metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetrel bond in the tri­phenyltin(IV) chloride–cyclo­hexyl­di­phenyl­phosphane oxide (1/1) cocrystal

crossmark logo

aDepartment of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N6N5, Canada
*Correspondence e-mail: dbryce@uottawa.ca

Edited by R. J. Butcher, Howard University, USA (Received 14 June 2023; accepted 21 July 2023; online 1 August 2023)

The single-crystal X-ray diffraction structure of the title compound, [SnCl(C6H5)3]·C18H21OP, is reported. The 1:1 cocrystal features a short and directional tetrel bond between tin and oxygen. The tin–oxygen distance is 2.346 (4) Å, representing 62% of the sum of the van der Waals radii of Sn and O. The Cl—Sn⋯O angle is 174.0 (1)° and this nearly linear arrangement is consistent with a tetrel bond formed via a σ-hole opposite the tin–chlorine covalent bond. Some weak C—H⋯Cl inter­actions are noted between adjacent mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The tetrel bond (TB), a moderately strong and directional noncovalent inter­action, has received renewed inter­est in recent years as a useful structure-directing element and crystal engineering tool (Bauzá et al., 2016[Bauzá, A., Mooibroek, T. J. & Frontera, A. (2016). Chem. Rec. 16, 473-487.]). TBs form between a region of depleted electron density and elevated electrostatic potential (σ-hole) on a Group 14 (tetrel) element and an electron-donor moiety. Scilabra et al. (2018[Scilabra, P., Kumar, V., Ursini, M. & Resnati, G. (2018). J. Mol. Model. 24, 37.]) have reviewed the literature and summarized the available information on TBs involving tin and germanium. The title compound features a short and highly linear TB between the SnIV atom of triphenyl­tin(IV) chloride and the O atom of cyclo­hexyl­diphenyl­phosphane oxide. The asymmetric unit consists of one complete mol­ecule of each type. The tin–oxygen distance is 2.346 (4) Å and the Cl—Sn⋯O TB angle is 174.0 (1)° (Fig. 1[link]). This distance represents approximately 62% of the sum of the van der Waals radii of Sn and O. The nearly linear arrangement is consistent with a TB inter­action via a σ-hole opposite the tin–chlorine covalent bond. These metrics may be compared to those for an analogous system comprised of tri­methyl­tin chloride and tri­phenyl­phosphane oxide, where the tin–oxygen TB distance is 2.375 (2) Å and the Cl—Sn⋯O TB angle is 177.57 (7)° (Davis et al., 2007[Davis, M. F., Levason, W., Ratnani, R., Reid, G., Rose, T. & Webster, M. (2007). Eur. J. Inorg. Chem. 2007, 306-313.]). Similar metrics are reported for the tin–oxygen TBs in [chlorido­bis­(p-chloro­phen­yl)(p-tol­yl)tin]-μ-1,2-bis­(di­phenyl­phosphor­yl)ethane-κ2O:O′-[bromido­bis­(p-chloro­phen­yl)(p-tol­yl)tin] (Lo & Ng, 2004[Lo, K. M. & Ng, S. W. (2004). Acta Cryst. E60, m717-m719.]), (Ph2ClSnCH2)2·(Me2N)2PO (Jurkschat et al., 1990[Jurkschat, K., Hesselbarth, F., Dargatz, M., Lehmann, J., Kleinpeter, E., Tzschach, A. & Meunier-Piret, J. (1990). J. Organomet. Chem. 388, 259-271.]) and bromido­tri(p-tol­yl)tin–hexa­methyl­phospho­r­amide (Lo et al., 2001[Lo, K. M., Ibrahim, A. R., Chantrapromma, S., Fun, H.-K. & Ng, S. W. (2001). Main Group Met. Chem. 24, 301-302.]), and for a series of cocrystals of SnPPh3Cl formed with pyridine N-oxides, di­methyl­urea, and di­phenyl sulfoxide (Kumar et al., 2020[Kumar, V., Rodrigue, C. & Bryce, D. L. (2020). Cryst. Growth Des. 20, 2027-2034.]). The packing of the title compound (Fig. 2[link]) does not feature any other strong noncovalent inter­actions; the only other weak inter­actions of note are between the Cl atom and the H atoms of the phenyl rings of adjacent mol­ecules (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1i 0.98 2.87 3.803 (6) 159
C18—H18⋯Cl1i 0.93 2.88 3.637 (7) 139
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. The tin–oxygen tetrel bond distance and chlorine–tin–oxygen angle are shown. H atoms are not shown. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
Packing diagram of the title compound, viewed along the b axis. H atoms have been omitted for clarity.

