organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[1,4-Bis(but-3-en-1-yl­­oxy)]-2,3,4,5-(1,4-dimeth­­oxy)pillar[5]arene–1,4-di­bromo­butane 1:1 inclusion complex

crossmark logo

aDepartment of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
*Correspondence e-mail: t.alazemi@ku.edu.kw

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 11 April 2023; accepted 4 July 2023; online 14 July 2023)

In the title compound, C51H58O10·C4H8Br2, both the host and guest are completed by crystallographic twofold symmetry (one carbon atom of the host lies on the rotation axis). The penta­gonal-shaped macrocycle has a pair of butene­oxy substituents on one of its faces and one mol­ecule of 1,4-di­bromo­butane is encapsulated within the cavity of the pillararene, forming a 1:1 inclusion complex. The terminal alkene parts, which project outwards from the pillararene ring, exhibit positional disorder over two sets of sites in a 0.52 (2): 0.48 (2) ratio. The host and guest inter­act via C—H⋯O, C—H⋯Br and C—H⋯π inter­actions and adjacent host mol­ecules inter­act via C—H⋯O and C—H⋯π bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pillar[n]arenes are characterized by guest encapsulation and mol­ecular recognition properties, which are due to their pillar-shaped structures, nano-sized cavities and availability of multiple rim sites for substitutions, and which makes them useful functional materials for several applications in materials chemistry, nanotechnology and biomimmetic systems (Ogoshi et al., 2016[Ogoshi, T., Yamagishi, T. & Nakamoto, Y. (2016). Chem. Rev. 116, 7937-8002.]; Li et al., 2020[Li, Q., Zhu, H. & Huang, F. (2020). Trends Chem. 2, 850-864. https://doi.org/10.1016/j.trechm.2020.07.004]). Appropriate derivatization of pillararene macrocycles can be achieved by selective functionalization of pillararene rims (Zhang et al., 2021[Zhang, H., Han, J. & Li, C. (2021). Polym. Chem. 12, 2808-2824.]; Al-Azemi & Vinodh, 2022[Al-Azemi, T. F. & Vinodh, M. (2022). RSC Adv. 12, 1797-1806.]; Vinodh et al., 2023[Vinodh, M., Alipour, F. H. & Al-Azemi, T. F. (2023). ACS Omega, 8, 1466-1475.]). Selective derivatization of pillarene rims enables self-assembly of these macromolecules to form supra­molecular polymers or make them capable of inter­acting with flexible binding sites, for example proteins (Liu et al., 2023[Liu, Z., Demontrond, F., Imberty, A., Sue, A. C.-H., Vidal, S. & Zhao, H. (2023). Chin. Chem. Lett. 34, 107872. https://doi.org/10.1016/j.cclet.2022.107872]). The suitably functionalized pillarenenes could conjugate with other functional units such as drug moieties or photosensitizing agents and might generate potentially useful functional materials for a variety of applications such as drug delivery, light harvesting systems, sensors, detection and separation (Feng et al., 2017[Feng, W.-X., Sun, Z., Zhang, Y., Legrand, Y.-M., Petit, E., Su, C.-Y. & Barboiu, M. (2017). Org. Lett. 19, 1438-1441.]; Kakuta et al., 2018[Kakuta, T., Yamagishi, T. A. & Ogoshi, T. (2018). Acc. Chem. Res. 51, 1656-1666.]; Hua et al., 2020[Hua, Y., Chen, L., Hou, C., Liu, S., Pei, Z. & Lu, Y. (2020). Int. J. Nanomedicine, Vol. 15, 5873-5899.]; Khalil-Cruz et al., 2021[Khalil-Cruz, L. E., Liu, P., Huang, F. & Khashab, N. M. (2021). Appl. Mater. Interfaces, 13, 31337-31354.]).

In the present work, an inclusion system comprising buten­oxy-substituted pillararene and di­bromo­butane is reported. The parent pillararene-1-[1–4-di(but-3-en-1-yl­oxy)]-2,3,4,5-(1,4-dimeth­oxy)pillar[5]arene [Pil(Buten­oxy)2] exhibits butene­oxy substitution at both ends of its macrocyclic rims. Single crystals of this pillararene were grown from a solution containing di­bromo­butane and its structural as well as supra­molecular features are discussed.

