metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[bis­­[μ4-3-(2-carboxyl­atophen­yl)propionato]{N-[2-(pyridine-3-amido)­eth­yl]nicotinamide}­dicopper(II)] penta­hydrate]

crossmark logo

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by M. Zeller, Purdue University, USA (Received 7 June 2023; accepted 15 July 2023; online 22 July 2023)

In the title compound, {[Cu2(C10H8O4)2(C14H14N4O2)]·5H2O}n, the CuII cations are coordinated in a square-pyramidal fashion, with four 3-(2-carb­oxy­phen­yl)propionate (cpp) carboxyl­ate O-atom donors in the basal plane, along with an N-atom donor from a N-[2-(pyridin-3-yl­amino)­eth­yl]nicotinamide (pen) ligand in the apical position. [Cu2(cpp)2]n coordination polymer layer motifs with embedded {Cu2(OCO)4} paddlewheel clusters are thereby constructed. These layer motifs are connected into a three-dimensional [Cu2(cpp)2(pen)]n coordination polymer network by tethering pen ligands. Treating the {Cu2(OCO)4 paddelwheel clusters as 6-connected nodes reveals an underlying cross-pillared self-penetrated rob network with 48668 topology. The water mol­ecules of crystallization are held to the coordination polymer network by N—H⋯O and O—H⋯O hydrogen-bonding patterns.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was isolated during an exploratory synthetic effort aiming to produce a copper coordination polymer containing both 3-(2-carb­oxy­phen­yl)propionic (cpp) and N-(2-(pyridin-3-yl­amino)­eth­yl)nicotinamide (pen) ligands. The pen ligand has to date seldom been used in coordination polymer chemistry (Wang et al., 2013[Wang, X., Luan, J., Lin, H., Lu, Q., Xu, C. & Liu, G. (2013). Dalton Trans. 42, 8375-8366.]). Our group has previously reported a racemic cobalt camphorate pen-containing coordination polymer with 41263 pcu topology (Przybyla et al., 2019[Przybyla, J. J., Ezenyilimba, F. C. & LaDuca, R. L. (2019). Inorg. Chim. Acta, 498, 119087.])

The asymmetric unit of the title compound contains a divalent copper atom, a fully deprotonated cpp ligand, half of a pen ligand whose central ethyl­ene moiety is sited over a crystallographic inversion center (Wyckoff special position a), two water mol­ecules of crystallization located on general positions, and one water mol­ecule of crystallization best refined at half occupancy and disordered about a crystallographic twofold rotation axis (Wyckoff special position e). The copper atoms in the title compound display a {CuNO4} square-pyramidal coordination environment (Fig. 1[link]), with a pyridyl nitro­gen donor atom from a pen ligand located in the elongated apical position. Carboxyl­ate oxygen atom donors from four different cpp ligands occupy the basal plane, with the two `longer-arm' ethyl-carboxyl­ate group oxygen atoms in trans position to each other, and the two `shorter-arm' benzoate carboxyl­ate group oxygen atoms in the other two positions, also trans to each other. Bond lengths and angles within the coordination environment in the title compound are listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Cu1—O2 1.965 (5) Cu1—O5iii 1.975 (5)
Cu1—O3i 1.967 (5) Cu1—N1 2.172 (6)
Cu1—O4ii 1.991 (5)    
       
O2—Cu1—O3i 168.9 (2) O3i—Cu1—O5iii 87.1 (2)
O2—Cu1—O4ii 90.1 (2) O3i—Cu1—N1 97.5 (2)
O2—Cu1—O5iii 91.5 (2) O4ii—Cu1—N1 87.0 (2)
O2—Cu1—N1 93.6 (2) O5iii—Cu1—O4ii 168.0 (2)
O3i—Cu1—O4ii 89.0 (2) O5iii—Cu1—N1 104.8 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Coordination environment in the title compound with full ligand set and complete {Cu2(OCO)4} paddlewheel cluster. Water mol­ecules of crystallization are shown. Displacement ellipsoids are drawn at the 50% probability level. Color code: Cu, dark blue; O in ligands, red; O in water mol­ecules of crystallization, orange; N, light blue; C, black; H, pink. Symmetry codes are as listed in Table 1[link].

