organic compounds
1-[1,4-Bis(but-3-en-1-yloxy)]-2,3,4,5-(1,4-dimethoxy)pillar[5]arene–1,4-dibromobutane 1:1 inclusion complex
aDepartment of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
*Correspondence e-mail: t.alazemi@ku.edu.kw
In the title compound, C51H58O10·C4H8Br2, both the host and guest are completed by crystallographic twofold symmetry (one carbon atom of the host lies on the rotation axis). The pentagonal-shaped macrocycle has a pair of buteneoxy substituents on one of its faces and one molecule of 1,4-dibromobutane is encapsulated within the cavity of the pillararene, forming a 1:1 The terminal alkene parts, which project outwards from the pillararene ring, exhibit positional disorder over two sets of sites in a 0.52 (2): 0.48 (2) ratio. The host and guest interact via C—H⋯O, C—H⋯Br and C—H⋯π interactions and adjacent host molecules interact via C—H⋯O and C—H⋯π bonds.
CCDC reference: 2254104
Structure description
Pillar[n]arenes are characterized by guest encapsulation and molecular recognition properties, which are due to their pillar-shaped structures, nano-sized cavities and availability of multiple rim sites for substitutions, and which makes them useful functional materials for several applications in materials chemistry, nanotechnology and biomimmetic systems (Ogoshi et al., 2016; Li et al., 2020). Appropriate derivatization of pillararene macrocycles can be achieved by selective functionalization of pillararene rims (Zhang et al., 2021; Al-Azemi & Vinodh, 2022; Vinodh et al., 2023). Selective derivatization of pillarene rims enables self-assembly of these macromolecules to form supramolecular polymers or make them capable of interacting with flexible binding sites, for example proteins (Liu et al., 2023). The suitably functionalized pillarenenes could conjugate with other functional units such as drug moieties or photosensitizing agents and might generate potentially useful functional materials for a variety of applications such as drug delivery, light harvesting systems, sensors, detection and separation (Feng et al., 2017; Kakuta et al., 2018; Hua et al., 2020; Khalil-Cruz et al., 2021).
In the present work, an inclusion system comprising butenoxy-substituted pillararene and dibromobutane is reported. The parent pillararene-1-[1–4-di(but-3-en-1-yloxy)]-2,3,4,5-(1,4-dimethoxy)pillar[5]arene [Pil(Butenoxy)2] exhibits buteneoxy substitution at both ends of its macrocyclic rims. Single crystals of this pillararene were grown from a solution containing dibromobutane and its structural as well as supramolecular features are discussed.
The C2/c. The contains half of the pillararene molecule (Fig. 1) and half the guest molecule. The complete structure (Fig. 2) is obtained by symmetry expansion via crystallographic twofold axes. In the crystal, one molecule of dibromobutane is encapsulated within the cavity of the pillararene. The terminal alkene parts, which project outwards from the pillararene ring, exhibit positional disorder. As a result, the exact orientation of the vinyl groups with respect to the pillararene macrocycle could not be obtained from the crystal data. In Fig. 2 the orientation of the major occupancy butene component is shown.
crystallizes in the monoclinicThe Pil(Butenoxy)2·ButBr2 shows the that 1,4-dibromobutane guest species is threaded inside the pillararene cavity, forming a 1:1 All of the H atoms of the guest molecule are capable of engaging in non-bonding interactions with pillararene ring, either via C—H⋯O or C—H⋯π interactions. In addition, the pillararene macrocycle is able to connect with the bromine atoms of the dibromobutane by C—H⋯Br interactions. The nature of these various non-bonding interactions are depicted in Fig. 3 and their quantitative details are provided in Table 1.
ofThe Pil(Butenoxy)2·ButBr2 species exhibit intermolecular non-bonding C—H⋯O or C—H⋯π interactions in their crystal network. The multiple non-bonding (non-covalent/non-coordinate) interactions (less than the van der Waals range) between neighboring Pil(Butenoxy)2.ButBr2 systems are shown in Fig. 4. It can be seen that each pillararene unit interacts with six immediate neighboring pillararenes in its crystal network. The packing pattern of the Pil(Butenoxy)2·ButBr2 complex is depicted in Fig. 5, which shows that the crystal network forms one-dimensional channels along the a-axis direction.