The inclusion complex crystallizes in the monoclinic crystal system, space group C2/c. The asymmetric unit contains half of the pillararene mol­ecule (Fig. 1[link]) and half the guest molecule. The complete structure (Fig. 2[link]) is obtained by symmetry expansion via crystallographic twofold axes. In the crystal, one mol­ecule of di­bromo­butane is encapsulated within the cavity of the pillararene. The terminal alkene parts, which project outwards from the pillararene ring, exhibit positional disorder. As a result, the exact orientation of the vinyl groups with respect to the pillararene macrocycle could not be obtained from the crystal data. In Fig. 2[link] the orientation of the major occupancy butene component is shown.

[Figure 1]
Figure 1
Displacement ellipsoid representation (30% probability) of the asymmetric unit of Pil(Buten­oxy)2·ButBr2.
[Figure 2]
Figure 2
Crystal structure of Pil(Buten­oxy)2·ButBr2 after symmetry expansion. Hydrogen atoms, except those of the butene substituent of the pillararene, are omitted for clarity.

The crystal structure of Pil(Buten­oxy)2·ButBr2 shows the that 1,4-di­bromo­butane guest species is threaded inside the pillararene cavity, forming a 1:1 inclusion complex. All of the H atoms of the guest mol­ecule are capable of engaging in non-bonding inter­actions with pillararene ring, either via C—H⋯O or C—H⋯π inter­actions. In addition, the pillararene macrocycle is able to connect with the bromine atoms of the di­bromo­butane by C—H⋯Br inter­actions. The nature of these various non-bonding inter­actions are depicted in Fig. 3[link] and their qu­anti­tative details are provided in Table 1[link].

Table 1
Non-bonding inter­actions (Å, °) between the pillararene host and di­bromo­butane guest in Pil(Buten­oxy)2·ButBr2

Cg1 and Cg2 are the centroids of the C2–C7 and C9–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27A⋯O2i 0.97 3.06 3.82 (1) 136
C27—H27B⋯O4i 0.97 3.06 3.99 (1) 160
C28—H28BCg1 0.97 3.10 4.015 158
C28—H28ACg2 0.97 3.28 3.859 120
C19—H19A⋯Br1 0.96 3.14 3.968 (5) 145
C23—H23A⋯Br1 0.97 3.15 4.039 (5) 154
Symmetry code: (i) −x, y, [{1\over 2}] − z.
[Figure 3]
Figure 3
Non-bonding inter­actions between the pillararene macrocycle host and di­bromo­butane guest in Pil(Buten­oxy)2·ButBr2 crystals. C—H⋯O inter­actions are represented by red, C—H⋯Br by orange and C—H⋯π by blue dashed lines. Cg1 and Cg2 are the centroids of the pillararene rings C2–C7 and C9–C13, respectively. Symmetry code: (i) −x, y, [{1\over 2}] − z.

The Pil(Buten­oxy)2·ButBr2 species exhibit inter­molecular non-bonding C—H⋯O or C—H⋯π inter­actions in their crystal network. The multiple non-bonding (non-covalent/non-coordinate) inter­actions (less than the van der Waals range) between neighboring Pil(Buten­oxy)2.ButBr2 systems are shown in Fig. 4[link]. It can be seen that each pillararene unit inter­acts with six immediate neighboring pillararenes in its crystal network. The packing pattern of the Pil(Buten­oxy)2·ButBr2 complex is depicted in Fig. 5[link], which shows that the crystal network forms one-dimensional channels along the a-axis direction.

[Figure 4]
Figure 4
Inter­molecular non-bonding inter­actions between the pillararene macrocycle and its neighboring counterparts. C—H⋯O inter­actions are represented by red and C—H⋯π by blue dashed lines. Cg1 is the centroid of the pillararene phenyl ring C2–C7. Symmetry codes: (i) −x, y, [{1\over 2}] − z; (ii) [{1\over 2}] − x, 1.5 − y, 1 − z; (iii) [{1\over 2}] + x, −[{1\over 2}] + y, z; (iv) −[{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (v) −[{1\over 2}] + x, 1.5 − y, −[{1\over 2}] + z, (vi) −[{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (vii) −[{1\over 2}] + x, [{1\over 2}] + y, z.
[Figure 5]
Figure 5
Packing pattern of Pil(Buten­oxy)2·ButBr2 crystals.