The cpp ligands in the title compound connect four copper atoms in an exo­tetra­dentate pattern in which each carboxyl­ate oxygen atom binds only to one copper atom. Via four cpp carboxyl­ate groups – two from the longer-arm cpp termini and two from the shorter-arm cpp termini – {Cu2(OCO)4} paddlewheel dimeric units are formed (Fig. 1[link]). These have a through-space Cu⋯Cu inter­nuclear distance of 2.620 (1) Å, and their centroids are located on crystallographic inversion centers (Wyckoff special position d). Each of these dimeric units connects to four others through the full span of the cpp ligands thereby forming [Cu2(cpp)2]n coordination polymer layers arranged parallel to the bc crystal planes (Fig. 2[link]). Parallel [Cu2(cpp)2]n coordination polymer layers are pillared into a three-dimensional [Cu2(cpp)2(pen)]n coordination polymer network (Fig. 3[link]) by anti-conformation ebn ligands that span a Cu⋯Cu distance of 14.87 (1) Å. The nearest inter­nuclear distance between adjacent [Cu2(cpp)2]n layers is 12.08 (1) Å, which is too short to be spanned directly by the pen ligands given their conformational constraints. As a result, the three-dimensional [Cu2(cpp)2(pen)]n network is formed by cross-pillaring of the pen tethers, thereby precluding a much more common straight-pillared 41263 pcu topology. Treating each {Cu2(OCO)4} paddlewheel dimeric unit as a 6-connected node results in an uncommon self-penetrated, cross-pillared rob network with 48668 topology when analyzed using the TOPOS software (Blatov et al., 2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.]) (Fig. 4[link]). Discrete D(3) short water mol­ecule chains (Infantes & Motherwell, 2002[Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454-461.]) positioned along the c-axis crystal direction occupy incipient channels comprising 21.8% of the unit cell volume according to PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

[Figure 2]
Figure 2
[Cu2(cpp)2]n coordination polymer layer in the title compound, featuring {Cu2(OCO)4} paddlewheel clusters. Water mol­ecules of crystallization have been omitted.
[Figure 3]
Figure 3
[Cu2(cpp)2(pen)]n coordination polymer network in the title compound, with [Cu2(cpp)2]n layers drawn in red
[Figure 4]
Figure 4
Schematic perspective of the 48668 rob cross-pillared self-penetrated topology in the title compound. The spheres represent the centroids of the 6-connected {Cu2(OCO)4} paddlewheel clusters. The [Cu2(cpp)2]n layers are drawn in red, with the cross-pillaring pen ligands drawn in blue.

The co-crystallized water mol­ecules are held to the coordination polymer framework by hydrogen-bonding acceptance from the pen N—H groups, and hydrogen-bonding donation to each other. Details regarding the hydrogen bonding in the title compound are listed in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1W 0.87 (2) 2.03 (4) 2.844 (10) 155 (8)
C5—H5⋯O2 0.95 2.50 3.099 (9) 121
C6—H6⋯O3iv 0.95 2.48 3.332 (9) 149
O1W—H1WA⋯O2W 0.85 (2) 2.00 (11) 2.698 (13) 139 (15)
O1W—H1WB⋯O3W 0.85 (2) 2.10 (2) 2.79 (2) 139 (5)
O2W—H2WA⋯O5iii 0.85 (2) 2.09 (2) 2.909 (10) 162 (7)
O2W—H2WB⋯O1v 0.85 (2) 2.06 (2) 2.816 (9) 147 (5)
O3W—H3WA⋯O1ii 0.84 (2) 2.10 (2) 2.917 (19) 162 (9)
O3W—H3WB⋯O1vi 0.84 (2) 2.10 (2) 2.848 (19) 147 (6)
Symmetry codes: (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+1, z-{\script{1\over 2}}]; (vi) [-x+1, -y+1, -z+2].

Synthesis and crystallization

Cu(NO3)2.2.5 H2O (87 mg, 0.37 mmol), 3-(2-carb­oxy­phen­yl)propionic acid (cppH2) (73 mg, 0.37 mmol), N-(2-(pyridin-3-yl­amino)­eth­yl)nicotinamide (pen) (100 mg, 0.37 mmol) and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 373 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title complex were obtained in 43% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The O3W position disordered across an inversion center was treated with a PART −1 command. Water H atom positions are refined, but suitably restrained with 0.84 (2) Å target values for O—H bonds, 1.36 (2) Å target values for H⋯H distances, and suitable DFIX commands for hydrogen-bonding H⋯O distances (with EQIV commands added as needed). The amine H-atom position was allowed to refine with an N—H distance restraint of 0.88 (2) Å.

