metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[[μ3-3-(2-carboxyl­atophen­yl)propionato][μ2-N,N′-(ethane-1,2-di­yl)bis­­(pyridine-4-carbox­amide)]copper(II)] monohydrate], a layered coordination polymer with (4,4) topology

crossmark logo

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 9 June 2023; accepted 3 August 2023; online 10 August 2023)

In the title compound, {[Cu(C10H8O4)(C14H14N4O2)]·H2O}n, the CuII cations are coordinated in a square-pyramidal fashion, with trans pyridyl-N donor atoms from two N-(2-(pyridin-3-yl­amino)­eth­yl)isonicotinamide (pein) ligands in the basal plane. The other three coordination sites are taken up by carboxyl­ate O-atom donors from three different 3-(2-carb­oxy­phen­yl)propionate (cpp) ligands. The central ethyl­enedi­amine segments of the pein ligands are disordered equally over two sets of positions. {Cu2O2} rhomboid clusters are connected into [Cu(cpp)(pein)]n (4,4) coordination polymer grids by the full span of the cpp and pein ligands. Individual layer motifs stack in an AAA pattern along the a axis by means of inter­layer hydrogen-bonding inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was isolated during an exploratory synthetic effort aiming to produce a copper coordination polymer containing both 3-(2-carb­oxy­phen­yl)propionate (cpp) and N-(2-(pyridin-3-yl­amino)­eth­yl)nicotinamide (pein) ligands. Our group has previously reported a chiral cobalt camphorate pein-containing coordination polymer that manifests a twofold parallel inter­penetrated looped layer topology (Przybyla et al., 2019[Przybyla, J. J., Ezenyilimba, F. C. & LaDuca, R. L. (2019). Inorg. Chim. Acta, 498, 119087.]).

The asymmetric unit of the title compound contains a divalent copper atom, a fully deprotonated cpp ligand, a pein ligand, and a water mol­ecule of crystallization. The central ethyl­enedi­amine segments of the pein ligands are disordered equally over two sets of positions. The copper atoms in the title compound display an [N2O3] square pyramidal coordination environment (Fig. 1[link]), with trans pyridyl-N donor atoms from two pein ligands in the basal plane. The other two trans basal-plane sites are taken up by a shorter-arm carboxyl­ate O-atom donor from a cpp ligand and a longer-arm carboxyl­ate O atom donor from another cpp ligand; the apical site shows an elongated bond to the copper atom and is filled by a longer-arm carboxyl­ate O-atom donor belonging to a third cpp ligand. The trigonality factor τ is 0.289 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), indicating a significant distortion from idealized square-pyramidal geometry. Relevant bond lengths and angles within the coordination environment in the title complex are listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.9754 (18) Cu1—N1 2.010 (2)
Cu1—O4i 2.4322 (19) Cu1—N4iii 2.033 (2)
Cu1—O4ii 2.0007 (18)    
       
O1—Cu1—O4ii 156.66 (8) O4ii—Cu1—N1 92.95 (8)
O1—Cu1—O4i 126.81 (7) O4ii—Cu1—N4iii 91.12 (8)
O1—Cu1—N1 91.16 (8) N1—Cu1—O4i 87.84 (8)
O1—Cu1—N4iii 86.83 (8) N1—Cu1—N4iii 173.98 (9)
O4ii—Cu1—O4i 76.33 (8) N4iii—Cu1—O4i 88.83 (8)
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [x, y-1, z]; (iii) [x+1, y, z-1].
[Figure 1]
Figure 1
Coordination environment in the title compound with full ligand set. Displacement ellipsoids are drawn at the 50% probability level. Only one of the disordered components in pein is shown. Color code: Cu, dark blue; O, red; N, light blue; C, black; H, pink. Symmetry codes are as listed in Table 1[link].

