N4 | 0.0194 (7) | 0.0333 (8) | 0.0324 (8) | 0.0030 (6) | 0.0085 (6) | 0.0137 (6) |
C16 | 0.0175 (7) | 0.0186 (7) | 0.0182 (7) | −0.0023 (5) | 0.0043 (5) | 0.0000 (5) |
C8 | 0.0163 (7) | 0.0203 (7) | 0.0184 (7) | 0.0002 (5) | 0.0054 (5) | −0.0002 (5) |
C3 | 0.0170 (7) | 0.0207 (7) | 0.0192 (7) | 0.0010 (5) | 0.0054 (6) | 0.0005 (5) |
C9 | 0.0180 (7) | 0.0188 (7) | 0.0205 (7) | −0.0004 (5) | 0.0044 (6) | −0.0006 (5) |
C1 | 0.0159 (7) | 0.0192 (7) | 0.0179 (7) | −0.0007 (5) | 0.0040 (5) | 0.0012 (5) |
C2 | 0.0168 (7) | 0.0176 (7) | 0.0172 (7) | 0.0008 (5) | 0.0056 (5) | 0.0006 (5) |
C6 | 0.0195 (7) | 0.0256 (8) | 0.0206 (7) | 0.0008 (6) | 0.0074 (6) | −0.0066 (6) |
C14 | 0.0163 (7) | 0.0217 (7) | 0.0196 (7) | 0.0002 (5) | 0.0047 (5) | 0.0053 (6) |
C7 | 0.0209 (7) | 0.0226 (8) | 0.0190 (7) | −0.0017 (6) | 0.0071 (6) | −0.0016 (6) |
C10 | 0.0205 (7) | 0.0220 (8) | 0.0254 (8) | −0.0009 (6) | 0.0062 (6) | 0.0017 (6) |
C5 | 0.0241 (8) | 0.0208 (8) | 0.0266 (8) | 0.0031 (6) | 0.0059 (6) | −0.0035 (6) |
C4 | 0.0249 (8) | 0.0204 (7) | 0.0248 (8) | 0.0014 (6) | 0.0085 (6) | 0.0018 (6) |
C17 | 0.0213 (8) | 0.0252 (8) | 0.0368 (9) | 0.0047 (6) | 0.0116 (7) | 0.0079 (7) |
C19 | 0.0277 (8) | 0.0256 (8) | 0.0276 (8) | −0.0060 (6) | 0.0120 (7) | 0.0010 (6) |
C20 | 0.0239 (8) | 0.0332 (9) | 0.0337 (9) | 0.0010 (7) | 0.0068 (7) | 0.0146 (7) |
C11 | 0.0287 (9) | 0.0221 (8) | 0.0361 (9) | −0.0044 (6) | 0.0056 (7) | 0.0010 (7) |
C12 | 0.0383 (10) | 0.0196 (8) | 0.0407 (10) | 0.0001 (7) | 0.0093 (8) | −0.0041 (7) |
C13 | 0.0409 (10) | 0.0247 (9) | 0.0363 (10) | 0.0023 (7) | 0.0177 (8) | −0.0053 (7) |
C18 | 0.0231 (8) | 0.0275 (9) | 0.0442 (10) | 0.0020 (6) | 0.0176 (7) | 0.0059 (7) |
C15 | 0.0264 (8) | 0.0428 (10) | 0.0181 (7) | −0.0098 (7) | 0.0033 (6) | −0.0003 (7) |
Cl2—C6 | 1.7432 (16) | C9—C1 | 1.488 (2) |
Cl1—C4 | 1.7406 (17) | C9—C10 | 1.402 (2) |
N1—C8 | 1.409 (2) | C1—C2 | 1.522 (2) |
N1—C1 | 1.290 (2) | C2—C14 | 1.550 (2) |
N2—C3 | 1.3687 (19) | C6—C7 | 1.385 (2) |
N2—C2 | 1.4586 (19) | C6—C5 | 1.382 (2) |
N3—C9 | 1.345 (2) | C14—C15 | 1.529 (2) |
N3—C13 | 1.333 (2) | C10—C11 | 1.385 (2) |
N4—C16 | 1.336 (2) | C5—C4 | 1.391 (2) |
N4—C20 | 1.346 (2) | C17—C18 | 1.385 (2) |
C16—C14 | 1.520 (2) | C19—C20 | 1.379 (2) |
C16—C17 | 1.390 (2) | C19—C18 | 1.385 (3) |
C8—C3 | 1.407 (2) | C11—C12 | 1.390 (3) |
C8—C7 | 1.394 (2) | C12—C13 | 1.391 (3) |
C3—C4 | 1.401 (2) | ||
C1—N1—C8 | 118.51 (13) | C1—C2—C14 | 112.34 (12) |
C3—N2—C2 | 120.11 (13) | C7—C6—Cl2 | 119.20 (13) |
C13—N3—C9 | 117.45 (15) | C5—C6—Cl2 | 119.49 (12) |
C16—N4—C20 | 118.06 (14) | C5—C6—C7 | 121.29 (14) |
N4—C16—C14 | 117.53 (13) | C16—C14—C2 | 111.30 (12) |
N4—C16—C17 | 121.91 (15) | C16—C14—C15 | 109.31 (13) |
C17—C16—C14 | 120.53 (14) | C15—C14—C2 | 112.90 (13) |
C3—C8—N1 | 120.43 (13) | C6—C7—C8 | 119.71 (15) |
C7—C8—N1 | 118.68 (14) | C11—C10—C9 | 118.64 (16) |
C7—C8—C3 | 120.70 (14) | C6—C5—C4 | 118.51 (15) |
N2—C3—C8 | 119.20 (14) | C3—C4—Cl1 | 118.10 (12) |
N2—C3—C4 | 123.06 (14) | C5—C4—Cl1 | 119.63 (12) |
C4—C3—C8 | 117.49 (14) | C5—C4—C3 | 122.26 (15) |
N3—C9—C1 | 116.33 (14) | C18—C17—C16 | 119.20 (15) |
N3—C9—C10 | 122.77 (15) | C20—C19—C18 | 117.70 (16) |
C10—C9—C1 | 120.88 (14) | N4—C20—C19 | 123.81 (16) |
N1—C1—C9 | 117.29 (14) | C10—C11—C12 | 118.95 (17) |
N1—C1—C2 | 124.72 (13) | C11—C12—C13 | 118.25 (17) |
C9—C1—C2 | 117.98 (13) | N3—C13—C12 | 123.93 (17) |
N2—C2—C1 | 108.58 (12) | C19—C18—C17 | 119.30 (16) |
N2—C2—C14 | 113.58 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Cl1 | 0.88 | 2.64 | 2.9941 (13) | 105 |
N2—H2···N4 | 0.88 | 2.50 | 2.815 (2) | 102 |
Acknowledgements
We would like to acknowledge the National Research Foundation, University of Pretoria and the Tshwane University of Technology for funding and institutional support provided.
Funding information
Funding for this research was provided by: National Research Foundation (grant No. 138280 to FPM; grant No. 129468 to ALEM).
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pereira, J. A., Pessoa, A. M., Cordeiro, M. N. D. S., Fernandes, R., Prudêncio, C., Noronha, J. P. & Vieira, M. (2015). Eur. J. Med. Chem. 97, 664–672. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, X.-M., Chen, S. R.-Q., Fan, R. Q., Zhang, F.-Q. & Yang, Y.-L. (2015). Dalton Trans. 44, 8107–8125. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.