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C10H8O4)2(C14H14N4O2)]·5H2O
Mr 871.78
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 27.558 (10), 14.873 (5), 9.146 (3)
β (°) 98.396 (4)
V3) 3709 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.22
Crystal size (mm) 0.28 × 0.16 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.560, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 14392, 3393, 2011
Rint 0.120
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.230, 1.02
No. of reflections 3393
No. of parameters 274
No. of restraints 15
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.68, −0.61
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT.. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), CrystalMaker X (Palmer, 2020[Palmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO V1.61 Bruker, 2009); cell refinement: SAINT v8.34A (Bruker, 2014); data reduction: SAINT v8.34A (Bruker, 2014); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: CrystalMaker X (Palmer, 2020); software used to prepare material for publication: Olex2 1.3-ac4 (Dolomanov et al., 2009).

Poly[[bis[µ4-3-(2-carboxylatophenyl)propionato]{N-[2-(pyridine-3-amido)ethyl]nicotinamide}dicopper(II)] pentahydrate] top
Crystal data top
[Cu2(C10H8O4)2(C14H14N4O2)]·5H2OF(000) = 1800
Mr = 871.78Dx = 1.561 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.558 (10) ÅCell parameters from 2345 reflections
b = 14.873 (5) Åθ = 2.6–24.4°
c = 9.146 (3) ŵ = 1.22 mm1
β = 98.396 (4)°T = 173 K
V = 3709 (2) Å3Block, green
Z = 40.28 × 0.16 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2011 reflections with I > 2σ(I)
φ and ω scansRint = 0.120
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.4°, θmin = 1.5°
Tmin = 0.560, Tmax = 0.745h = 3333
14392 measured reflectionsk = 1717
3393 independent reflectionsl = 1111
Refinement top
Refinement on F215 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.079H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.230 w = 1/[σ2(Fo2) + (0.1316P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3393 reflectionsΔρmax = 1.68 e Å3
274 parametersΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.28340 (3)0.31333 (5)0.51554 (10)0.0264 (3)
O10.4310 (2)0.6336 (4)0.8536 (6)0.0531 (16)
O20.2511 (2)0.3449 (3)0.3163 (6)0.0394 (14)
O30.19296 (19)0.2383 (3)0.2891 (5)0.0327 (13)
O40.23078 (19)0.6236 (3)0.1031 (6)0.0369 (13)
O50.17254 (18)0.7279 (3)0.0656 (6)0.0352 (13)
N10.3245 (2)0.4382 (4)0.5434 (7)0.0282 (14)
N20.4359 (3)0.4863 (5)0.9037 (8)0.0406 (17)
H20.435 (3)0.432 (3)0.868 (9)0.049*
C10.4759 (3)0.4959 (6)1.0262 (9)0.044 (2)
H1A0.4763830.4428661.0918500.053*
