metal-organic compounds
Poly[[bis[μ4-3-(2-carboxylatophenyl)propionato]{N-[2-(pyridine-3-amido)ethyl]nicotinamide}dicopper(II)] pentahydrate]
aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu
In the title compound, {[Cu2(C10H8O4)2(C14H14N4O2)]·5H2O}n, the CuII cations are coordinated in a square-pyramidal fashion, with four 3-(2-carboxyphenyl)propionate (cpp) carboxylate O-atom donors in the basal plane, along with an N-atom donor from a N-[2-(pyridin-3-ylamino)ethyl]nicotinamide (pen) ligand in the apical position. [Cu2(cpp)2]n coordination polymer layer motifs with embedded {Cu2(OCO)4} paddlewheel clusters are thereby constructed. These layer motifs are connected into a three-dimensional [Cu2(cpp)2(pen)]n coordination by tethering pen ligands. Treating the {Cu2(OCO)4 paddelwheel clusters as 6-connected nodes reveals an underlying cross-pillared self-penetrated rob network with 48668 topology. The water molecules of crystallization are held to the coordination by N—H⋯O and O—H⋯O hydrogen-bonding patterns.
Keywords: crystal structure; copper(II); self-penetration; coordination polymer.
CCDC reference: 1979279
Structure description
The title compound was isolated during an exploratory synthetic effort aiming to produce a copper coordination polymer containing both 3-(2-carboxyphenyl)propionic (cpp) and N-(2-(pyridin-3-ylamino)ethyl)nicotinamide (pen) ligands. The pen ligand has to date seldom been used in coordination polymer chemistry (Wang et al., 2013). Our group has previously reported a racemic cobalt camphorate pen-containing coordination polymer with 41263 pcu topology (Przybyla et al., 2019)
The a), two water molecules of crystallization located on general positions, and one water molecule of crystallization best refined at half occupancy and disordered about a crystallographic twofold rotation axis (Wyckoff special position e). The copper atoms in the title compound display a {CuNO4} square-pyramidal coordination environment (Fig. 1), with a pyridyl nitrogen donor atom from a pen ligand located in the elongated apical position. Carboxylate oxygen atom donors from four different cpp ligands occupy the basal plane, with the two `longer-arm' ethyl-carboxylate group oxygen atoms in trans position to each other, and the two `shorter-arm' benzoate carboxylate group oxygen atoms in the other two positions, also trans to each other. Bond lengths and angles within the coordination environment in the title compound are listed in Table 1.
of the title compound contains a divalent copper atom, a fully deprotonated cpp ligand, half of a pen ligand whose central ethylene moiety is sited over a crystallographic inversion center (Wyckoff special positionThe cpp ligands in the title compound connect four copper atoms in an exotetradentate pattern in which each carboxylate oxygen atom binds only to one copper atom. Via four cpp carboxylate groups – two from the longer-arm cpp termini and two from the shorter-arm cpp termini – {Cu2(OCO)4} paddlewheel dimeric units are formed (Fig. 1). These have a through-space Cu⋯Cu internuclear distance of 2.620 (1) Å, and their centroids are located on crystallographic inversion centers (Wyckoff special position d). Each of these dimeric units connects to four others through the full span of the cpp ligands thereby forming [Cu2(cpp)2]n coordination polymer layers arranged parallel to the bc crystal planes (Fig. 2). Parallel [Cu2(cpp)2]n coordination polymer layers are pillared into a three-dimensional [Cu2(cpp)2(pen)]n coordination (Fig. 3) by anti-conformation ebn ligands that span a Cu⋯Cu distance of 14.87 (1) Å. The nearest internuclear distance between adjacent [Cu2(cpp)2]n layers is 12.08 (1) Å, which is too short to be spanned directly by the pen ligands given their conformational constraints. As a result, the three-dimensional [Cu2(cpp)2(pen)]n network is formed by cross-pillaring of the pen tethers, thereby precluding a much more common straight-pillared 41263 pcu topology. Treating each {Cu2(OCO)4} paddlewheel dimeric unit as a 6-connected node results in an uncommon self-penetrated, cross-pillared rob network with 48668 topology when analyzed using the TOPOS software (Blatov et al., 2014) (Fig. 4). Discrete D(3) short water molecule chains (Infantes & Motherwell, 2002) positioned along the c-axis crystal direction occupy incipient channels comprising 21.8% of the volume according to PLATON (Spek, 2020).