Synthesis and crystallization
Synthesis of vinyl-substituted pillararene Pil(Butenoxy)2: Paraformaldehyde (930 mg, 30 mmol) was added to a solution of 1,4-dimethoxybenzene (1.10 g, 8 mmol) and 1,4-bis(but-3-en-1-yloxy)benzene (436 mg, 2 mmol) in 1,2-dichloroethane (60 ml) under a nitrogen atmosphere. Boron trifluoride diethyl etherate (1.25 ml, 10 mmol) was then added to the solution and the mixture was stirred at 0°C for 1 h. MeOH (200 ml) was poured into the mixture to quench the reaction and the reaction mixture was filtered. The residue was dissolved in chloroform (50 mL) and filtered. The filtrate was concentrated to a small volume and adsorbed on silica and was performed using a dichloromethane:hexane mixture (60:40 v/v). The second last fraction was the intended pillarene. Yield: 228 mg (16%). 1H NMR (400 MHz, CDCl3,) δ: 2.50 (m, 4H), 3.68 (m, 24H) 3.80 (m, 10H), 3.91 (t, J = 6.8 & J = 6.4 Hz, 4H), 5.08 (m, 4H), 5.92 (m, 2H), 6.79 (m, 10H). 13C NMR (150 MHz, CDCl3), δ: 29.8, 29.8, 29.9, 34.4, 56.0, 56.0, 56.0, 56.1, 68.0, 114.3, 114.3, 114.4, 114.4, 115.4, 116.9, 128.3, 128.4, 128.5, 128.6, 128.6, 135.2, 150.1, 151.0, 151.0, 151.0.
Crystal growth of Pil(Butenoxy)2·ButBr2 Pil(Butenoxy)2 (20 mg) was dissolved in a solution of dichloromethane and 1,4 dibromo butane (90: 10; v/v, 1 mL). Single crystals of pillararene encapsulated with the dibromobutane guest were grown by slow solvent evaporation after storing the solution in an NMR tube that was kept cold. Crystals suitable for X-ray diffraction were grown in 5 days.
Refinement
Crystal data, data collection and structure . The vinyl site exhibits positional disorder and thus was refined over two sets of sites with a 0.52 (2):0.48 (2) occupancy ratio.
details are summarized in Table 2
|
Structural data
CCDC reference: 2254104
https://doi.org/10.1107/S2414314623005886/xu4051sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2414314623005886/xu4051Isup3.cdx
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623005886/xu4051Isup4.hkl
Data collection: CrystalClear (Rigaku, 2016); cell
CrystalClear (Rigaku, 2016); data reduction: CrystalClear (Rigaku, 2016); program(s) used to solve structure: CrystalStructure (Rigaku, 2017); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020).C51H58O10·C4H8Br2 | F(000) = 2184 |
Mr = 1046.89 | Dx = 1.338 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71075 Å |
a = 11.3071 (12) Å | Cell parameters from 8137 reflections |
b = 22.044 (3) Å | θ = 3.2–25.0° |
c = 21.557 (3) Å | µ = 1.62 mm−1 |
β = 104.775 (7)° | T = 293 K |