H1B0.4701340.5498661.0845280.053*
C20.4170 (3)0.5543 (5)0.8263 (9)0.037 (2)
C30.3778 (3)0.5378 (5)0.7005 (8)0.0319 (18)
C40.3592 (3)0.4538 (5)0.6571 (8)0.0281 (17)
H40.3722760.4034110.7133090.034*
C50.3067 (2)0.5096 (4)0.4656 (7)0.0219 (15)
H50.2818380.4998130.3834850.026*
C60.3218 (3)0.5968 (5)0.4963 (9)0.0368 (19)
H60.3082070.6456670.4370010.044*
C70.3571 (3)0.6102 (5)0.6154 (9)0.039 (2)
H70.3678330.6696220.6409700.047*
C80.2140 (3)0.3066 (5)0.2454 (8)0.0268 (16)
C90.1944 (3)0.3433 (4)0.0944 (8)0.0283 (17)
H9A0.1603900.3216240.0652790.034*
H9B0.2145390.3200150.0216440.034*
C100.1947 (3)0.4467 (4)0.0900 (8)0.0278 (17)
H10A0.2274920.4677090.1355510.033*
H10B0.1900220.4657890.0148420.033*
C110.1564 (3)0.4942 (5)0.1665 (7)0.0254 (16)
C120.1229 (3)0.4454 (5)0.2329 (8)0.0333 (18)
H120.1250340.3816590.2320850.040*
C130.0869 (3)0.4842 (6)0.2995 (10)0.045 (2)
H130.0651710.4481000.3462930.054*
C140.0824 (3)0.5796 (6)0.2977 (10)0.045 (2)
H140.0569800.6081670.3404430.054*
C150.1155 (3)0.6296 (5)0.2330 (8)0.0349 (19)
H150.1127260.6932350.2309240.042*
C160.1529 (3)0.5884 (5)0.1704 (8)0.0299 (17)
C170.1880 (3)0.6497 (5)0.1074 (8)0.0286 (17)
O1W0.4372 (5)0.2956 (5)0.8813 (11)0.120 (4)
H1WA0.449 (6)0.275 (9)0.807 (10)0.181*
H1WB0.445 (5)0.259 (4)0.951 (7)0.181*
O2W0.4262 (3)0.2494 (5)0.5930 (8)0.088 (3)
H2WA0.3977 (19)0.232 (7)0.557 (11)0.133*
H2WB0.438 (2)0.273 (6)0.522 (9)0.133*
O3W0.4849 (7)0.2581 (12)1.166 (2)0.111 (6)0.5
H3WA0.464 (4)0.281 (12)1.21 (2)0.167*0.5
H3WB0.501 (2)0.300 (9)1.134 (16)0.167*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0419 (6)0.0104 (5)0.0247 (5)0.0009 (4)0.0023 (4)0.0007 (4)
O10.063 (4)0.049 (4)0.043 (4)0.012 (3)0.006 (3)0.012 (3)
O20.052 (4)0.026 (3)0.036 (3)0.011 (3)0.011 (3)0.006 (2)
O30.047 (3)0.020 (3)0.026 (3)0.005 (2)0.010 (2)0.003 (2)
O40.040 (3)0.017 (3)0.055 (4)0.003 (2)0.011 (3)0.004 (2)
O50.042 (3)0.022 (3)0.041 (3)0.001 (2)0.005 (3)0.008 (2)
N10.045 (4)0.010 (3)0.029 (3)0.001 (3)0.005 (3)0.001 (3)
N20.046 (4)0.036 (4)0.038 (4)0.004 (3)0.000 (3)0.003 (3)
C10.043 (5)0.048 (6)0.039 (5)0.004 (4)0.000 (4)0.001 (4)
C20.046 (5)0.034 (5)0.031 (5)0.013 (4)0.009 (4)0.001 (4)
C30.039 (5)0.026 (4)0.029 (4)0.011 (3)0.001 (3)0.000 (3)
C40.037 (4)0.024 (4)0.021 (4)0.002 (3)0.004 (3)0.007 (3)
C50.025 (4)0.022 (4)0.020 (4)0.001 (3)0.006 (3)0.000 (3)
C60.049 (5)0.019 (4)0.043 (5)0.000 (3)0.009 (4)0.006 (4)
C70.054 (5)0.020 (4)0.043 (5)0.009 (4)0.006 (4)0.007 (4)
C80.041 (4)0.015 (4)0.024 (4)0.001 (3)0.000 (3)0.001 (3)
C90.053 (5)0.011 (3)0.019 (4)0.001 (3)0.003 (3)0.004 (3)
C100.048 (5)0.012 (4)0.022 (4)0.002 (3)0.001 (3)0.000 (3)