The cpp ligand in the title complex exhibits an exotridentate binding mode in which the longer carboxyl­ate arm bridges two CuII atoms while the shorter carboxyl­ate group acts as a monodentate donor to a single CuII atom. A single carboxyl­ate oxygen donor atom from the longer cpp terminus bridges two copper atoms, connecting to a basal site on one and an apical site on the other. Pairs of these inter­actions construct {Cu2O2} rhomboid dimeric units with a Cu⋯Cu distance of 3.50 (1) Å and inter­nal angles of 103.67 (7)° (Cu—O—Cu) and 76.33 (8)° (O—Cu—O). The full span of the cpp ligands connects the {Cu2O2} dimeric units into [Cu2(cpp)2]n coordination polymer chains that are oriented parallel to the b axis (Fig. 2[link]). The chains are pillared into [Cu(cpp)(pein)]n coordination polymer layers arranged parallel to (101) (Fig. 3[link]) by pairs of pein ligands that span a Cu⋯Cu distance of 17.64 (1) Å. The pairs of pein ligands inter­act via ππ stacking between their pyridyl rings (approximate distance between centroids: 3.6 Å).

[Figure 2]
Figure 2
[Cu2(cpp)2]n coordination polymer chain in the title compound, featuring [Cu2(O)2] rhomboid clusters.
[Figure 3]
Figure 3
[Cu(cpp)(pein)]n coordination polymer layer in the title compound, with [Cu2(cpp)2]n coordination polymer chains drawn in red.

Supra­molecular inter­actions are present in the crystal structure. Individual [Cu(cpp)(pein)]n coordination polymer layers stack in an AAA pattern along the a-axis direction (Blatov et al., 2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.]; Fig. 4[link]) by means of inter­layer hydrogen-bonding donation between pein N—H groups and bound shorter-arm cpp carboxyl­ate-O atoms. Isolated water mol­ecules of crystallization are located in small pockets in the inter­lamellar regions, held to the coordination polymer layers by hydrogen-bonding donation to pein C=O groups. Details regarding the hydrogen bonding in the title compound are listed in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1iv 0.88 2.12 2.959 (3) 160
N3B—H3BA⋯O1Wv 0.88 1.99 2.836 (5) 160
O1W—H1WA⋯O5 0.87 1.92 2.781 (3) 172
Symmetry codes: (iv) [-x+1, -y, -z+1]; (v) [-x+1, -y+1, -z+2].
[Figure 4]
Figure 4
AAA stacking of [Cu(cpp)(pein)]n coordination polymer layers along the aaxis. O atoms belonging to unligated water mol­ecules of crystallization are depicted as orange spheres.

Synthesis and crystallization

Cu(NO3)2·2.5 H2O (87 mg, 0.37 mmol), 3-(2-carb­oxy­phen­yl)propionic acid (cppH2, 73 mg, 0.37 mmol), N-(2-(pyridin-3-yl­amino)­eth­yl)isonicotinamide (pein, 100 mg, 0.37 mmol) and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml of distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 373 K for 48 h, and then cooled slowly to 273 K. Blue crystals of the title complex were obtained in 77% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Atoms C17, C18 and N3 in the pein ligand are disordered over two sites (labeled A and B), and were refined with site occupancies fixed to 1/2. This part was refined with free coordinates, with no restraints applied to the geometry or to displacement parameters.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C10H8O4)(C14H14N4O2)]·H2O
Mr 544.01
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 9.1138 (8), 9.4045 (8), 14.4758 (13)
α, β, γ (°) 97.300 (1), 94.045 (1), 114.149 (1)
V3) 1112.63 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.04
Crystal size (mm) 0.15 × 0.13 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.676, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18015, 4077, 3323
Rint 0.055
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 1.05
No. of reflections 4077
No. of parameters 355
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.30
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO, Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker X (Palmer, 2020[Palmer, D. (2020). Crystal Maker X. Crystal Maker Software, Begbroke, England.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO v1.61 (Bruker, 2009); cell refinement: SAINT v8.34a (Bruker, 2013); data reduction: SAINT v8.34a (Bruker, 2013); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: CrystalMaker X (Palmer, 2020); software used to prepare material for publication: Olex2 1.3-ac4 (Dolomanov et al., 2009).