The co-crystallized water molecules are held to the coordination polymer framework by hydrogen-bonding acceptance from the pen N—H groups, and hydrogen-bonding donation to each other. Details regarding the hydrogen bonding in the title compound are listed in Table 2.
|
Synthesis and crystallization
Cu(NO3)2.2.5 H2O (87 mg, 0.37 mmol), 3-(2-carboxyphenyl)propionic acid (cppH2) (73 mg, 0.37 mmol), N-(2-(pyridin-3-ylamino)ethyl)nicotinamide (pen) (100 mg, 0.37 mmol) and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 373 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title complex were obtained in 43% yield.
Refinement
Crystal data, data collection and structure . The O3W position disordered across an inversion center was treated with a PART −1 command. Water H atom positions are refined, but suitably restrained with 0.84 (2) Å target values for O—H bonds, 1.36 (2) Å target values for H⋯H distances, and suitable DFIX commands for hydrogen-bonding H⋯O distances (with EQIV commands added as needed). The amine H-atom position was allowed to refine with an N—H distance restraint of 0.88 (2) Å.
details are summarized in Table 3
|
Structural data
CCDC reference: 1979279
https://doi.org/10.1107/S2414314623006223/zl4055sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623006223/zl4055Isup3.hkl
Data collection: COSMO V1.61 Bruker, 2009); cell
SAINT v8.34A (Bruker, 2014); data reduction: SAINT v8.34A (Bruker, 2014); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: CrystalMaker X (Palmer, 2020); software used to prepare material for publication: Olex2 1.3-ac4 (Dolomanov et al., 2009).[Cu2(C10H8O4)2(C14H14N4O2)]·5H2O | F(000) = 1800 |
Mr = 871.78 | Dx = 1.561 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 27.558 (10) Å | Cell parameters from 2345 reflections |
b = 14.873 (5) Å | θ = 2.6–24.4° |
c = 9.146 (3) Å | µ = 1.22 mm−1 |
β = 98.396 (4)° | T = 173 K |
V = 3709 (2) Å3 | Block, green |
Z = 4 | 0.28 × 0.16 × 0.11 mm |
Bruker APEXII CCD diffractometer | 2011 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.120 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 25.4°, θmin = 1.5° |
Tmin = 0.560, Tmax = 0.745 | h = −33→33 |
14392 measured reflections | k = −17→17 |
3393 independent reflections | l = −11→11 |
Refinement on F2 | 15 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.079 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.230 | w = 1/[σ2(Fo2) + (0.1316P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3393 reflections | Δρmax = 1.68 e Å−3 |
274 parameters | Δρmin = −0.61 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.28340 (3) | 0.31333 (5) | 0.51554 (10) | 0.0264 (3) | |
O1 | 0.4310 (2) | 0.6336 (4) | 0.8536 (6) | 0.0531 (16) | |