Synthesis and crystallization

Synthesis of vinyl-substituted pillararene Pil(Buten­oxy)2: Paraformaldehyde (930 mg, 30 mmol) was added to a solution of 1,4-di­meth­oxy­benzene (1.10 g, 8 mmol) and 1,4-bis­(but-3-en-1-yl­oxy)benzene (436 mg, 2 mmol) in 1,2-di­chloro­ethane (60 ml) under a nitro­gen atmosphere. Boron trifluoride diethyl etherate (1.25 ml, 10 mmol) was then added to the solution and the mixture was stirred at 0°C for 1 h. MeOH (200 ml) was poured into the mixture to quench the reaction and the reaction mixture was filtered. The residue was dissolved in chloro­form (50 mL) and filtered. The filtrate was concentrated to a small volume and adsorbed on silica and column chromatography was performed using a di­chloro­methane:hexane mixture (60:40 v/v). The second last fraction was the intended pillarene. Yield: 228 mg (16%). 1H NMR (400 MHz, CDCl3,) δ: 2.50 (m, 4H), 3.68 (m, 24H) 3.80 (m, 10H), 3.91 (t, J = 6.8 & J = 6.4 Hz, 4H), 5.08 (m, 4H), 5.92 (m, 2H), 6.79 (m, 10H). 13C NMR (150 MHz, CDCl3), δ: 29.8, 29.8, 29.9, 34.4, 56.0, 56.0, 56.0, 56.1, 68.0, 114.3, 114.3, 114.4, 114.4, 115.4, 116.9, 128.3, 128.4, 128.5, 128.6, 128.6, 135.2, 150.1, 151.0, 151.0, 151.0.

Crystal growth of Pil(Buten­oxy)2·ButBr2 inclusion complex: Pil(Buten­oxy)2 (20 mg) was dissolved in a solution of di­chloro­methane and 1,4 di­bromo butane (90: 10; v/v, 1 mL). Single crystals of pillararene encapsulated with the di­bromo­butane guest were grown by slow solvent evaporation after storing the solution in an NMR tube that was kept cold. Crystals suitable for X-ray diffraction were grown in 5 days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The vinyl site exhibits positional disorder and thus was refined over two sets of sites with a 0.52 (2):0.48 (2) occupancy ratio.

Table 2
Experimental details

Crystal data
Chemical formula C51H58O10·C4H8Br2
Mr 1046.89
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 11.3071 (12), 22.044 (3), 21.557 (3)
β (°) 104.775 (7)
V3) 5195.4 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.62
Crystal size (mm) 0.21 × 0.18 × 0.17
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.449, 0.723
No. of measured, independent and observed [I > 2σ(I)] reflections 16532, 4576, 2385
Rint 0.055
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.251, 1.05
No. of reflections 4576
No. of parameters 317
No. of restraints 53
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.68, −0.60
Computer programs: CrystalClear (Rigaku, 2016[Rigaku (2016). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2017[Rigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2016); cell refinement: CrystalClear (Rigaku, 2016); data reduction: CrystalClear (Rigaku, 2016); program(s) used to solve structure: CrystalStructure (Rigaku, 2017); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020).