Poly[[[µ3-3-(2-carboxylatophenyl)propionato][µ2-N,N'-(ethane-1,2-diyl)bis(pyridine-4-carboxamide)]copper(II)] monohydrate] top
Crystal data top
[Cu(C10H8O4)(C14H14N4O2)]·H2OZ = 2
Mr = 544.01F(000) = 562
Triclinic, P1Dx = 1.624 Mg m3
a = 9.1138 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4045 (8) ÅCell parameters from 6936 reflections
c = 14.4758 (13) Åθ = 2.4–25.3°
α = 97.300 (1)°µ = 1.04 mm1
β = 94.045 (1)°T = 173 K
γ = 114.149 (1)°Block, blue
V = 1112.63 (17) Å30.15 × 0.13 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3323 reflections with I > 2σ(I)
φ and ω scansRint = 0.055
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.4°, θmin = 1.4°
Tmin = 0.676, Tmax = 0.745h = 1010
18015 measured reflectionsk = 1111
4077 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.092H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.9143P]
where P = (Fo2 + 2Fc2)/3
4077 reflections(Δ/σ)max < 0.001
355 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.30 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.86606 (4)0.03522 (4)0.42367 (2)0.01990 (12)
O10.7782 (2)0.1460 (2)0.34432 (13)0.0228 (4)
O20.9787 (2)0.3862 (2)0.39173 (14)0.0293 (5)
O30.6356 (2)0.7371 (2)0.38655 (14)0.0266 (5)
O40.8764 (2)0.8502 (2)0.47353 (12)0.0184 (4)
O50.6664 (3)0.3509 (3)0.83105 (16)0.0496 (7)
O60.1264 (3)0.1854 (3)1.01159 (17)0.0508 (7)
N10.7650 (3)0.0919 (3)0.53328 (16)0.0192 (5)
N20.4476 (3)0.1163 (3)0.80295 (17)0.0337 (7)
H2A0.4021360.0299310.7602260.040*0.5
H2B0.3865290.0236820.7681210.040*0.5
N40.0154 (3)0.0023 (3)1.31488 (15)0.0192 (5)
C10.7449 (3)0.7266 (3)0.43646 (18)0.0179 (6)
C20.7338 (3)0.5698 (3)0.45840 (19)0.0209 (6)
H2C0.7069020.5616370.5231540.025*
H2D0.8418250.5687880.4569320.025*
C30.6088 (3)0.4244 (3)0.39172 (19)0.0234 (6)
H3A0.5975050.3282780.4174050.028*
H3B0.5022070.4294170.3885820.028*
C40.6538 (3)0.4107 (3)0.29341 (19)0.0212 (6)
C50.5820 (4)0.4578 (3)0.2218 (2)0.0283 (7)
H50.5015630.4945300.2347620.034*
C60.6262 (4)0.4517 (4)0.1325 (2)0.0329 (8)
H60.5744600.4822620.0845030.039*
C70.7452 (4)0.4016 (4)0.1125 (2)0.0345 (8)
H70.7778130.4006570.0516000.041*
C80.8165 (4)0.3526 (3)0.1821 (2)0.0284 (7)
H80.8978590.3174030.1686420.034*
C90.7700 (3)0.3546 (3)0.27152 (19)0.0214 (6)
C100.8508 (3)0.2954 (3)0.34283 (19)0.0213 (6)
C110.8071 (4)0.2444 (3)0.5709 (2)0.0241 (6)
H110.8796400.3250330.5415950.029*
C120.7493 (4)0.2880 (3)0.6497 (2)0.0258 (7)
H120.7824330.3967160.6741350.031*
C130.6430 (3)0.1733 (3)0.69311 (19)0.0229 (6)