V = 5195.4 (11) Å3 | Block, colorless |
Z = 4 | 0.21 × 0.18 × 0.17 mm |
Rigaku R-AXIS RAPID diffractometer | 2385 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.055 |
ω scans | θmax = 25.0°, θmin = 3.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −13→13 |
Tmin = 0.449, Tmax = 0.723 | k = −26→25 |
16532 measured reflections | l = −25→25 |
4576 independent reflections |
Refinement on F2 | 53 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.073 | H-atom parameters constrained |
wR(F2) = 0.251 | w = 1/[σ2(Fo2) + (0.1359P)2 + 2.4202P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
4576 reflections | Δρmax = 0.68 e Å−3 |
317 parameters | Δρmin = −0.60 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | −0.25218 (12) | 0.64113 (4) | 0.32051 (5) | 0.1711 (6) | |
O1 | −0.0929 (3) | 0.45851 (15) | 0.34993 (15) | 0.0718 (9) | |
O2 | 0.3781 (3) | 0.52946 (16) | 0.35646 (16) | 0.0769 (10) | |
O3 | 0.0972 (3) | 0.63736 (13) | 0.48639 (15) | 0.0648 (8) | |
O4 | 0.3667 (3) | 0.76181 (15) | 0.34725 (16) | 0.0750 (9) | |
O5 | −0.0766 (3) | 0.82587 (17) | 0.36144 (15) | 0.0791 (10) | |
C1 | 0.000000 | 0.4179 (3) | 0.250000 | 0.0591 (16) | |
H1A | 0.054453 | 0.392019 | 0.233599 | 0.071* | 0.5 |
H1B | −0.054451 | 0.392016 | 0.266399 | 0.071* | 0.5 |
C2 | 0.0751 (4) | 0.45651 (17) | 0.30448 (19) | 0.0530 (11) | |
C3 | 0.0259 (4) | 0.47716 (19) | 0.3536 (2) | 0.0546 (11) | |
C4 | 0.0934 (4) | 0.51343 (19) | 0.40126 (19) | 0.0547 (11) | |
H4 | 0.058900 | 0.526575 | 0.433728 | 0.066* | |
C5 | 0.2123 (4) | 0.53122 (19) | 0.40247 (19) | 0.0524 (10) | |
C6 | 0.2612 (4) | 0.51070 (19) | 0.3538 (2) | 0.0543 (11) | |
C7 | 0.1937 (4) | 0.47396 (19) | 0.3057 (2) | 0.0558 (11) | |
H7 | 0.228494 | 0.460602 | 0.273450 | 0.067* | |
C8 | 0.2824 (4) | 0.57300 (19) | 0.45434 (19) | 0.0558 (11) | |
H8A | 0.369258 | 0.565007 | 0.461801 | 0.067* | |
H8B | 0.259341 | 0.564872 | 0.493902 | 0.067* | |
C28 | −0.0278 (9) | 0.6452 (6) | 0.2743 (5) | 0.223 (5) | |
H28A | −0.010730 | 0.684107 | 0.295800 | 0.268* | |
H28B | 0.012448 | 0.614636 | 0.304815 | 0.268* | |
C27 | −0.1638 (9) | 0.6345 (7) | 0.2617 (6) | 0.267 (6) | |
H27A | −0.177889 | 0.593711 | 0.244509 | 0.320* | |
H27B | −0.201915 | 0.661661 | 0.226904 | 0.320* | |
C9 | 0.2575 (4) | 0.63911 (18) | 0.43615 (18) | 0.0501 (10) | |
C10 | 0.1619 (4) | 0.66987 (19) | 0.45168 (18) | 0.0509 (10) | |
C11 | 0.1366 (4) | 0.72954 (19) | 0.43243 (18) | 0.0513 (10) | |
H11 | 0.071977 | 0.749348 | 0.443211 | 0.062* | |
C12 | 0.2046 (4) | 0.76038 (19) | 0.39767 (18) | 0.0523 (11) | |