1-[1,4-Di(but-3-en-1-yloxy)]-2,3,4,5-(1,4-dimethoxy)pillar[5]arene–\ 1,4-dibromobutane (1/1) top
Crystal data top
C51H58O10·C4H8Br2F(000) = 2184
Mr = 1046.89Dx = 1.338 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 11.3071 (12) ÅCell parameters from 8137 reflections
b = 22.044 (3) Åθ = 3.2–25.0°
c = 21.557 (3) ŵ = 1.62 mm1
β = 104.775 (7)°T = 293 K
V = 5195.4 (11) Å3Block, colorless
Z = 40.21 × 0.18 × 0.17 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2385 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.055
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.449, Tmax = 0.723k = 2625
16532 measured reflectionsl = 2525
4576 independent reflections
Refinement top
Refinement on F253 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.251 w = 1/[σ2(Fo2) + (0.1359P)2 + 2.4202P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4576 reflectionsΔρmax = 0.68 e Å3
317 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.25218 (12)0.64113 (4)0.32051 (5)0.1711 (6)
O10.0929 (3)0.45851 (15)0.34993 (15)0.0718 (9)
O20.3781 (3)0.52946 (16)0.35646 (16)0.0769 (10)
O30.0972 (3)0.63736 (13)0.48639 (15)0.0648 (8)
O40.3667 (3)0.76181 (15)0.34725 (16)0.0750 (9)
O50.0766 (3)0.82587 (17)0.36144 (15)0.0791 (10)
C10.0000000.4179 (3)0.2500000.0591 (16)
H1A0.0544530.3920190.2335990.071*0.5
H1B0.0544510.3920160.2663990.071*0.5
C20.0751 (4)0.45651 (17)0.30448 (19)0.0530 (11)
C30.0259 (4)0.47716 (19)0.3536 (2)0.0546 (11)
C40.0934 (4)0.51343 (19)0.40126 (19)0.0547 (11)
H40.0589000.5265750.4337280.066*
C50.2123 (4)0.53122 (19)0.40247 (19)0.0524 (10)
C60.2612 (4)0.51070 (19)0.3538 (2)0.0543 (11)
C70.1937 (4)0.47396 (19)0.3057 (2)0.0558 (11)
H70.2284940.4606020.2734500.067*
C80.2824 (4)0.57300 (19)0.45434 (19)0.0558 (11)
H8A0.3692580.5650070.4618010.067*
H8B0.2593410.5648720.4939020.067*
C280.0278 (9)0.6452 (6)0.2743 (5)0.223 (5)
H28A0.0107300.6841070.2958000.268*
H28B0.0124480.6146360.3048150.268*
C270.1638 (9)0.6345 (7)0.2617 (6)0.267 (6)
H27A0.1778890.5937110.2445090.320*
H27B0.2019150.6616610.2269040.320*
C90.2575 (4)0.63911 (18)0.43615 (18)0.0501 (10)
C100.1619 (4)0.66987 (19)0.45168 (18)0.0509 (10)
C110.1366 (4)0.72954 (19)0.43243 (18)0.0513 (10)
H110.0719770.7493480.4432110.062*
C120.2046 (4)0.76038 (19)0.39767 (18)0.0523 (11)
C130.3010 (4)0.7291 (2)0.38255 (19)0.0551 (11)
C140.3266 (4)0.6697 (2)0.40133 (18)0.0546 (11)
H140.3911750.6499020.3905250.065*
C150.1745 (4)0.82511 (18)0.37545 (19)0.0565 (11)
H15A0.1412700.8462050.4067010.068*
H15B0.2491980.8456750.3732420.068*
C160.0844 (4)0.82833 (17)0.3111 (2)0.0530 (10)
C170.0420 (4)0.82739 (19)0.3050 (2)0.0565 (11)
C180.1238 (4)0.82843 (18)0.2447 (2)0.0567 (11)
H180.2073270.8292110.2417980.068*
C190.1486 (4)0.4797 (2)0.3966 (3)0.0786 (15)
H19A0.1477980.5232340.3968740.094*
H19B0.1047220.4648420.4379320.094*
H19C0.2315990.4655460.3870890.094*
C200.4421 (6)0.5009 (4)0.3194 (4)0.148 (3)
H20A0.5120910.5249290.3177820.178*
H20B0.3906820.4958830.2767480.178*
H20C0.4685040.4619140.3373990.178*