C140.5999 (3)0.0165 (4)0.6550 (2)0.0257 (7)
H140.5280860.0660120.6833600.031*
C150.6620 (3)0.0186 (3)0.5757 (2)0.0246 (7)
H150.6299620.1266750.5499090.030*
C160.5861 (4)0.2215 (4)0.7822 (2)0.0294 (7)
C17A0.3515 (11)0.1133 (11)0.8843 (7)0.023 (2)0.5
H17A0.3547230.2194920.9037130.028*0.5
H17B0.2368190.0374670.8643590.028*0.5
C18A0.4206 (8)0.0660 (8)0.9653 (4)0.0310 (15)0.5
H18A0.4080050.0439970.9475550.037*0.5
H18B0.5379850.1356960.9811430.037*0.5
N3A0.3389 (7)0.0770 (6)1.0475 (4)0.0291 (12)0.5
H3AA0.3845940.1606581.0921180.035*0.5
C17B0.4120 (11)0.1782 (10)0.8929 (7)0.022 (2)0.5
H17C0.3720900.2600310.8856770.026*0.5
H17D0.5088490.2230660.9412540.026*0.5
C18B0.2807 (8)0.0313 (7)0.9173 (4)0.0205 (13)0.5
H18C0.1834170.0066680.8697000.025*0.5
H18D0.3193870.0530690.9153790.025*0.5
N3B0.2361 (7)0.0618 (6)1.0108 (3)0.0214 (11)0.5
H3BA0.2493140.1576521.0349900.026*0.5
C190.1776 (5)0.0527 (4)1.0571 (2)0.0455 (10)
C200.1198 (4)0.0256 (4)1.1499 (2)0.0271 (7)
C210.1590 (4)0.1213 (4)1.2039 (2)0.0307 (7)
H210.2328130.2148831.1852140.037*
C220.0903 (4)0.1301 (3)1.28488 (19)0.0238 (7)
H220.1188460.2314151.3212650.029*
C230.0487 (4)0.1394 (3)1.2646 (2)0.0239 (6)
H230.1197590.2313601.2860460.029*
C240.0158 (4)0.1577 (4)1.1828 (2)0.0270 (7)
H240.0110590.2605761.1491370.032*
O1W0.7821 (3)0.6433 (3)0.94803 (19)0.0512 (7)
H1WA0.7554330.5524140.9122630.077*
H1WB0.8867510.6808250.9627430.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0247 (2)0.0197 (2)0.01987 (19)0.01197 (16)0.00789 (14)0.00749 (14)
O10.0260 (11)0.0171 (10)0.0282 (11)0.0103 (9)0.0042 (9)0.0092 (8)
O20.0286 (12)0.0252 (12)0.0287 (12)0.0069 (10)0.0062 (10)0.0066 (9)
O30.0277 (12)0.0248 (11)0.0287 (11)0.0142 (10)0.0027 (9)0.0019 (9)
O40.0243 (11)0.0144 (10)0.0183 (10)0.0092 (9)0.0055 (8)0.0048 (8)
O50.0671 (18)0.0453 (16)0.0350 (14)0.0308 (14)0.0041 (13)0.0166 (12)
O60.0678 (18)0.0453 (16)0.0375 (14)0.0246 (14)0.0194 (13)0.0083 (12)
N10.0186 (12)0.0189 (12)0.0234 (12)0.0099 (10)0.0047 (10)0.0070 (10)
N20.0466 (18)0.0524 (18)0.0169 (13)0.0338 (16)0.0121 (12)0.0081 (12)
N40.0248 (13)0.0222 (13)0.0134 (11)0.0118 (11)0.0031 (10)0.0057 (10)
C10.0218 (15)0.0186 (15)0.0151 (13)0.0097 (13)0.0099 (12)0.0008 (11)
C20.0268 (16)0.0185 (15)0.0173 (14)0.0089 (13)0.0052 (12)0.0037 (11)
C30.0240 (16)0.0179 (15)0.0278 (16)0.0081 (13)0.0046 (13)0.0040 (12)
C40.0254 (16)0.0118 (14)0.0219 (15)0.0051 (12)0.0033 (12)0.0003 (11)
C50.0335 (18)0.0210 (16)0.0301 (17)0.0147 (14)0.0056 (14)0.0014 (13)
C60.048 (2)0.0299 (18)0.0230 (16)0.0217 (16)0.0094 (15)0.0008 (13)