C13 | 0.3010 (4) | 0.7291 (2) | 0.38255 (19) | 0.0551 (11) | |
C14 | 0.3266 (4) | 0.6697 (2) | 0.40133 (18) | 0.0546 (11) | |
H14 | 0.391175 | 0.649902 | 0.390525 | 0.065* | |
C15 | 0.1745 (4) | 0.82511 (18) | 0.37545 (19) | 0.0565 (11) | |
H15A | 0.141270 | 0.846205 | 0.406701 | 0.068* | |
H15B | 0.249198 | 0.845675 | 0.373242 | 0.068* | |
C16 | 0.0844 (4) | 0.82833 (17) | 0.3111 (2) | 0.0530 (10) | |
C17 | −0.0420 (4) | 0.82739 (19) | 0.3050 (2) | 0.0565 (11) | |
C18 | −0.1238 (4) | 0.82843 (18) | 0.2447 (2) | 0.0567 (11) | |
H18 | −0.207327 | 0.829211 | 0.241798 | 0.068* | |
C19 | −0.1486 (4) | 0.4797 (2) | 0.3966 (3) | 0.0786 (15) | |
H19A | −0.147798 | 0.523234 | 0.396874 | 0.094* | |
H19B | −0.104722 | 0.464842 | 0.437932 | 0.094* | |
H19C | −0.231599 | 0.465546 | 0.387089 | 0.094* | |
C20 | 0.4421 (6) | 0.5009 (4) | 0.3194 (4) | 0.148 (3) | |
H20A | 0.512091 | 0.524929 | 0.317782 | 0.178* | |
H20B | 0.390682 | 0.495883 | 0.276748 | 0.178* | |
H20C | 0.468504 | 0.461914 | 0.337399 | 0.178* | |
C21 | −0.0040 (5) | 0.6651 (2) | 0.5023 (3) | 0.0757 (14) | |
H21A | −0.037779 | 0.637836 | 0.527915 | 0.091* | |
H21B | −0.065069 | 0.674761 | 0.463673 | 0.091* | |
H21C | 0.022265 | 0.701684 | 0.526037 | 0.091* | |
C22 | 0.4686 (5) | 0.7339 (3) | 0.3341 (3) | 0.0963 (18) | |
H22A | 0.523491 | 0.720849 | 0.373577 | 0.116* | |
H22B | 0.509721 | 0.762276 | 0.313039 | 0.116* | |
H22C | 0.442666 | 0.699473 | 0.306815 | 0.116* | |
C23 | −0.1994 (5) | 0.8196 (2) | 0.3605 (3) | 0.0793 (15) | |
H23A | −0.231851 | 0.782825 | 0.337763 | 0.095* | |
H23B | −0.245418 | 0.853786 | 0.338201 | 0.095* | |
C24 | −0.2120 (6) | 0.8169 (3) | 0.4281 (3) | 0.0955 (17) | |
H24A | −0.292125 | 0.801033 | 0.427760 | 0.115* | 0.52 (2) |
H24B | −0.151273 | 0.789161 | 0.452704 | 0.115* | 0.52 (2) |
H24C | −0.195555 | 0.775644 | 0.443468 | 0.115* | 0.48 (2) |
H24D | −0.296359 | 0.825823 | 0.427312 | 0.115* | 0.48 (2) |
C25A | −0.1971 (19) | 0.8745 (7) | 0.4588 (7) | 0.095 (4) | 0.52 (2) |
H25A | −0.232509 | 0.904572 | 0.429708 | 0.114* | 0.52 (2) |
C25B | −0.1269 (19) | 0.8609 (9) | 0.4785 (8) | 0.107 (4) | 0.48 (2) |
H25B | −0.043555 | 0.857046 | 0.482016 | 0.128* | 0.48 (2) |
C26 | −0.1525 (7) | 0.8967 (5) | 0.5111 (4) | 0.143 (3) | |
H26A | −0.113530 | 0.872088 | 0.545275 | 0.171* | 0.52 (2) |
H26B | −0.157274 | 0.938346 | 0.517050 | 0.171* | 0.52 (2) |
H26C | −0.234134 | 0.903196 | 0.510285 | 0.171* | 0.48 (2) |
H26D | −0.091610 | 0.919371 | 0.538564 | 0.171* | 0.48 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.2090 (13) | 0.1184 (8) | 0.1686 (10) | 0.0308 (6) | 0.0165 (8) | 0.0075 (6) |