C210.0040 (5)0.6651 (2)0.5023 (3)0.0757 (14)
H21A0.0377790.6378360.5279150.091*
H21B0.0650690.6747610.4636730.091*
H21C0.0222650.7016840.5260370.091*
C220.4686 (5)0.7339 (3)0.3341 (3)0.0963 (18)
H22A0.5234910.7208490.3735770.116*
H22B0.5097210.7622760.3130390.116*
H22C0.4426660.6994730.3068150.116*
C230.1994 (5)0.8196 (2)0.3605 (3)0.0793 (15)
H23A0.2318510.7828250.3377630.095*
H23B0.2454180.8537860.3382010.095*
C240.2120 (6)0.8169 (3)0.4281 (3)0.0955 (17)
H24A0.2921250.8010330.4277600.115*0.52 (2)
H24B0.1512730.7891610.4527040.115*0.52 (2)
H24C0.1955550.7756440.4434680.115*0.48 (2)
H24D0.2963590.8258230.4273120.115*0.48 (2)
C25A0.1971 (19)0.8745 (7)0.4588 (7)0.095 (4)0.52 (2)
H25A0.2325090.9045720.4297080.114*0.52 (2)
C25B0.1269 (19)0.8609 (9)0.4785 (8)0.107 (4)0.48 (2)
H25B0.0435550.8570460.4820160.128*0.48 (2)
C260.1525 (7)0.8967 (5)0.5111 (4)0.143 (3)
H26A0.1135300.8720880.5452750.171*0.52 (2)
H26B0.1572740.9383460.5170500.171*0.52 (2)
H26C0.2341340.9031960.5102850.171*0.48 (2)
H26D0.0916100.9193710.5385640.171*0.48 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.2090 (13)0.1184 (8)0.1686 (10)0.0308 (6)0.0165 (8)0.0075 (6)
O10.065 (2)0.083 (2)0.070 (2)0.0149 (17)0.0230 (17)0.0046 (17)
O20.064 (2)0.084 (2)0.091 (2)0.0068 (17)0.0342 (18)0.0205 (19)
O30.0680 (19)0.068 (2)0.065 (2)0.0038 (15)0.0303 (16)0.0088 (15)
O40.075 (2)0.076 (2)0.081 (2)0.0089 (18)0.0337 (18)0.0063 (18)
O50.072 (2)0.117 (3)0.0510 (19)0.012 (2)0.0212 (16)0.0046 (18)
C10.076 (4)0.039 (3)0.060 (4)0.0000.012 (3)0.000
C20.065 (3)0.044 (2)0.046 (2)0.005 (2)0.008 (2)0.0071 (19)
C30.059 (3)0.052 (2)0.051 (3)0.001 (2)0.011 (2)0.010 (2)
C40.063 (3)0.056 (2)0.045 (2)0.006 (2)0.015 (2)0.003 (2)
C50.056 (3)0.052 (2)0.046 (2)0.005 (2)0.0087 (19)0.0022 (19)
C60.052 (3)0.056 (2)0.058 (3)0.005 (2)0.020 (2)0.005 (2)
C70.066 (3)0.051 (2)0.052 (2)0.007 (2)0.018 (2)0.000 (2)
C80.054 (2)0.065 (3)0.046 (2)0.007 (2)0.0070 (19)0.004 (2)
C280.273 (10)0.216 (10)0.163 (11)0.040 (12)0.026 (9)0.008 (7)
C270.279 (12)0.300 (14)0.218 (11)0.030 (13)0.058 (10)0.038 (10)
C90.049 (2)0.056 (2)0.041 (2)0.001 (2)0.0029 (18)0.0063 (19)
C100.053 (2)0.059 (3)0.038 (2)0.007 (2)0.0077 (18)0.0027 (19)
C110.047 (2)0.060 (3)0.044 (2)0.0011 (19)0.0057 (18)0.005 (2)
C120.058 (3)0.056 (2)0.037 (2)0.005 (2)0.0001 (19)0.0074 (19)
C130.056 (3)0.066 (3)0.043 (2)0.012 (2)0.0128 (19)0.003 (2)
C140.050 (2)0.066 (3)0.045 (2)0.001 (2)0.0080 (19)0.007 (2)
C150.060 (2)0.054 (2)0.051 (2)0.008 (2)0.006 (2)0.009 (2)
C160.062 (3)0.040 (2)0.054 (3)0.005 (2)0.009 (2)0.0014 (19)
C170.069 (3)0.050 (2)0.050 (3)0.005 (2)0.015 (2)0.001 (2)
C180.057 (3)0.054 (2)0.058 (3)0.007 (2)0.012 (2)0.002 (2)
C190.068 (3)0.084 (3)0.092 (4)0.005 (3)0.036 (3)0.010 (3)
C200.084 (4)0.173 (7)0.209 (8)0.027 (5)0.077 (5)0.089 (7)
C210.072 (3)0.085 (3)0.081 (3)0.004 (3)0.041 (3)0.002 (3)
C220.091 (4)0.109 (5)0.105 (4)0.015 (3)0.054 (4)0.007 (4)
C230.081 (4)0.083 (4)0.082 (4)0.013 (3)0.033 (3)0.003 (3)
C240.105 (4)0.103 (4)0.094 (4)0.017 (3)0.054 (3)0.010 (3)