Synthesis and crystallization

In a typical procedure, triphenyltin(IV) chloride (0.0614 g) and cyclo­hexyl­diphenyl­phosphane (0.0894 g) were added to hexane (60 ml) in a beaker. The mixture was heated and stirred until the solids were completely dissolved. Cocrystals grew via slow evaporation of the solvent in a fume hood over a period of 5 d. Evidently, during the synthesis, the phosphane was oxidized to give the phosphane oxide, as the process was not carried out under an inert atmosphere.

Refinement

The crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed geometrically and refined using a riding model.

Table 2
Experimental details

Crystal data
Chemical formula [SnCl(C6H5)3]·C18H21OP
Mr 669.76
Crystal system, space group Monoclinic, P21/c
Temperature (K) 273
a, b, c (Å) 16.548 (2), 10.7496 (15), 18.665 (3)
β (°) 105.110 (4)
V3) 3205.4 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.96
Crystal size (mm) 0.31 × 0.17 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.621, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 19012, 5547, 2948
Rint 0.090
(sin θ/λ)max−1) 0.598
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.116, 0.95
No. of reflections 5547
No. of parameters 361
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.08, −0.62
Computer programs: APEX3 (Bruker, 2012[Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b).

Triphenyltin(IV) chloride–cyclohexyldiphenylphosphane oxide (1/1) top
Crystal data top
[SnCl(C6H5)3]·C18H21OPF(000) = 1368
Mr = 669.76Dx = 1.388 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.548 (2) ÅCell parameters from 4222 reflections
b = 10.7496 (15) Åθ = 2.3–21.9°
c = 18.665 (3) ŵ = 0.96 mm1
β = 105.110 (4)°T = 273 K
V = 3205.4 (8) Å3Plate, colourless
Z = 40.31 × 0.17 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ω and πhi scansθmax = 25.1°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1913
Tmin = 0.621, Tmax = 0.745k = 1212
19012 measured reflectionsl = 2221
5547 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0456P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
5547 reflectionsΔρmax = 1.08 e Å3
361 parametersΔρmin = 0.62 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Crystallographic data for the title compound were collected from a single crystal mounted on a MiTeGen MicroMount using parabar oil. Data were collected on a Bruker Kappa APEXII single-crystal diffractometer equipped with a sealed tube Mo Kα source (λ = 0.71073 Å), a TRIUMPH monochromator, and an APEXII CCD detector. Data were collected at 273 K. Raw data collection and processing were performed with the APEX3 software package from Bruker. Initial unit-cell parameters were determined from 36 data frames from select ω scans. Semi-empirical absorption corrections based on equivalent reflections were applied. Systematic absences in the diffraction data set and unit-cell parameters were consistent with the assigned space group. The initial structural solutions were determined using SHELXT (Sheldrick, 2015b) direct methods, and refined with full-matrix least-squares procedures based on F2 using SHELXT and ShelXle. The structure was deposited with the Cambridge Structural Database, entry 2267964.