O2 | 0.2511 (2) | 0.3449 (3) | 0.3163 (6) | 0.0394 (14) | |
O3 | 0.19296 (19) | 0.2383 (3) | 0.2891 (5) | 0.0327 (13) | |
O4 | 0.23078 (19) | 0.6236 (3) | 0.1031 (6) | 0.0369 (13) | |
O5 | 0.17254 (18) | 0.7279 (3) | 0.0656 (6) | 0.0352 (13) | |
N1 | 0.3245 (2) | 0.4382 (4) | 0.5434 (7) | 0.0282 (14) | |
N2 | 0.4359 (3) | 0.4863 (5) | 0.9037 (8) | 0.0406 (17) | |
H2 | 0.435 (3) | 0.432 (3) | 0.868 (9) | 0.049* | |
C1 | 0.4759 (3) | 0.4959 (6) | 1.0262 (9) | 0.044 (2) | |
H1A | 0.476383 | 0.442866 | 1.091850 | 0.053* | |
H1B | 0.470134 | 0.549866 | 1.084528 | 0.053* | |
C2 | 0.4170 (3) | 0.5543 (5) | 0.8263 (9) | 0.037 (2) | |
C3 | 0.3778 (3) | 0.5378 (5) | 0.7005 (8) | 0.0319 (18) | |
C4 | 0.3592 (3) | 0.4538 (5) | 0.6571 (8) | 0.0281 (17) | |
H4 | 0.372276 | 0.403411 | 0.713309 | 0.034* | |
C5 | 0.3067 (2) | 0.5096 (4) | 0.4656 (7) | 0.0219 (15) | |
H5 | 0.281838 | 0.499813 | 0.383485 | 0.026* | |
C6 | 0.3218 (3) | 0.5968 (5) | 0.4963 (9) | 0.0368 (19) | |
H6 | 0.308207 | 0.645667 | 0.437001 | 0.044* | |
C7 | 0.3571 (3) | 0.6102 (5) | 0.6154 (9) | 0.039 (2) | |
H7 | 0.367833 | 0.669622 | 0.640970 | 0.047* | |
C8 | 0.2140 (3) | 0.3066 (5) | 0.2454 (8) | 0.0268 (16) | |
C9 | 0.1944 (3) | 0.3433 (4) | 0.0944 (8) | 0.0283 (17) | |
H9A | 0.160390 | 0.321624 | 0.065279 | 0.034* | |
H9B | 0.214539 | 0.320015 | 0.021644 | 0.034* | |
C10 | 0.1947 (3) | 0.4467 (4) | 0.0900 (8) | 0.0278 (17) | |
H10A | 0.227492 | 0.467709 | 0.135551 | 0.033* | |
H10B | 0.190022 | 0.465789 | −0.014842 | 0.033* | |
C11 | 0.1564 (3) | 0.4942 (5) | 0.1665 (7) | 0.0254 (16) | |
C12 | 0.1229 (3) | 0.4454 (5) | 0.2329 (8) | 0.0333 (18) | |
H12 | 0.125034 | 0.381659 | 0.232085 | 0.040* | |
C13 | 0.0869 (3) | 0.4842 (6) | 0.2995 (10) | 0.045 (2) | |
H13 | 0.065171 | 0.448100 | 0.346293 | 0.054* | |
C14 | 0.0824 (3) | 0.5796 (6) | 0.2977 (10) | 0.045 (2) | |
H14 | 0.056980 | 0.608167 | 0.340443 | 0.054* | |
C15 | 0.1155 (3) | 0.6296 (5) | 0.2330 (8) | 0.0349 (19) | |
H15 | 0.112726 | 0.693235 | 0.230924 | 0.042* | |
C16 | 0.1529 (3) | 0.5884 (5) | 0.1704 (8) | 0.0299 (17) | |
C17 | 0.1880 (3) | 0.6497 (5) | 0.1074 (8) | 0.0286 (17) | |
O1W | 0.4372 (5) | 0.2956 (5) | 0.8813 (11) | 0.120 (4) | |
H1WA | 0.449 (6) | 0.275 (9) | 0.807 (10) | 0.181* | |
H1WB | 0.445 (5) | 0.259 (4) | 0.951 (7) | 0.181* | |
O2W | 0.4262 (3) | 0.2494 (5) | 0.5930 (8) | 0.088 (3) | |
H2WA | 0.3977 (19) | 0.232 (7) | 0.557 (11) | 0.133* | |
H2WB | 0.438 (2) | 0.273 (6) | 0.522 (9) | 0.133* | |
O3W | 0.4849 (7) | 0.2581 (12) | 1.166 (2) | 0.111 (6) | 0.5 |
H3WA | 0.464 (4) | 0.281 (12) | 1.21 (2) | 0.167* | 0.5 |
H3WB | 0.501 (2) | 0.300 (9) | 1.134 (16) | 0.167* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0419 (6) | 0.0104 (5) | 0.0247 (5) | −0.0009 (4) | −0.0023 (4) | 0.0007 (4) |