C25A0.101 (9)0.124 (7)0.069 (6)0.030 (7)0.039 (6)0.003 (6)
C25B0.076 (8)0.166 (10)0.083 (8)0.037 (7)0.028 (6)0.011 (6)
C260.110 (5)0.185 (8)0.125 (6)0.004 (5)0.016 (5)0.032 (5)
Geometric parameters (Å, º) top
Br1—C271.810 (9)C12—C151.516 (6)
O1—C31.388 (5)C13—C141.380 (6)
O1—C191.397 (5)C14—H140.9300
O2—C201.361 (7)C15—C161.498 (6)
O2—C61.371 (5)C15—H15A0.9700
O3—C101.374 (5)C15—H15B0.9700
O3—C211.415 (5)C16—C18i1.387 (6)
O4—C131.392 (5)C16—C171.402 (6)
O4—C221.397 (6)C17—C181.389 (6)
O5—C171.371 (5)C18—H180.9300
O5—C231.389 (6)C19—H19A0.9600
C1—C2i1.522 (5)C19—H19B0.9600
C1—C21.522 (5)C19—H19C0.9600
C1—H1A0.9700C20—H20A0.9600
C1—H1B0.9700C20—H20B0.9600
C2—C71.389 (6)C20—H20C0.9600
C2—C31.393 (6)C21—H21A0.9600
C3—C41.369 (6)C21—H21B0.9600
C4—C51.394 (6)C21—H21C0.9600
C4—H40.9300C22—H22A0.9600
C5—C61.382 (6)C22—H22B0.9600
C5—C81.508 (6)C22—H22C0.9600
C6—C71.382 (6)C23—C241.503 (7)
C7—H70.9300C23—H23A0.9700
C8—C91.517 (6)C23—H23B0.9700
C8—H8A0.9700C24—C25A1.421 (15)
C8—H8B0.9700C24—C25B1.585 (19)
C28—C28i1.354 (17)C24—H24A0.9700
C28—C271.510 (5)C24—H24B0.9700
C28—H28A0.9700C24—H24C0.9700
C28—H28B0.9700C24—H24D0.9700
C27—H27A0.9700C25A—C261.216 (16)
C27—H27B0.9700C25A—H25A0.9300
C9—C101.387 (6)C25B—C261.142 (16)
C9—C141.389 (6)C25B—H25B0.9300
C10—C111.387 (6)C26—H26A0.9300
C11—C121.382 (6)C26—H26B0.9300
C11—H110.9300C26—H26C0.9300
C12—C131.396 (6)C26—H26D0.9300
C3—O1—C19117.8 (4)C12—C15—H15A109.1
C20—O2—C6119.1 (4)C16—C15—H15B109.1
C10—O3—C21118.8 (4)C12—C15—H15B109.1
C13—O4—C22117.7 (4)H15A—C15—H15B107.8
C17—O5—C23119.9 (4)C18i—C16—C17117.6 (4)
C2i—C1—C2112.0 (4)C18i—C16—C15120.7 (4)
C2i—C1—H1A109.2C17—C16—C15121.6 (4)
C2—C1—H1A109.2O5—C17—C18123.9 (4)
C2i—C1—H1B109.2O5—C17—C16115.5 (4)
C2—C1—H1B109.2C18—C17—C16120.6 (4)
H1A—C1—H1B107.9C16i—C18—C17121.8 (4)
C7—C2—C3117.8 (4)C16i—C18—H18119.1
C7—C2—C1121.1 (4)C17—C18—H18119.1
C3—C2—C1121.1 (4)O1—C19—H19A109.5
C4—C3—O1124.2 (4)O1—C19—H19B109.5
C4—C3—C2120.5 (4)H19A—C19—H19B109.5
O1—C3—C2115.3 (4)O1—C19—H19C109.5
C3—C4—C5121.9 (4)H19A—C19—H19C109.5
C3—C4—H4119.1H19B—C19—H19C109.5
C5—C4—H4119.1O2—C20—H20A109.5
C6—C5—C4117.7 (4)O2—C20—H20B109.5
C6—C5—C8121.8 (4)H20A—C20—H20B109.5
C4—C5—C8120.5 (4)O2—C20—H20C109.5
O2—C6—C7123.4 (4)H20A—C20—H20C109.5
O2—C6—C5116.0 (4)H20B—C20—H20C109.5
C7—C6—C5120.6 (4)O3—C21—H21A109.5
C6—C7—C2121.5 (4)O3—C21—H21B109.5
C6—C7—H7119.2H21A—C21—H21B109.5
C2—C7—H7119.2O3—C21—H21C109.5
C5—C8—C9111.5 (3)H21A—C21—H21C109.5
C5—C8—H8A109.3H21B—C21—H21C109.5
C9—C8—H8A109.3O4—C22—H22A109.5
C5—C8—H8B109.3O4—C22—H22B109.5
C9—C8—H8B109.3H22A—C22—H22B109.5
H8A—C8—H8B108.0O4—C22—H22C109.5
C28i—C28—C27120.8 (13)H22A—C22—H22C109.5
C28i—C28—H28A107.1H22B—C22—H22C109.5
C27—C28—H28A107.1O5—C23—C24109.3 (5)
C28i—C28—H28B107.1O5—C23—H23A109.8
C27—C28—H28B107.1C24—C23—H23A109.8
H28A—C28—H28B106.8O5—C23—H23B109.8
C28—C27—Br1125.4 (8)C24—C23—H23B109.8
C28—C27—H27A106.0H23A—C23—H23B108.3
Br1—C27—H27A106.0C25A—C24—C23112.8 (7)
C28—C27—H27B106.0C23—C24—C25B116.7 (7)