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.74139 (3)0.42607 (4)0.61347 (3)0.03965 (17)
Cl10.73072 (12)0.49797 (15)0.48345 (10)0.0583 (5)
P10.75522 (10)0.33662 (14)0.81497 (10)0.0371 (4)
O10.7432 (2)0.3773 (3)0.7364 (2)0.0453 (11)
C10.6708 (4)0.2398 (5)0.8277 (3)0.0405 (17)
H10.6890870.1994720.8763580.049*
C20.6492 (4)0.1379 (6)0.7680 (4)0.066 (2)
H2A0.6347180.1761450.7192690.079*
H2AB0.6978170.0855000.7716330.079*
C30.5761 (5)0.0578 (7)0.7768 (5)0.084 (3)
H3A0.5615860.0017850.7364590.101*
H3AB0.5930000.0116090.8229890.101*
C40.4999 (5)0.1360 (8)0.7770 (5)0.093 (3)
H4A0.4788940.1744690.7286600.111*
H4AB0.4561360.0828230.7858750.111*
C50.5204 (5)0.2359 (7)0.8358 (5)0.084 (3)
H5A0.5354470.1976080.8845260.101*
H5AB0.4714280.2875350.8324190.101*
C60.5928 (4)0.3169 (6)0.8262 (4)0.068 (2)
H6A0.5756570.3609880.7793220.081*
H6AB0.6062580.3782550.8656330.081*
C70.7615 (4)0.4664 (5)0.8759 (4)0.0374 (16)
C80.7922 (5)0.4522 (6)0.9517 (4)0.064 (2)
H80.8115060.3750670.9714980.077*
C90.7940 (5)0.5540 (8)0.9986 (4)0.081 (3)
H90.8116150.5434431.0498010.097*
C100.7702 (5)0.6682 (7)0.9697 (5)0.074 (3)
H100.7741250.7364281.0011120.089*
C110.7409 (5)0.6832 (6)0.8954 (5)0.064 (2)
H110.7234880.7613910.8760090.077*
C120.7366 (4)0.5823 (6)0.8480 (4)0.0486 (18)
H120.7166630.5934310.7969770.058*
C130.8527 (4)0.2548 (5)0.8477 (3)0.0407 (17)
C140.9247 (5)0.3158 (6)0.8458 (4)0.061 (2)
H140.9208270.3974930.8288760.074*
C151.0024 (5)0.2619 (8)0.8677 (5)0.076 (2)
H151.0499310.3065120.8656760.091*
C161.0092 (6)0.1404 (8)0.8928 (5)0.085 (3)
H161.0612540.1021390.9085560.102*
C170.9372 (5)0.0774 (7)0.8939 (4)0.075 (2)
H170.9407410.0050040.9096170.090*
C180.8603 (4)0.1338 (6)0.8723 (4)0.0526 (19)
H180.8127180.0895020.8743820.063*
C190.6260 (4)0.3297 (6)0.5840 (3)0.0414 (17)
C200.6255 (4)0.2067 (7)0.5648 (4)0.070 (2)
H200.6753630.1686790.5627540.084*
C210.5530 (5)0.1384 (7)0.5487 (5)0.091 (3)
H210.5546670.0544600.5371000.109*
C220.4785 (5)0.1921 (8)0.5494 (5)0.080 (3)
H220.4295510.1451770.5385740.096*
C230.4765 (5)0.3139 (8)0.5661 (4)0.067 (2)
H230.4258800.3520590.5653470.081*
C240.5496 (5)0.3818 (6)0.5843 (4)0.063 (2)
H240.5475730.4651320.5971880.076*
C250.7582 (4)0.6126 (5)0.6541 (4)0.0381 (17)
C260.6976 (4)0.7008 (6)0.6302 (4)0.057 (2)
H260.6482950.6795640.5953250.068*
C270.7085 (5)0.8211 (6)0.6573 (5)0.070 (2)
H270.6669090.8802930.6405820.085*
C280.7811 (6)0.8529 (6)0.7090 (5)0.072 (3)