C110.036 (4)0.018 (4)0.020 (4)0.003 (3)0.004 (3)0.004 (3)
C120.046 (5)0.024 (4)0.029 (4)0.002 (3)0.002 (4)0.006 (3)
C130.051 (5)0.035 (5)0.048 (6)0.007 (4)0.007 (4)0.010 (4)
C140.039 (5)0.050 (6)0.048 (5)0.004 (4)0.011 (4)0.001 (4)
C150.047 (5)0.028 (4)0.029 (4)0.002 (4)0.003 (4)0.005 (3)
C160.037 (4)0.024 (4)0.026 (4)0.002 (3)0.002 (3)0.009 (3)
C170.041 (5)0.013 (4)0.028 (4)0.004 (3)0.004 (3)0.002 (3)
O1W0.219 (12)0.049 (5)0.081 (7)0.003 (6)0.018 (8)0.001 (5)
O2W0.125 (7)0.055 (5)0.079 (6)0.016 (5)0.009 (5)0.009 (4)
O3W0.129 (17)0.087 (13)0.116 (16)0.012 (12)0.015 (13)0.014 (11)
Geometric parameters (Å, º) top
Cu1—Cu1i2.6201 (18)C6—C71.365 (11)
Cu1—O21.965 (5)C7—H70.9500
Cu1—O3i1.967 (5)C8—C91.510 (9)
Cu1—O4ii1.991 (5)C9—H9A0.9900
Cu1—O5iii1.975 (5)C9—H9B0.9900
Cu1—N12.172 (6)C9—C101.538 (9)
O1—C21.255 (9)C10—H10A0.9900
O2—C81.263 (9)C10—H10B0.9900
O3—C81.263 (8)C10—C111.522 (10)
O4—C171.247 (8)C11—C121.383 (10)
O5—C171.278 (8)C11—C161.405 (10)
N1—C41.325 (9)C12—H120.9500
N1—C51.332 (8)C12—C131.366 (11)
N2—H20.87 (2)C13—H130.9500
N2—C11.460 (10)C13—C141.424 (12)
N2—C21.299 (10)C14—H140.9500
C1—C1iv1.480 (16)C14—C151.376 (11)
C1—H1A0.9900C15—H150.9500
C1—H1B0.9900C15—C161.393 (10)
C2—C31.479 (11)C16—C171.505 (10)
C3—C41.387 (10)O1W—H1WA0.85 (2)
C3—C71.400 (11)O1W—H1WB0.85 (2)
C4—H40.9500O2W—H2WA0.846 (18)
C5—H50.9500O2W—H2WB0.85 (2)
C5—C61.379 (10)O3W—H3WA0.84 (2)
C6—H60.9500O3W—H3WB0.84 (2)
O2—Cu1—Cu1i81.66 (15)C7—C6—C5117.3 (7)
O2—Cu1—O3i168.9 (2)C7—C6—H6121.3
O2—Cu1—O4ii90.1 (2)C3—C7—H7119.5
O2—Cu1—O5iii91.5 (2)C6—C7—C3121.1 (7)
O2—Cu1—N193.6 (2)C6—C7—H7119.5
O3i—Cu1—Cu1i87.24 (15)O2—C8—O3125.1 (7)
O3i—Cu1—O4ii89.0 (2)O2—C8—C9117.5 (6)
O3i—Cu1—O5iii87.1 (2)O3—C8—C9117.4 (6)
O3i—Cu1—N197.5 (2)C8—C9—H9A109.1
O4ii—Cu1—Cu1i80.87 (16)C8—C9—H9B109.1
O4ii—Cu1—N187.0 (2)C8—C9—C10112.6 (6)
O5iii—Cu1—Cu1i87.57 (15)H9A—C9—H9B107.8
O5iii—Cu1—O4ii168.0 (2)C10—C9—H9A109.1
O5iii—Cu1—N1104.8 (2)C10—C9—H9B109.1
N1—Cu1—Cu1i166.94 (17)C9—C10—H10A108.2
C8—O2—Cu1126.3 (5)C9—C10—H10B108.2
C8—O3—Cu1i119.7 (5)H10A—C10—H10B107.3
C17—O4—Cu1v127.8 (5)C11—C10—C9116.5 (6)
C17—O5—Cu1vi120.0 (5)C11—C10—H10A108.2
C4—N1—Cu1123.1 (5)C11—C10—H10B108.2
C4—N1—C5116.6 (6)C12—C11—C10120.6 (6)
C5—N1—Cu1118.2 (5)C12—C11—C16117.4 (7)
C1—N2—H2111 (6)C16—C11—C10121.9 (6)
C2—N2—H2122 (6)C11—C12—H12118.3
C2—N2—C1122.7 (7)C13—C12—C11123.3 (7)
N2—C1—C1iv111.9 (9)C13—C12—H12118.3
N2—C1—H1A109.2C12—C13—H13120.6
N2—C1—H1B109.2C12—C13—C14118.9 (8)
C1iv—C1—H1A109.2C14—C13—H13120.6
C1iv—C1—H1B109.2C13—C14—H14120.6
H1A—C1—H1B107.9C15—C14—C13118.8 (8)
O1—C2—N2122.4 (8)C15—C14—H14120.6
O1—C2—C3118.7 (7)C14—C15—H15119.4
N2—C2—C3119.0 (7)C14—C15—C16121.1 (8)