O1 | 0.063 (4) | 0.049 (4) | 0.043 (4) | −0.012 (3) | −0.006 (3) | −0.012 (3) |
O2 | 0.052 (4) | 0.026 (3) | 0.036 (3) | −0.011 (3) | −0.011 (3) | 0.006 (2) |
O3 | 0.047 (3) | 0.020 (3) | 0.026 (3) | −0.005 (2) | −0.010 (2) | 0.003 (2) |
O4 | 0.040 (3) | 0.017 (3) | 0.055 (4) | −0.003 (2) | 0.011 (3) | 0.004 (2) |
O5 | 0.042 (3) | 0.022 (3) | 0.041 (3) | 0.001 (2) | 0.005 (3) | 0.008 (2) |
N1 | 0.045 (4) | 0.010 (3) | 0.029 (3) | −0.001 (3) | 0.005 (3) | 0.001 (3) |
N2 | 0.046 (4) | 0.036 (4) | 0.038 (4) | −0.004 (3) | 0.000 (3) | 0.003 (3) |
C1 | 0.043 (5) | 0.048 (6) | 0.039 (5) | −0.004 (4) | 0.000 (4) | 0.001 (4) |
C2 | 0.046 (5) | 0.034 (5) | 0.031 (5) | −0.013 (4) | 0.009 (4) | 0.001 (4) |
C3 | 0.039 (5) | 0.026 (4) | 0.029 (4) | −0.011 (3) | −0.001 (3) | 0.000 (3) |
C4 | 0.037 (4) | 0.024 (4) | 0.021 (4) | 0.002 (3) | −0.004 (3) | 0.007 (3) |
C5 | 0.025 (4) | 0.022 (4) | 0.020 (4) | −0.001 (3) | 0.006 (3) | 0.000 (3) |
C6 | 0.049 (5) | 0.019 (4) | 0.043 (5) | 0.000 (3) | 0.009 (4) | 0.006 (4) |
C7 | 0.054 (5) | 0.020 (4) | 0.043 (5) | −0.009 (4) | 0.006 (4) | −0.007 (4) |
C8 | 0.041 (4) | 0.015 (4) | 0.024 (4) | 0.001 (3) | 0.000 (3) | 0.001 (3) |
C9 | 0.053 (5) | 0.011 (3) | 0.019 (4) | −0.001 (3) | −0.003 (3) | −0.004 (3) |
C10 | 0.048 (5) | 0.012 (4) | 0.022 (4) | −0.002 (3) | 0.001 (3) | 0.000 (3) |
C11 | 0.036 (4) | 0.018 (4) | 0.020 (4) | −0.003 (3) | −0.004 (3) | 0.004 (3) |
C12 | 0.046 (5) | 0.024 (4) | 0.029 (4) | −0.002 (3) | 0.002 (4) | 0.006 (3) |
C13 | 0.051 (5) | 0.035 (5) | 0.048 (6) | −0.007 (4) | 0.007 (4) | 0.010 (4) |
C14 | 0.039 (5) | 0.050 (6) | 0.048 (5) | 0.004 (4) | 0.011 (4) | 0.001 (4) |
C15 | 0.047 (5) | 0.028 (4) | 0.029 (4) | 0.002 (4) | 0.003 (4) | −0.005 (3) |
C16 | 0.037 (4) | 0.024 (4) | 0.026 (4) | −0.002 (3) | −0.002 (3) | 0.009 (3) |
C17 | 0.041 (5) | 0.013 (4) | 0.028 (4) | −0.004 (3) | −0.004 (3) | −0.002 (3) |
O1W | 0.219 (12) | 0.049 (5) | 0.081 (7) | 0.003 (6) | −0.018 (8) | −0.001 (5) |
O2W | 0.125 (7) | 0.055 (5) | 0.079 (6) | −0.016 (5) | −0.009 (5) | 0.009 (4) |
O3W | 0.129 (17) | 0.087 (13) | 0.116 (16) | −0.012 (12) | 0.015 (13) | 0.014 (11) |
Cu1—Cu1i | 2.6201 (18) | C6—C7 | 1.365 (11) |
Cu1—O2 | 1.965 (5) | C7—H7 | 0.9500 |
Cu1—O3i | 1.967 (5) | C8—C9 | 1.510 (9) |
Cu1—O4ii | 1.991 (5) | C9—H9A | 0.9900 |
Cu1—O5iii | 1.975 (5) | C9—H9B | 0.9900 |
Cu1—N1 | 2.172 (6) | C9—C10 | 1.538 (9) |
O1—C2 | 1.255 (9) | C10—H10A | 0.9900 |
O2—C8 | 1.263 (9) | C10—H10B | 0.9900 |
O3—C8 | 1.263 (8) | C10—C11 | 1.522 (10) |
O4—C17 | 1.247 (8) | C11—C12 | 1.383 (10) |
O5—C17 | 1.278 (8) | C11—C16 | 1.405 (10) |
N1—C4 | 1.325 (9) | C12—H12 | 0.9500 |