H280.7883390.9336760.7273400.087*
C290.8420 (5)0.7677 (7)0.7334 (4)0.069 (2)
H290.8916090.7897050.7676450.082*
C300.8296 (5)0.6455 (6)0.7064 (4)0.0529 (19)
H300.8705620.5858610.7243170.063*
C310.8464 (4)0.3065 (5)0.6194 (3)0.0375 (16)
C320.8992 (4)0.3271 (6)0.5743 (4)0.053 (2)
H320.8898430.3959010.5430170.064*
C330.9659 (4)0.2488 (7)0.5739 (4)0.065 (2)
H331.0008490.2655440.5432540.078*
C340.9795 (5)0.1462 (7)0.6194 (5)0.068 (2)
H341.0237080.0926300.6196180.081*
C350.9280 (5)0.1233 (6)0.6643 (5)0.068 (2)
H350.9376930.0541580.6953180.081*
C360.8610 (4)0.2022 (6)0.6642 (4)0.054 (2)
H360.8259000.1845340.6945670.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0529 (3)0.0298 (2)0.0381 (3)0.0012 (2)0.0154 (2)0.0019 (2)
Cl10.0890 (14)0.0499 (11)0.0404 (13)0.0168 (10)0.0248 (10)0.0063 (8)
P10.0485 (11)0.0284 (9)0.0367 (12)0.0030 (8)0.0152 (9)0.0011 (8)
O10.065 (3)0.047 (3)0.028 (3)0.006 (2)0.018 (2)0.000 (2)
C10.048 (4)0.032 (4)0.040 (5)0.003 (3)0.009 (3)0.004 (3)
C20.078 (6)0.061 (5)0.063 (6)0.023 (4)0.025 (5)0.011 (4)
C30.098 (7)0.072 (6)0.082 (7)0.052 (6)0.021 (5)0.012 (5)
C40.069 (7)0.097 (7)0.103 (9)0.027 (6)0.007 (6)0.027 (6)
C50.050 (5)0.074 (6)0.131 (9)0.002 (5)0.029 (5)0.017 (6)
C60.054 (5)0.056 (5)0.096 (7)0.003 (4)0.025 (5)0.002 (4)
C70.050 (4)0.031 (4)0.033 (5)0.012 (3)0.015 (3)0.001 (3)
C80.101 (6)0.051 (5)0.036 (5)0.017 (4)0.008 (4)0.005 (4)
C90.128 (8)0.079 (6)0.028 (5)0.018 (5)0.005 (5)0.008 (4)
C100.115 (7)0.048 (5)0.064 (7)0.009 (5)0.030 (6)0.016 (5)
C110.095 (6)0.043 (5)0.064 (6)0.002 (4)0.037 (5)0.001 (4)
C120.060 (5)0.043 (4)0.046 (5)0.000 (4)0.020 (4)0.001 (4)
C130.046 (4)0.038 (4)0.043 (5)0.005 (3)0.019 (3)0.002 (3)
C140.063 (5)0.042 (4)0.084 (7)0.005 (4)0.027 (5)0.000 (4)
C150.041 (5)0.093 (7)0.095 (7)0.000 (5)0.021 (5)0.001 (5)
C160.069 (6)0.083 (6)0.112 (8)0.031 (5)0.039 (6)0.017 (6)
C170.076 (6)0.068 (5)0.090 (7)0.030 (5)0.037 (5)0.026 (5)
C180.052 (5)0.048 (4)0.066 (6)0.004 (4)0.030 (4)0.008 (4)
C190.057 (5)0.035 (4)0.032 (4)0.002 (3)0.010 (4)0.003 (3)
C200.045 (5)0.065 (5)0.092 (7)0.006 (4)0.003 (4)0.038 (5)
C210.062 (6)0.062 (5)0.137 (9)0.010 (5)0.003 (6)0.038 (5)
C220.058 (6)0.075 (6)0.095 (8)0.018 (5)0.000 (5)0.021 (5)
C230.040 (5)0.081 (6)0.077 (7)0.007 (5)0.006 (4)0.009 (5)
C240.065 (6)0.052 (5)0.068 (6)0.007 (4)0.010 (5)0.012 (4)
C250.050 (5)0.030 (4)0.038 (5)0.007 (3)0.017 (4)0.007 (3)
C260.062 (5)0.051 (5)0.057 (6)0.008 (4)0.015 (4)0.001 (4)
C270.074 (6)0.035 (4)0.108 (8)0.015 (4)0.032 (6)0.007 (4)
C280.099 (7)0.033 (4)0.101 (8)0.014 (5)0.054 (6)0.019 (5)
C290.083 (6)0.050 (5)0.071 (6)0.015 (5)0.017 (5)0.015 (4)
C300.069 (5)0.042 (4)0.048 (5)0.003 (4)0.014 (4)0.002 (4)
C310.047 (4)0.034 (4)0.032 (4)0.000 (3)0.011 (3)0.002 (3)
C320.055 (5)0.042 (4)0.064 (6)0.008 (4)0.016 (4)0.009 (4)