Br1—C27—H27B106.0C25A—C24—H24A109.0
H27A—C27—H27B106.3C23—C24—H24A109.0
C10—C9—C14118.2 (4)C25A—C24—H24B109.0
C10—C9—C8120.8 (4)C23—C24—H24B109.0
C14—C9—C8120.9 (4)H24A—C24—H24B107.8
O3—C10—C9115.6 (4)C23—C24—H24C108.1
O3—C10—C11124.0 (4)C25B—C24—H24C108.1
C9—C10—C11120.4 (4)C23—C24—H24D108.1
C12—C11—C10121.9 (4)C25B—C24—H24D108.1
C12—C11—H11119.1H24C—C24—H24D107.3
C10—C11—H11119.1C26—C25A—C24139.8 (17)
C11—C12—C13117.4 (4)C26—C25A—H25A110.1
C11—C12—C15121.6 (4)C24—C25A—H25A110.1
C13—C12—C15121.1 (4)C26—C25B—C24129.8 (17)
C14—C13—O4123.4 (4)C26—C25B—H25B115.1
C14—C13—C12121.2 (4)C24—C25B—H25B115.1
O4—C13—C12115.4 (4)C25A—C26—H26A120.0
C13—C14—C9121.0 (4)C25A—C26—H26B120.0
C13—C14—H14119.5H26A—C26—H26B120.0
C9—C14—H14119.5C25B—C26—H26C120.0
C16—C15—C12112.5 (3)C25B—C26—H26D120.0
C16—C15—H15A109.1H26C—C26—H26D120.0
C2i—C1—C2—C790.9 (4)C8—C9—C10—C11177.2 (3)
C2i—C1—C2—C387.0 (4)O3—C10—C11—C12179.8 (3)
C19—O1—C3—C42.2 (6)C9—C10—C11—C120.2 (6)
C19—O1—C3—C2177.7 (4)C10—C11—C12—C130.1 (5)
C7—C2—C3—C40.0 (6)C10—C11—C12—C15178.5 (3)
C1—C2—C3—C4177.9 (4)C22—O4—C13—C144.4 (6)
C7—C2—C3—O1179.8 (4)C22—O4—C13—C12176.2 (4)
C1—C2—C3—O11.9 (5)C11—C12—C13—C140.3 (6)
O1—C3—C4—C5179.5 (4)C15—C12—C13—C14178.4 (3)
C2—C3—C4—C50.3 (6)C11—C12—C13—O4179.7 (3)
C3—C4—C5—C60.3 (6)C15—C12—C13—O41.0 (5)
C3—C4—C5—C8177.8 (4)O4—C13—C14—C9179.5 (3)
C20—O2—C6—C715.1 (8)C12—C13—C14—C90.2 (6)
C20—O2—C6—C5165.5 (6)C10—C9—C14—C130.1 (6)
C4—C5—C6—O2179.6 (4)C8—C9—C14—C13177.4 (4)
C8—C5—C6—O21.5 (6)C11—C12—C15—C1688.8 (5)
C4—C5—C6—C70.1 (6)C13—C12—C15—C1689.8 (5)
C8—C5—C6—C7178.0 (4)C12—C15—C16—C18i88.9 (5)
O2—C6—C7—C2179.3 (4)C12—C15—C16—C1786.9 (5)
C5—C6—C7—C20.1 (6)C23—O5—C17—C185.9 (7)
C3—C2—C7—C60.2 (6)C23—O5—C17—C16174.5 (4)
C1—C2—C7—C6177.8 (4)C18i—C16—C17—O5178.5 (4)
C6—C5—C8—C990.6 (5)C15—C16—C17—O52.6 (6)
C4—C5—C8—C987.4 (5)C18i—C16—C17—C181.9 (5)
C28i—C28—C27—Br1173.1 (7)C15—C16—C17—C18177.9 (4)
C5—C8—C9—C1089.6 (5)O5—C17—C18—C16i178.3 (4)
C5—C8—C9—C1487.8 (4)C16—C17—C18—C16i2.2 (6)
C21—O3—C10—C9178.1 (4)C17—O5—C23—C24177.9 (4)
C21—O3—C10—C112.0 (6)O5—C23—C24—C25A75.2 (11)
C14—C9—C10—O3179.7 (3)O5—C23—C24—C25B39.7 (11)
C8—C9—C10—O32.8 (5)C23—C24—C25A—C26142.2 (19)
C14—C9—C10—C110.3 (5)C23—C24—C25B—C26124.1 (18)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27A···O2i0.973.063.82 (1)136
C27—H27B···O4i0.973.063.99 (1)160
C28—H28B···Cg10.973.104.015158
C28—H28A···Cg20.973.283.859120
C19—H19A···Br10.963.143.968 (5)145
C23—H23A···Br10.973.154.039 (5)154
Symmetry code: (i) x, y, z+1/2.
Non-bonding interactions ( Å, °) between the pillararene host and dibromobutane guest in the Pil(Butenoxy)2·ButBr2 top
Cg1 and Cg2 are the centroids of the C2–C7 and C9–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C27—H27A···O2i0.973.063.82 (1)136
C27—H27B···O4i0.973.063.99 (1)160
C28—H28B···Cg10.973.104.015158
C28—H28A···Cg20.973.283.859120
C19—H19A···Br10.963.143.968 (5)145
C23—H23A···Br10.973.154.039 (5)154
Symmetry code: (i) -x, y, 1/2 - z.
 