N1—C5 | 1.332 (8) | C12—C13 | 1.366 (11) |
N2—H2 | 0.87 (2) | C13—H13 | 0.9500 |
N2—C1 | 1.460 (10) | C13—C14 | 1.424 (12) |
N2—C2 | 1.299 (10) | C14—H14 | 0.9500 |
C1—C1iv | 1.480 (16) | C14—C15 | 1.376 (11) |
C1—H1A | 0.9900 | C15—H15 | 0.9500 |
C1—H1B | 0.9900 | C15—C16 | 1.393 (10) |
C2—C3 | 1.479 (11) | C16—C17 | 1.505 (10) |
C3—C4 | 1.387 (10) | O1W—H1WA | 0.85 (2) |
C3—C7 | 1.400 (11) | O1W—H1WB | 0.85 (2) |
C4—H4 | 0.9500 | O2W—H2WA | 0.846 (18) |
C5—H5 | 0.9500 | O2W—H2WB | 0.85 (2) |
C5—C6 | 1.379 (10) | O3W—H3WA | 0.84 (2) |
C6—H6 | 0.9500 | O3W—H3WB | 0.84 (2) |
O2—Cu1—Cu1i | 81.66 (15) | C7—C6—C5 | 117.3 (7) |
O2—Cu1—O3i | 168.9 (2) | C7—C6—H6 | 121.3 |
O2—Cu1—O4ii | 90.1 (2) | C3—C7—H7 | 119.5 |
O2—Cu1—O5iii | 91.5 (2) | C6—C7—C3 | 121.1 (7) |
O2—Cu1—N1 | 93.6 (2) | C6—C7—H7 | 119.5 |
O3i—Cu1—Cu1i | 87.24 (15) | O2—C8—O3 | 125.1 (7) |
O3i—Cu1—O4ii | 89.0 (2) | O2—C8—C9 | 117.5 (6) |
O3i—Cu1—O5iii | 87.1 (2) | O3—C8—C9 | 117.4 (6) |
O3i—Cu1—N1 | 97.5 (2) | C8—C9—H9A | 109.1 |
O4ii—Cu1—Cu1i | 80.87 (16) | C8—C9—H9B | 109.1 |
O4ii—Cu1—N1 | 87.0 (2) | C8—C9—C10 | 112.6 (6) |
O5iii—Cu1—Cu1i | 87.57 (15) | H9A—C9—H9B | 107.8 |
O5iii—Cu1—O4ii | 168.0 (2) | C10—C9—H9A | 109.1 |
O5iii—Cu1—N1 | 104.8 (2) | C10—C9—H9B | 109.1 |
N1—Cu1—Cu1i | 166.94 (17) | C9—C10—H10A | 108.2 |
C8—O2—Cu1 | 126.3 (5) | C9—C10—H10B | 108.2 |
C8—O3—Cu1i | 119.7 (5) | H10A—C10—H10B | 107.3 |
C17—O4—Cu1v | 127.8 (5) | C11—C10—C9 | 116.5 (6) |
C17—O5—Cu1vi | 120.0 (5) | C11—C10—H10A | 108.2 |
C4—N1—Cu1 | 123.1 (5) | C11—C10—H10B | 108.2 |
C4—N1—C5 | 116.6 (6) | C12—C11—C10 | 120.6 (6) |
C5—N1—Cu1 | 118.2 (5) | C12—C11—C16 | 117.4 (7) |
C1—N2—H2 | 111 (6) | C16—C11—C10 | 121.9 (6) |
C2—N2—H2 | 122 (6) | C11—C12—H12 | 118.3 |
C2—N2—C1 | 122.7 (7) | C13—C12—C11 | 123.3 (7) |
N2—C1—C1iv | 111.9 (9) | C13—C12—H12 | 118.3 |
N2—C1—H1A | 109.2 | C12—C13—H13 | 120.6 |
N2—C1—H1B | 109.2 | C12—C13—C14 | 118.9 (8) |
C1iv—C1—H1A | 109.2 | C14—C13—H13 | 120.6 |
C1iv—C1—H1B | 109.2 | C13—C14—H14 | 120.6 |
H1A—C1—H1B | 107.9 | C15—C14—C13 | 118.8 (8) |
O1—C2—N2 | 122.4 (8) | C15—C14—H14 | 120.6 |
O1—C2—C3 | 118.7 (7) | C14—C15—H15 | 119.4 |
N2—C2—C3 | 119.0 (7) | C14—C15—C16 | 121.1 (8) |
C4—C3—C2 | 124.7 (7) | C16—C15—H15 | 119.4 |
C4—C3—C7 | 115.5 (7) | C11—C16—C17 | 123.0 (7) |
C7—C3—C2 | 119.8 (7) | C15—C16—C11 | 120.4 (7) |
N1—C4—C3 | 125.2 (7) | C15—C16—C17 | 116.6 (7) |
N1—C4—H4 | 117.4 | O4—C17—O5 | 123.4 (7) |
C3—C4—H4 | 117.4 | O4—C17—C16 | 119.1 (6) |
N1—C5—H5 | 117.9 | O5—C17—C16 | 117.4 (7) |
N1—C5—C6 | 124.3 (7) | H1WA—O1W—H1WB | 107 (3) |
C6—C5—H5 | 117.9 | H2WA—O2W—H2WB | 106 (3) |
C5—C6—H6 | 121.3 | H3WA—O3W—H3WB | 108 (4) |
Cu1—O2—C8—O3 | −3.5 (11) | C4—C3—C7—C6 | −1.4 (12) |