O1 | 0.065 (2) | 0.083 (2) | 0.070 (2) | −0.0149 (17) | 0.0230 (17) | −0.0046 (17) |
O2 | 0.064 (2) | 0.084 (2) | 0.091 (2) | −0.0068 (17) | 0.0342 (18) | −0.0205 (19) |
O3 | 0.0680 (19) | 0.068 (2) | 0.065 (2) | 0.0038 (15) | 0.0303 (16) | 0.0088 (15) |
O4 | 0.075 (2) | 0.076 (2) | 0.081 (2) | −0.0089 (18) | 0.0337 (18) | 0.0063 (18) |
O5 | 0.072 (2) | 0.117 (3) | 0.0510 (19) | 0.012 (2) | 0.0212 (16) | −0.0046 (18) |
C1 | 0.076 (4) | 0.039 (3) | 0.060 (4) | 0.000 | 0.012 (3) | 0.000 |
C2 | 0.065 (3) | 0.044 (2) | 0.046 (2) | 0.005 (2) | 0.008 (2) | 0.0071 (19) |
C3 | 0.059 (3) | 0.052 (2) | 0.051 (3) | 0.001 (2) | 0.011 (2) | 0.010 (2) |
C4 | 0.063 (3) | 0.056 (2) | 0.045 (2) | 0.006 (2) | 0.015 (2) | 0.003 (2) |
C5 | 0.056 (3) | 0.052 (2) | 0.046 (2) | 0.005 (2) | 0.0087 (19) | 0.0022 (19) |
C6 | 0.052 (3) | 0.056 (2) | 0.058 (3) | 0.005 (2) | 0.020 (2) | 0.005 (2) |
C7 | 0.066 (3) | 0.051 (2) | 0.052 (2) | 0.007 (2) | 0.018 (2) | 0.000 (2) |
C8 | 0.054 (2) | 0.065 (3) | 0.046 (2) | 0.007 (2) | 0.0070 (19) | 0.004 (2) |
C28 | 0.273 (10) | 0.216 (10) | 0.163 (11) | −0.040 (12) | 0.026 (9) | 0.008 (7) |
C27 | 0.279 (12) | 0.300 (14) | 0.218 (11) | 0.030 (13) | 0.058 (10) | −0.038 (10) |
C9 | 0.049 (2) | 0.056 (2) | 0.041 (2) | −0.001 (2) | 0.0029 (18) | −0.0063 (19) |
C10 | 0.053 (2) | 0.059 (3) | 0.038 (2) | −0.007 (2) | 0.0077 (18) | −0.0027 (19) |
C11 | 0.047 (2) | 0.060 (3) | 0.044 (2) | 0.0011 (19) | 0.0057 (18) | −0.005 (2) |
C12 | 0.058 (3) | 0.056 (2) | 0.037 (2) | −0.005 (2) | 0.0001 (19) | −0.0074 (19) |
C13 | 0.056 (3) | 0.066 (3) | 0.043 (2) | −0.012 (2) | 0.0128 (19) | −0.003 (2) |
C14 | 0.050 (2) | 0.066 (3) | 0.045 (2) | 0.001 (2) | 0.0080 (19) | −0.007 (2) |
C15 | 0.060 (2) | 0.054 (2) | 0.051 (2) | −0.008 (2) | 0.006 (2) | −0.009 (2) |
C16 | 0.062 (3) | 0.040 (2) | 0.054 (3) | −0.005 (2) | 0.009 (2) | −0.0014 (19) |
C17 | 0.069 (3) | 0.050 (2) | 0.050 (3) | 0.005 (2) | 0.015 (2) | −0.001 (2) |
C18 | 0.057 (3) | 0.054 (2) | 0.058 (3) | 0.007 (2) | 0.012 (2) | −0.002 (2) |
C19 | 0.068 (3) | 0.084 (3) | 0.092 (4) | −0.005 (3) | 0.036 (3) | 0.010 (3) |
C20 | 0.084 (4) | 0.173 (7) | 0.209 (8) | −0.027 (5) | 0.077 (5) | −0.089 (7) |
C21 | 0.072 (3) | 0.085 (3) | 0.081 (3) | 0.004 (3) | 0.041 (3) | 0.002 (3) |
C22 | 0.091 (4) | 0.109 (5) | 0.105 (4) | −0.015 (3) | 0.054 (4) | 0.007 (4) |
C23 | 0.081 (4) | 0.083 (4) | 0.082 (4) | 0.013 (3) | 0.033 (3) | 0.003 (3) |
C24 | 0.105 (4) | 0.103 (4) | 0.094 (4) | 0.017 (3) | 0.054 (3) | 0.010 (3) |