C70.057 (2)0.0334 (19)0.0167 (15)0.0239 (17)0.0008 (15)0.0025 (13)
C80.0403 (19)0.0265 (17)0.0241 (16)0.0204 (15)0.0053 (14)0.0014 (13)
C90.0264 (16)0.0131 (14)0.0225 (15)0.0070 (12)0.0006 (12)0.0028 (11)
C100.0246 (16)0.0221 (16)0.0211 (15)0.0125 (13)0.0065 (12)0.0058 (12)
C110.0254 (16)0.0182 (15)0.0288 (16)0.0087 (13)0.0038 (13)0.0069 (12)
C120.0333 (18)0.0176 (15)0.0268 (16)0.0123 (14)0.0002 (13)0.0008 (12)
C130.0209 (15)0.0269 (16)0.0212 (15)0.0131 (13)0.0033 (12)0.0022 (12)
C140.0218 (16)0.0247 (16)0.0286 (16)0.0074 (13)0.0092 (13)0.0034 (13)
C150.0269 (17)0.0163 (15)0.0295 (16)0.0077 (13)0.0113 (13)0.0003 (12)
C160.041 (2)0.0350 (19)0.0181 (15)0.0245 (16)0.0038 (14)0.0023 (14)
C17A0.026 (6)0.025 (6)0.023 (4)0.012 (4)0.013 (5)0.008 (5)
C18A0.039 (4)0.037 (4)0.021 (3)0.016 (3)0.015 (3)0.011 (3)
N3A0.039 (4)0.026 (3)0.018 (3)0.008 (3)0.016 (3)0.003 (2)
C17B0.029 (6)0.019 (5)0.015 (4)0.006 (4)0.014 (4)0.005 (4)
C18B0.026 (4)0.021 (3)0.013 (3)0.009 (3)0.005 (3)0.001 (3)
N3B0.028 (3)0.018 (3)0.017 (3)0.009 (2)0.007 (2)0.002 (2)
C190.092 (3)0.031 (2)0.0285 (18)0.035 (2)0.0304 (19)0.0125 (16)
C200.0428 (19)0.0262 (17)0.0186 (15)0.0191 (15)0.0103 (14)0.0064 (13)
C210.042 (2)0.0238 (17)0.0277 (17)0.0118 (15)0.0160 (14)0.0089 (13)
C220.0327 (17)0.0210 (16)0.0183 (14)0.0113 (14)0.0082 (13)0.0031 (12)
C230.0295 (17)0.0205 (16)0.0232 (15)0.0106 (13)0.0080 (13)0.0068 (12)
C240.0387 (19)0.0215 (16)0.0211 (15)0.0141 (14)0.0043 (13)0.0003 (12)
O1W0.0749 (19)0.0262 (13)0.0500 (16)0.0187 (13)0.0156 (15)0.0033 (12)
Geometric parameters (Å, º) top
Cu1—O11.9754 (18)C9—C101.515 (4)
Cu1—O4i2.4322 (19)C11—H110.9500
Cu1—O4ii2.0007 (18)C11—C121.375 (4)
Cu1—N12.010 (2)C12—H120.9500
Cu1—N4iii2.033 (2)C12—C131.378 (4)
O1—C101.289 (3)C13—C141.386 (4)
O2—C101.227 (3)C13—C161.508 (4)
O3—C11.234 (3)C14—H140.9500
O4—C11.298 (3)C14—C151.377 (4)
O5—C161.223 (4)C15—H150.9500
O6—C191.217 (4)C17A—H17A0.9900
N1—C111.350 (3)C17A—H17B0.9900
N1—C151.336 (3)C17A—C18A1.493 (11)
N2—H2A0.8800C18A—H18A0.9900
N2—H2B0.8800C18A—H18B0.9900
N2—C161.331 (4)C18A—N3A1.462 (7)
N2—C17A1.512 (10)N3A—H3AA0.8800
N2—C17B1.470 (10)N3A—C191.507 (7)
N4—C221.343 (4)C17B—H17C0.9900
N4—C231.338 (4)C17B—H17D0.9900
C1—C21.512 (4)C17B—C18B1.515 (8)
C2—H2C0.9900C18B—H18C0.9900
C2—H2D0.9900C18B—H18D0.9900
C2—C31.528 (4)C18B—N3B1.467 (7)
C3—H3A0.9900N3B—H3BA0.8800
C3—H3B0.9900N3B—C191.288 (6)
C3—C41.513 (4)C19—C201.506 (4)
C4—C51.399 (4)C20—C211.389 (4)
C4—C91.400 (4)C20—C241.386 (4)
C5—H50.9500C21—H210.9500