Cu1—O2—C8—C9 | 178.6 (5) | C5—N1—C4—C3 | 0.2 (11) |
Cu1i—O3—C8—O2 | 2.1 (10) | C5—C6—C7—C3 | 1.4 (12) |
Cu1i—O3—C8—C9 | 179.9 (5) | C7—C3—C4—N1 | 0.6 (11) |
Cu1v—O4—C17—O5 | −6.6 (11) | C8—C9—C10—C11 | −72.9 (8) |
Cu1v—O4—C17—C16 | 175.9 (5) | C9—C10—C11—C12 | −1.4 (10) |
Cu1vi—O5—C17—O4 | 1.6 (10) | C9—C10—C11—C16 | 179.9 (6) |
Cu1vi—O5—C17—C16 | 179.1 (5) | C10—C11—C12—C13 | −178.1 (7) |
Cu1—N1—C4—C3 | −163.0 (6) | C10—C11—C16—C15 | 175.8 (7) |
Cu1—N1—C5—C6 | 163.9 (6) | C10—C11—C16—C17 | −3.5 (11) |
O1—C2—C3—C4 | 179.3 (8) | C11—C12—C13—C14 | 1.8 (13) |
O1—C2—C3—C7 | −0.3 (12) | C11—C16—C17—O4 | −28.2 (11) |
O2—C8—C9—C10 | −40.7 (10) | C11—C16—C17—O5 | 154.2 (7) |
O3—C8—C9—C10 | 141.3 (7) | C12—C11—C16—C15 | −3.0 (11) |
N1—C5—C6—C7 | −0.7 (11) | C12—C11—C16—C17 | 177.7 (7) |
N2—C2—C3—C4 | −0.1 (12) | C12—C13—C14—C15 | −2.0 (13) |
N2—C2—C3—C7 | −179.7 (7) | C13—C14—C15—C16 | −0.2 (12) |
C1—N2—C2—O1 | −1.8 (13) | C14—C15—C16—C11 | 2.7 (12) |
C1—N2—C2—C3 | 177.7 (7) | C14—C15—C16—C17 | −177.9 (7) |
C2—N2—C1—C1iv | −80.0 (12) | C15—C16—C17—O4 | 152.4 (7) |
C2—C3—C4—N1 | −179.0 (7) | C15—C16—C17—O5 | −25.2 (10) |
C2—C3—C7—C6 | 178.3 (7) | C16—C11—C12—C13 | 0.7 (11) |
C4—N1—C5—C6 | −0.1 (10) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) x, −y+1, z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z+2; (v) x, −y+1, z−1/2; (vi) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1W | 0.87 (2) | 2.03 (4) | 2.844 (10) | 155 (8) |
C5—H5···O2 | 0.95 | 2.50 | 3.099 (9) | 121 |
C6—H6···O3vi | 0.95 | 2.48 | 3.332 (9) | 149 |
O1W—H1WA···O2W | 0.85 (2) | 2.00 (11) | 2.698 (13) | 139 (15) |
O1W—H1WB···O3W | 0.85 (2) | 2.10 (2) | 2.79 (2) | 139 (5) |
O2W—H2WA···O5iii | 0.85 (2) | 2.09 (2) | 2.909 (10) | 162 (7) |
O2W—H2WB···O1v | 0.85 (2) | 2.06 (2) | 2.816 (9) | 147 (5) |
O3W—H3WA···O1ii | 0.84 (2) | 2.10 (2) | 2.917 (19) | 162 (9) |
O3W—H3WB···O1iv | 0.84 (2) | 2.10 (2) | 2.848 (19) | 147 (6) |
Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z+2; (v) x, −y+1, z−1/2; (vi) −x+1/2, y+1/2, −z+1/2. |
Funding information
Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.
References
Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586. Web of Science CrossRef CAS Google Scholar
Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SAINT.. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Palmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England. Google Scholar
Przybyla, J. J., Ezenyilimba, F. C. & LaDuca, R. L. (2019). Inorg. Chim. Acta, 498, 119087. CrossRef Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Wang, X., Luan, J., Lin, H., Lu, Q., Xu, C. & Liu, G. (2013). Dalton Trans. 42, 8375–8366. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.