Acknowledgements

The support of the Kuwait University Research Administration (research grant No. SC 08/19) and the facilities of RSPU through grant Nos. GS 03/08 (Rigaku RAPID II, Japan), GS 01/01 (NMR-Bruker DPX Avance 400, Germany) and GS 01/03 (GC MS Thermo Scientific, Germany) are gratefully acknowledged.

Funding information

Funding for this research was provided by: Kuwait University Research Administration (grant No. SC 08/19); RSPU (grant No. GS 03/08; grant No. GS 01/01; grant No. GS 01/03).

References

First citationAl-Azemi, T. F. & Vinodh, M. (2022). RSC Adv. 12, 1797–1806.  Web of Science CAS PubMed Google Scholar
First citationFeng, W.-X., Sun, Z., Zhang, Y., Legrand, Y.-M., Petit, E., Su, C.-Y. & Barboiu, M. (2017). Org. Lett. 19, 1438–1441.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHua, Y., Chen, L., Hou, C., Liu, S., Pei, Z. & Lu, Y. (2020). Int. J. Nanomedicine, Vol. 15, 5873–5899.  Google Scholar
First citationKakuta, T., Yamagishi, T. A. & Ogoshi, T. (2018). Acc. Chem. Res. 51, 1656–1666.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhalil-Cruz, L. E., Liu, P., Huang, F. & Khashab, N. M. (2021). Appl. Mater. Interfaces, 13, 31337–31354.  CAS Google Scholar
First citationLi, Q., Zhu, H. & Huang, F. (2020). Trends Chem. 2, 850–864. https://doi.org/10.1016/j.trechm.2020.07.004  Google Scholar
First citationLiu, Z., Demontrond, F., Imberty, A., Sue, A. C.-H., Vidal, S. & Zhao, H. (2023). Chin. Chem. Lett. 34, 107872. https://doi.org/10.1016/j.cclet.2022.107872  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOgoshi, T., Yamagishi, T. & Nakamoto, Y. (2016). Chem. Rev. 116, 7937–8002.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (2016). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVinodh, M., Alipour, F. H. & Al-Azemi, T. F. (2023). ACS Omega, 8, 1466–1475.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, H., Han, J. & Li, C. (2021). Polym. Chem. 12, 2808–2824.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146