C5—C61.382 (4)C21—C221.376 (4)
C6—H60.9500C22—H220.9500
C6—C71.382 (4)C23—H230.9500
C7—H70.9500C23—C241.381 (4)
C7—C81.386 (4)C24—H240.9500
C8—H80.9500O1W—H1WA0.8703
C8—C91.390 (4)O1W—H1WB0.8701
O1—Cu1—O4ii156.66 (8)C11—C12—C13119.8 (3)
O1—Cu1—O4i126.81 (7)C13—C12—H12120.1
O1—Cu1—N191.16 (8)C12—C13—C14117.7 (3)
O1—Cu1—N4iii86.83 (8)C12—C13—C16119.6 (3)
O4ii—Cu1—O4i76.33 (8)C14—C13—C16122.6 (3)
O4ii—Cu1—N192.95 (8)C13—C14—H14120.3
O4ii—Cu1—N4iii91.12 (8)C15—C14—C13119.5 (3)
N1—Cu1—O4i87.84 (8)C15—C14—H14120.3
N1—Cu1—N4iii173.98 (9)N1—C15—C14123.1 (3)
N4iii—Cu1—O4i88.83 (8)N1—C15—H15118.4
C10—O1—Cu1123.27 (18)C14—C15—H15118.4
Cu1iv—O4—Cu1i103.67 (7)O5—C16—N2123.6 (3)
C1—O4—Cu1i149.19 (17)O5—C16—C13120.2 (3)
C1—O4—Cu1iv107.15 (16)N2—C16—C13116.3 (3)
C11—N1—Cu1121.00 (18)N2—C17A—H17A109.6
C15—N1—Cu1121.71 (19)N2—C17A—H17B109.6
C15—N1—C11117.2 (2)H17A—C17A—H17B108.1
C16—N2—H2A113.1C18A—C17A—N2110.2 (7)
C16—N2—H2B125.2C18A—C17A—H17A109.6
C16—N2—C17A133.7 (4)C18A—C17A—H17B109.6
C16—N2—C17B109.7 (4)C17A—C18A—H18A109.5
C17A—N2—H2A113.1C17A—C18A—H18B109.5
C17B—N2—H2B125.2H18A—C18A—H18B108.0
C22—N4—Cu1v118.58 (18)N3A—C18A—C17A110.9 (6)
C23—N4—Cu1v123.67 (19)N3A—C18A—H18A109.5
C23—N4—C22117.4 (2)N3A—C18A—H18B109.5
O3—C1—O4121.8 (3)C18A—N3A—H3AA119.5
O3—C1—C2122.2 (3)C18A—N3A—C19121.1 (5)
O4—C1—C2116.0 (2)C19—N3A—H3AA119.5
C1—C2—H2C108.5N2—C17B—H17C111.4
C1—C2—H2D108.5N2—C17B—H17D111.4
C1—C2—C3114.9 (2)N2—C17B—C18B102.1 (5)
H2C—C2—H2D107.5H17C—C17B—H17D109.2
C3—C2—H2C108.5C18B—C17B—H17C111.4
C3—C2—H2D108.5C18B—C17B—H17D111.4
C2—C3—H3A109.0C17B—C18B—H18C109.2
C2—C3—H3B109.0C17B—C18B—H18D109.2
H3A—C3—H3B107.8H18C—C18B—H18D107.9
C4—C3—C2113.0 (2)N3B—C18B—C17B111.9 (6)
C4—C3—H3A109.0N3B—C18B—H18C109.2
C4—C3—H3B109.0N3B—C18B—H18D109.2
C5—C4—C3120.3 (3)C18B—N3B—H3BA120.3
C5—C4—C9118.0 (3)C19—N3B—C18B119.5 (4)
C9—C4—C3121.7 (2)C19—N3B—H3BA120.3
C4—C5—H5119.5O6—C19—N3A122.6 (3)
C6—C5—C4121.1 (3)O6—C19—N3B116.0 (4)
C6—C5—H5119.5O6—C19—C20120.3 (3)
C5—C6—H6119.8N3B—C19—C20119.9 (3)
C7—C6—C5120.5 (3)C20—C19—N3A113.0 (3)
C7—C6—H6119.8C21—C20—C19125.3 (3)
C6—C7—H7120.3C24—C20—C19117.3 (3)
C6—C7—C8119.4 (3)C24—C20—C21117.4 (3)
C8—C7—H7120.3C20—C21—H21120.3
C7—C8—H8119.7C22—C21—C20119.5 (3)
C7—C8—C9120.6 (3)C22—C21—H21120.3
C9—C8—H8119.7N4—C22—C21123.1 (3)
C4—C9—C10122.3 (2)N4—C22—H22118.4
C8—C9—C4120.5 (3)C21—C22—H22118.4
C8—C9—C10117.2 (3)N4—C23—H23118.6
O1—C10—C9114.9 (2)N4—C23—C24122.8 (3)
O2—C10—O1124.7 (3)C24—C23—H23118.6
O2—C10—C9120.3 (2)C20—C24—H24120.1