C25A | 0.101 (9) | 0.124 (7) | 0.069 (6) | 0.030 (7) | 0.039 (6) | −0.003 (6) |
C25B | 0.076 (8) | 0.166 (10) | 0.083 (8) | 0.037 (7) | 0.028 (6) | −0.011 (6) |
C26 | 0.110 (5) | 0.185 (8) | 0.125 (6) | 0.004 (5) | 0.016 (5) | −0.032 (5) |
Br1—C27 | 1.810 (9) | C12—C15 | 1.516 (6) |
O1—C3 | 1.388 (5) | C13—C14 | 1.380 (6) |
O1—C19 | 1.397 (5) | C14—H14 | 0.9300 |
O2—C20 | 1.361 (7) | C15—C16 | 1.498 (6) |
O2—C6 | 1.371 (5) | C15—H15A | 0.9700 |
O3—C10 | 1.374 (5) | C15—H15B | 0.9700 |
O3—C21 | 1.415 (5) | C16—C18i | 1.387 (6) |
O4—C13 | 1.392 (5) | C16—C17 | 1.402 (6) |
O4—C22 | 1.397 (6) | C17—C18 | 1.389 (6) |
O5—C17 | 1.371 (5) | C18—H18 | 0.9300 |
O5—C23 | 1.389 (6) | C19—H19A | 0.9600 |
C1—C2i | 1.522 (5) | C19—H19B | 0.9600 |
C1—C2 | 1.522 (5) | C19—H19C | 0.9600 |
C1—H1A | 0.9700 | C20—H20A | 0.9600 |
C1—H1B | 0.9700 | C20—H20B | 0.9600 |
C2—C7 | 1.389 (6) | C20—H20C | 0.9600 |
C2—C3 | 1.393 (6) | C21—H21A | 0.9600 |
C3—C4 | 1.369 (6) | C21—H21B | 0.9600 |
C4—C5 | 1.394 (6) | C21—H21C | 0.9600 |
C4—H4 | 0.9300 | C22—H22A | 0.9600 |
C5—C6 | 1.382 (6) | C22—H22B | 0.9600 |
C5—C8 | 1.508 (6) | C22—H22C | 0.9600 |
C6—C7 | 1.382 (6) | C23—C24 | 1.503 (7) |
C7—H7 | 0.9300 | C23—H23A | 0.9700 |
C8—C9 | 1.517 (6) | C23—H23B | 0.9700 |
C8—H8A | 0.9700 | C24—C25A | 1.421 (15) |
C8—H8B | 0.9700 | C24—C25B | 1.585 (19) |
C28—C28i | 1.354 (17) | C24—H24A | 0.9700 |
C28—C27 | 1.510 (5) | C24—H24B | 0.9700 |
C28—H28A | 0.9700 | C24—H24C | 0.9700 |
C28—H28B | 0.9700 | C24—H24D | 0.9700 |
C27—H27A | 0.9700 | C25A—C26 | 1.216 (16) |
C27—H27B | 0.9700 | C25A—H25A | 0.9300 |
C9—C10 | 1.387 (6) | C25B—C26 | 1.142 (16) |
C9—C14 | 1.389 (6) | C25B—H25B | 0.9300 |
C10—C11 | 1.387 (6) | C26—H26A | 0.9300 |
C11—C12 | 1.382 (6) | C26—H26B | 0.9300 |
C11—H11 | 0.9300 | C26—H26C | 0.9300 |
C12—C13 | 1.396 (6) | C26—H26D | 0.9300 |
C3—O1—C19 | 117.8 (4) | C12—C15—H15A | 109.1 |
C20—O2—C6 | 119.1 (4) | C16—C15—H15B | 109.1 |
C10—O3—C21 | 118.8 (4) | C12—C15—H15B | 109.1 |
C13—O4—C22 | 117.7 (4) | H15A—C15—H15B | 107.8 |
C17—O5—C23 | 119.9 (4) | C18i—C16—C17 | 117.6 (4) |
C2i—C1—C2 | 112.0 (4) | C18i—C16—C15 | 120.7 (4) |
C2i—C1—H1A | 109.2 | C17—C16—C15 | 121.6 (4) |
C2—C1—H1A | 109.2 | O5—C17—C18 | 123.9 (4) |
C2i—C1—H1B | 109.2 | O5—C17—C16 | 115.5 (4) |
C2—C1—H1B | 109.2 | C18—C17—C16 | 120.6 (4) |
H1A—C1—H1B | 107.9 | C16i—C18—C17 | 121.8 (4) |
C7—C2—C3 | 117.8 (4) | C16i—C18—H18 | 119.1 |
C7—C2—C1 | 121.1 (4) | C17—C18—H18 | 119.1 |
C3—C2—C1 | 121.1 (4) | O1—C19—H19A | 109.5 |
C4—C3—O1 | 124.2 (4) | O1—C19—H19B | 109.5 |
C4—C3—C2 | 120.5 (4) | H19A—C19—H19B | 109.5 |