C330.056 (5)0.072 (6)0.071 (6)0.003 (4)0.024 (4)0.003 (5)
C340.069 (6)0.061 (5)0.074 (7)0.020 (5)0.020 (5)0.006 (5)
C350.087 (7)0.047 (5)0.063 (6)0.027 (5)0.009 (5)0.004 (4)
C360.068 (5)0.047 (4)0.050 (5)0.005 (4)0.021 (4)0.001 (4)
Geometric parameters (Å, º) top
Sn1—C192.115 (6)C15—C161.382 (10)
Sn1—C252.136 (6)C15—H150.9300
Sn1—C312.141 (6)C16—C171.375 (10)
Sn1—O12.346 (4)C16—H160.9300
Sn1—Cl12.5089 (18)C17—C181.372 (8)
P1—O11.493 (4)C17—H170.9300
P1—C71.786 (6)C18—H180.9300
P1—C131.798 (6)C19—C201.370 (8)
P1—C11.807 (6)C19—C241.384 (8)
C1—C61.527 (8)C20—C211.371 (9)
C1—C21.537 (8)C20—H200.9300
C1—H10.9800C21—C221.366 (10)
C2—C31.528 (9)C21—H210.9300
C2—H2A0.9700C22—C231.348 (9)
C2—H2AB0.9700C22—H220.9300
C3—C41.516 (10)C23—C241.377 (9)
C3—H3A0.9700C23—H230.9300
C3—H3AB0.9700C24—H240.9300
C4—C51.510 (10)C25—C261.367 (8)
C4—H4A0.9700C25—C301.369 (8)
C4—H4AB0.9700C26—C271.383 (9)
C5—C61.530 (9)C26—H260.9300
C5—H5A0.9700C27—C281.373 (10)
C5—H5AB0.9700C27—H270.9300
C6—H6A0.9700C28—C291.350 (9)
C6—H6AB0.9700C28—H280.9300
C7—C121.372 (8)C29—C301.402 (8)
C7—C81.382 (8)C29—H290.9300
C8—C91.396 (9)C30—H300.9300
C8—H80.9300C31—C321.381 (8)
C9—C101.358 (9)C31—C361.382 (8)
C9—H90.9300C32—C331.390 (8)
C10—C111.355 (9)C32—H320.9300
C10—H100.9300C33—C341.374 (9)
C11—C121.390 (8)C33—H330.9300
C11—H110.9300C34—C351.364 (10)
C12—H120.9300C34—H340.9300
C13—C141.369 (8)C35—C361.397 (9)
C13—C181.375 (8)C35—H350.9300
C14—C151.372 (9)C36—H360.9300
C14—H140.9300
C19—Sn1—C25125.2 (3)C14—C13—P1117.9 (5)
C19—Sn1—C31112.6 (2)C18—C13—P1125.0 (5)
C25—Sn1—C31121.1 (2)C13—C14—C15123.0 (7)
C19—Sn1—O185.74 (19)C13—C14—H14118.5
C25—Sn1—O183.99 (19)C15—C14—H14118.5
C31—Sn1—O190.7 (2)C14—C15—C16119.2 (8)
C19—Sn1—Cl193.90 (17)C14—C15—H15120.4
C25—Sn1—Cl191.37 (17)C16—C15—H15120.4
C31—Sn1—Cl194.95 (18)C17—C16—C15118.4 (8)
O1—Sn1—Cl1174.01 (10)C17—C16—H16120.8
O1—P1—C7111.5 (3)C15—C16—H16120.8
O1—P1—C13110.8 (3)C18—C17—C16121.3 (7)
C7—P1—C13105.5 (3)C18—C17—H17119.4
O1—P1—C1112.9 (3)C16—C17—H17119.4
C7—P1—C1106.6 (3)C17—C18—C13121.0 (7)
C13—P1—C1109.2 (3)C17—C18—H18119.5
P1—O1—Sn1172.1 (3)C13—C18—H18119.5
C6—C1—C2109.7 (5)C20—C19—C24116.7 (6)
C6—C1—P1111.3 (4)C20—C19—Sn1119.0 (5)
C2—C1—P1110.9 (5)C24—C19—Sn1124.4 (5)
C6—C1—H1108.3C19—C20—C21121.3 (7)
C2—C1—H1108.3C19—C20—H20119.3
P1—C1—H1108.3C21—C20—H20119.3
C3—C2—C1111.4 (6)C22—C21—C20120.8 (7)
C3—C2—H2A109.4C22—C21—H21119.6
C1—C2—H2A109.4C20—C21—H21119.6
C3—C2—H2AB109.4C23—C22—C21119.2 (7)
C1—C2—H2AB109.4C23—C22—H22120.4
H2A—C2—H2AB108.0C21—C22—H22120.4
C4—C3—C2111.7 (7)C22—C23—C24120.0 (7)
C4—C3—H3A109.3C22—C23—H23120.0
C2—C3—H3A109.3C24—C23—H23120.0
C4—C3—H3AB109.3C23—C24—C19121.9 (6)
C2—C3—H3AB109.3C23—C24—H24119.0
H3A—C3—H3AB107.9C19—C24—H24119.0
C5—C4—C3111.5 (7)C26—C25—C30118.5 (6)
C5—C4—H4A109.3C26—C25—Sn1121.3 (5)
C3—C4—H4A109.3C30—C25—Sn1120.2 (5)