N1—C11—H11118.6C23—C24—C20119.8 (3)
N1—C11—C12122.8 (3)C23—C24—H24120.1
C12—C11—H11118.6H1WA—O1W—H1WB104.5
C11—C12—H12120.1
Cu1—O1—C10—O22.2 (4)C9—C4—C5—C61.0 (4)
Cu1—O1—C10—C9175.31 (17)C11—N1—C15—C140.7 (4)
Cu1iv—O4—C1—O35.1 (3)C11—C12—C13—C140.6 (4)
Cu1i—O4—C1—O3175.11 (19)C11—C12—C13—C16177.1 (3)
Cu1iv—O4—C1—C2175.05 (17)C12—C13—C14—C150.8 (4)
Cu1i—O4—C1—C24.7 (4)C12—C13—C16—O522.3 (4)
Cu1—N1—C11—C12175.4 (2)C12—C13—C16—N2158.0 (3)
Cu1—N1—C15—C14175.1 (2)C13—C14—C15—N10.9 (5)
Cu1v—N4—C22—C21170.4 (2)C14—C13—C16—O5154.0 (3)
Cu1v—N4—C23—C24170.2 (2)C14—C13—C16—N225.7 (4)
O3—C1—C2—C318.7 (4)C15—N1—C11—C120.4 (4)
O4—C1—C2—C3161.5 (2)C16—N2—C17A—C18A81.7 (8)
O6—C19—C20—C21174.4 (4)C16—N2—C17B—C18B165.6 (5)
O6—C19—C20—C243.9 (5)C16—C13—C14—C15177.2 (3)
N1—C11—C12—C130.4 (5)C17A—N2—C16—O51.9 (7)
N2—C17A—C18A—N3A174.7 (5)C17A—N2—C16—C13177.9 (6)
N2—C17B—C18B—N3B174.4 (5)C17A—C18A—N3A—C1981.0 (7)
N4—C23—C24—C200.0 (5)C18A—N3A—C19—O618.2 (8)
C1—C2—C3—C467.9 (3)C18A—N3A—C19—C20175.4 (5)
C2—C3—C4—C5100.4 (3)N3A—C19—C20—C2127.8 (5)
C2—C3—C4—C978.2 (3)N3A—C19—C20—C24153.9 (4)
C3—C4—C5—C6177.5 (3)C17B—N2—C16—O51.8 (6)
C3—C4—C9—C8175.9 (3)C17B—N2—C16—C13178.0 (5)
C3—C4—C9—C103.6 (4)C17B—C18B—N3B—C19153.6 (7)
C4—C5—C6—C71.3 (5)C18B—N3B—C19—O617.3 (8)
C4—C9—C10—O190.8 (3)C18B—N3B—C19—C20175.4 (4)
C4—C9—C10—O291.5 (3)N3B—C19—C20—C2117.2 (6)
C5—C4—C9—C82.6 (4)N3B—C19—C20—C24161.1 (4)
C5—C4—C9—C10177.8 (3)C19—C20—C21—C22176.2 (3)
C5—C6—C7—C82.0 (5)C19—C20—C24—C23176.1 (3)
C6—C7—C8—C90.4 (5)C20—C21—C22—N40.3 (5)
C7—C8—C9—C41.9 (4)C21—C20—C24—C232.3 (5)
C7—C8—C9—C10178.5 (3)C22—N4—C23—C242.5 (4)
C8—C9—C10—O189.6 (3)C23—N4—C22—C212.7 (4)
C8—C9—C10—O288.1 (3)C24—C20—C21—C222.2 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z1; (iv) x, y+1, z; (v) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1vi0.882.122.959 (3)160
N3B—H3BA···O1Wvii0.881.992.836 (5)160
O1W—H1WA···O50.871.922.781 (3)172
Symmetry codes: (vi) x+1, y, z+1; (vii) x+1, y+1, z+2.
 

Funding information

Funding for this work was provided by Lyman Briggs College of Michigan State University.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBlatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). COSMO, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPalmer, D. (2020). Crystal Maker X. Crystal Maker Software, Begbroke, England.  Google Scholar
First citationPrzybyla, J. J., Ezenyilimba, F. C. & LaDuca, R. L. (2019). Inorg. Chim. Acta, 498, 119087.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146