C4—C3—C2124.7 (7)C16—C15—H15119.4
C4—C3—C7115.5 (7)C11—C16—C17123.0 (7)
C7—C3—C2119.8 (7)C15—C16—C11120.4 (7)
N1—C4—C3125.2 (7)C15—C16—C17116.6 (7)
N1—C4—H4117.4O4—C17—O5123.4 (7)
C3—C4—H4117.4O4—C17—C16119.1 (6)
N1—C5—H5117.9O5—C17—C16117.4 (7)
N1—C5—C6124.3 (7)H1WA—O1W—H1WB107 (3)
C6—C5—H5117.9H2WA—O2W—H2WB106 (3)
C5—C6—H6121.3H3WA—O3W—H3WB108 (4)
Cu1—O2—C8—O33.5 (11)C4—C3—C7—C61.4 (12)
Cu1—O2—C8—C9178.6 (5)C5—N1—C4—C30.2 (11)
Cu1i—O3—C8—O22.1 (10)C5—C6—C7—C31.4 (12)
Cu1i—O3—C8—C9179.9 (5)C7—C3—C4—N10.6 (11)
Cu1v—O4—C17—O56.6 (11)C8—C9—C10—C1172.9 (8)
Cu1v—O4—C17—C16175.9 (5)C9—C10—C11—C121.4 (10)
Cu1vi—O5—C17—O41.6 (10)C9—C10—C11—C16179.9 (6)
Cu1vi—O5—C17—C16179.1 (5)C10—C11—C12—C13178.1 (7)
Cu1—N1—C4—C3163.0 (6)C10—C11—C16—C15175.8 (7)
Cu1—N1—C5—C6163.9 (6)C10—C11—C16—C173.5 (11)
O1—C2—C3—C4179.3 (8)C11—C12—C13—C141.8 (13)
O1—C2—C3—C70.3 (12)C11—C16—C17—O428.2 (11)
O2—C8—C9—C1040.7 (10)C11—C16—C17—O5154.2 (7)
O3—C8—C9—C10141.3 (7)C12—C11—C16—C153.0 (11)
N1—C5—C6—C70.7 (11)C12—C11—C16—C17177.7 (7)
N2—C2—C3—C40.1 (12)C12—C13—C14—C152.0 (13)
N2—C2—C3—C7179.7 (7)C13—C14—C15—C160.2 (12)
C1—N2—C2—O11.8 (13)C14—C15—C16—C112.7 (12)
C1—N2—C2—C3177.7 (7)C14—C15—C16—C17177.9 (7)
C2—N2—C1—C1iv80.0 (12)C15—C16—C17—O4152.4 (7)
C2—C3—C4—N1179.0 (7)C15—C16—C17—O525.2 (10)
C2—C3—C7—C6178.3 (7)C16—C11—C12—C130.7 (11)
C4—N1—C5—C60.1 (10)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y+1, z+2; (v) x, y+1, z1/2; (vi) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1W0.87 (2)2.03 (4)2.844 (10)155 (8)
C5—H5···O20.952.503.099 (9)121
C6—H6···O3vi0.952.483.332 (9)149
O1W—H1WA···O2W0.85 (2)2.00 (11)2.698 (13)139 (15)
O1W—H1WB···O3W0.85 (2)2.10 (2)2.79 (2)139 (5)
O2W—H2WA···O5iii0.85 (2)2.09 (2)2.909 (10)162 (7)
O2W—H2WB···O1v0.85 (2)2.06 (2)2.816 (9)147 (5)
O3W—H3WA···O1ii0.84 (2)2.10 (2)2.917 (19)162 (9)
O3W—H3WB···O1iv0.84 (2)2.10 (2)2.848 (19)147 (6)
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y+1, z+2; (v) x, y+1, z1/2; (vi) x+1/2, y+1/2, z+1/2.
 

Funding information

Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.

References

First citationBlatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SAINT.. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationInfantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPalmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.  Google Scholar
First citationPrzybyla, J. J., Ezenyilimba, F. C. & LaDuca, R. L. (2019). Inorg. Chim. Acta, 498, 119087.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X., Luan, J., Lin, H., Lu, Q., Xu, C. & Liu, G. (2013). Dalton Trans. 42, 8375–8366.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146