C5—C4—H4AB109.3C25—C26—C27120.9 (7)
C3—C4—H4AB109.3C25—C26—H26119.5
H4A—C4—H4AB108.0C27—C26—H26119.5
C4—C5—C6110.7 (7)C28—C27—C26119.8 (7)
C4—C5—H5A109.5C28—C27—H27120.1
C6—C5—H5A109.5C26—C27—H27120.1
C4—C5—H5AB109.5C29—C28—C27120.5 (7)
C6—C5—H5AB109.5C29—C28—H28119.7
H5A—C5—H5AB108.1C27—C28—H28119.7
C1—C6—C5111.9 (5)C28—C29—C30119.2 (7)
C1—C6—H6A109.2C28—C29—H29120.4
C5—C6—H6A109.2C30—C29—H29120.4
C1—C6—H6AB109.2C25—C30—C29121.1 (7)
C5—C6—H6AB109.2C25—C30—H30119.4
H6A—C6—H6AB107.9C29—C30—H30119.4
C12—C7—C8118.9 (6)C32—C31—C36117.4 (6)
C12—C7—P1120.4 (5)C32—C31—Sn1120.5 (5)
C8—C7—P1120.7 (5)C36—C31—Sn1122.0 (5)
C7—C8—C9119.9 (7)C31—C32—C33122.5 (6)
C7—C8—H8120.1C31—C32—H32118.8
C9—C8—H8120.1C33—C32—H32118.8
C10—C9—C8120.2 (7)C34—C33—C32119.0 (7)
C10—C9—H9119.9C34—C33—H33120.5
C8—C9—H9119.9C32—C33—H33120.5
C11—C10—C9120.3 (7)C35—C34—C33119.8 (7)
C11—C10—H10119.9C35—C34—H34120.1
C9—C10—H10119.9C33—C34—H34120.1
C10—C11—C12120.3 (7)C34—C35—C36120.9 (7)
C10—C11—H11119.9C34—C35—H35119.6
C12—C11—H11119.9C36—C35—H35119.6
C7—C12—C11120.4 (7)C31—C36—C35120.4 (7)
C7—C12—H12119.8C31—C36—H36119.8
C11—C12—H12119.8C35—C36—H36119.8
C14—C13—C18117.1 (6)
O1—P1—C1—C675.5 (5)C1—P1—C13—C185.3 (7)
C7—P1—C1—C647.2 (5)C18—C13—C14—C150.6 (11)
C13—P1—C1—C6160.7 (5)P1—C13—C14—C15178.5 (6)
O1—P1—C1—C246.9 (5)C13—C14—C15—C160.2 (12)
C7—P1—C1—C2169.7 (5)C14—C15—C16—C170.8 (13)
C13—P1—C1—C276.8 (5)C15—C16—C17—C181.4 (13)
C6—C1—C2—C354.9 (8)C16—C17—C18—C131.0 (12)
P1—C1—C2—C3178.3 (5)C14—C13—C18—C170.0 (10)
C1—C2—C3—C455.1 (9)P1—C13—C18—C17177.7 (5)
C2—C3—C4—C555.3 (9)C24—C19—C20—C211.6 (11)
C3—C4—C5—C655.6 (9)Sn1—C19—C20—C21176.9 (6)
C2—C1—C6—C556.0 (8)C19—C20—C21—C221.6 (13)
P1—C1—C6—C5179.2 (5)C20—C21—C22—C230.2 (14)
C4—C5—C6—C156.7 (9)C21—C22—C23—C241.9 (13)
O1—P1—C7—C1215.1 (6)C22—C23—C24—C192.0 (12)
C13—P1—C7—C12135.5 (5)C20—C19—C24—C230.2 (11)
C1—P1—C7—C12108.5 (6)Sn1—C19—C24—C23178.6 (5)
O1—P1—C7—C8164.4 (5)C30—C25—C26—C271.0 (10)
C13—P1—C7—C844.0 (6)Sn1—C25—C26—C27179.4 (5)
C1—P1—C7—C872.0 (6)C25—C26—C27—C280.1 (12)
C12—C7—C8—C92.6 (11)C26—C27—C28—C290.3 (13)
P1—C7—C8—C9177.9 (6)C27—C28—C29—C301.3 (12)
C7—C8—C9—C103.7 (13)C26—C25—C30—C292.1 (11)
C8—C9—C10—C113.1 (13)Sn1—C25—C30—C29179.6 (5)
C9—C10—C11—C121.4 (13)C28—C29—C30—C252.2 (11)
C8—C7—C12—C111.0 (10)C36—C31—C32—C331.2 (10)
P1—C7—C12—C11179.5 (5)Sn1—C31—C32—C33177.1 (5)
C10—C11—C12—C70.4 (11)C31—C32—C33—C340.7 (11)
O1—P1—C13—C1458.0 (6)C32—C33—C34—C350.3 (12)
C7—P1—C13—C1462.8 (6)C33—C34—C35—C360.5 (12)
C1—P1—C13—C14177.0 (5)C32—C31—C36—C351.3 (10)
O1—P1—C13—C18119.7 (6)Sn1—C31—C36—C35177.2 (5)
C7—P1—C13—C18119.5 (6)C34—C35—C36—C311.0 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl1i0.982.873.803 (6)159
C18—H18···Cl1i0.932.883.637 (7)139
Symmetry code: (i) x, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada.

References

First citationBauzá, A., Mooibroek, T. J. & Frontera, A. (2016). Chem. Rec. 16, 473–487.  Web of Science PubMed Google Scholar
First citationBruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavis, M. F., Levason, W., Ratnani, R., Reid, G., Rose, T. & Webster, M. (2007). Eur. J. Inorg. Chem. 2007, 306–313.  Web of Science CSD CrossRef Google Scholar
First citationJurkschat, K., Hesselbarth, F., Dargatz, M., Lehmann, J., Kleinpeter, E., Tzschach, A. & Meunier-Piret, J. (1990). J. Organomet. Chem. 388, 259–271.  CSD CrossRef CAS Web of Science Google Scholar
First citationKumar, V., Rodrigue, C. & Bryce, D. L. (2020). Cryst. Growth Des. 20, 2027–2034.  Web of Science CSD CrossRef CAS Google Scholar
First citationLo, K. M., Ibrahim, A. R., Chantrapromma, S., Fun, H.-K. & Ng, S. W. (2001). Main Group Met. Chem. 24, 301–302.  CAS Google Scholar
First citationLo, K. M. & Ng, S. W. (2004). Acta Cryst. E60, m717–m719.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScilabra, P., Kumar, V., Ursini, M. & Resnati, G. (2018). J. Mol. Model. 24, 37.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146