O1—C3—C2 | 115.3 (4) | O1—C19—H19C | 109.5 |
C3—C4—C5 | 121.9 (4) | H19A—C19—H19C | 109.5 |
C3—C4—H4 | 119.1 | H19B—C19—H19C | 109.5 |
C5—C4—H4 | 119.1 | O2—C20—H20A | 109.5 |
C6—C5—C4 | 117.7 (4) | O2—C20—H20B | 109.5 |
C6—C5—C8 | 121.8 (4) | H20A—C20—H20B | 109.5 |
C4—C5—C8 | 120.5 (4) | O2—C20—H20C | 109.5 |
O2—C6—C7 | 123.4 (4) | H20A—C20—H20C | 109.5 |
O2—C6—C5 | 116.0 (4) | H20B—C20—H20C | 109.5 |
C7—C6—C5 | 120.6 (4) | O3—C21—H21A | 109.5 |
C6—C7—C2 | 121.5 (4) | O3—C21—H21B | 109.5 |
C6—C7—H7 | 119.2 | H21A—C21—H21B | 109.5 |
C2—C7—H7 | 119.2 | O3—C21—H21C | 109.5 |
C5—C8—C9 | 111.5 (3) | H21A—C21—H21C | 109.5 |
C5—C8—H8A | 109.3 | H21B—C21—H21C | 109.5 |
C9—C8—H8A | 109.3 | O4—C22—H22A | 109.5 |
C5—C8—H8B | 109.3 | O4—C22—H22B | 109.5 |
C9—C8—H8B | 109.3 | H22A—C22—H22B | 109.5 |
H8A—C8—H8B | 108.0 | O4—C22—H22C | 109.5 |
C28i—C28—C27 | 120.8 (13) | H22A—C22—H22C | 109.5 |
C28i—C28—H28A | 107.1 | H22B—C22—H22C | 109.5 |
C27—C28—H28A | 107.1 | O5—C23—C24 | 109.3 (5) |
C28i—C28—H28B | 107.1 | O5—C23—H23A | 109.8 |
C27—C28—H28B | 107.1 | C24—C23—H23A | 109.8 |
H28A—C28—H28B | 106.8 | O5—C23—H23B | 109.8 |
C28—C27—Br1 | 125.4 (8) | C24—C23—H23B | 109.8 |
C28—C27—H27A | 106.0 | H23A—C23—H23B | 108.3 |
Br1—C27—H27A | 106.0 | C25A—C24—C23 | 112.8 (7) |
C28—C27—H27B | 106.0 | C23—C24—C25B | 116.7 (7) |
Br1—C27—H27B | 106.0 | C25A—C24—H24A | 109.0 |
H27A—C27—H27B | 106.3 | C23—C24—H24A | 109.0 |
C10—C9—C14 | 118.2 (4) | C25A—C24—H24B | 109.0 |
C10—C9—C8 | 120.8 (4) | C23—C24—H24B | 109.0 |
C14—C9—C8 | 120.9 (4) | H24A—C24—H24B | 107.8 |
O3—C10—C9 | 115.6 (4) | C23—C24—H24C | 108.1 |
O3—C10—C11 | 124.0 (4) | C25B—C24—H24C | 108.1 |
C9—C10—C11 | 120.4 (4) | C23—C24—H24D | 108.1 |
C12—C11—C10 | 121.9 (4) | C25B—C24—H24D | 108.1 |
C12—C11—H11 | 119.1 | H24C—C24—H24D | 107.3 |
C10—C11—H11 | 119.1 | C26—C25A—C24 | 139.8 (17) |
C11—C12—C13 | 117.4 (4) | C26—C25A—H25A | 110.1 |
C11—C12—C15 | 121.6 (4) | C24—C25A—H25A | 110.1 |
C13—C12—C15 | 121.1 (4) | C26—C25B—C24 | 129.8 (17) |
C14—C13—O4 | 123.4 (4) | C26—C25B—H25B | 115.1 |
C14—C13—C12 | 121.2 (4) | C24—C25B—H25B | 115.1 |
O4—C13—C12 | 115.4 (4) | C25A—C26—H26A | 120.0 |
C13—C14—C9 | 121.0 (4) | C25A—C26—H26B | 120.0 |
C13—C14—H14 | 119.5 | H26A—C26—H26B | 120.0 |
C9—C14—H14 | 119.5 | C25B—C26—H26C | 120.0 |
C16—C15—C12 | 112.5 (3) | C25B—C26—H26D | 120.0 |
C16—C15—H15A | 109.1 | H26C—C26—H26D | 120.0 |
C2i—C1—C2—C7 | −90.9 (4) | C8—C9—C10—C11 | −177.2 (3) |
C2i—C1—C2—C3 | 87.0 (4) | O3—C10—C11—C12 | 179.8 (3) |
C19—O1—C3—C4 | 2.2 (6) | C9—C10—C11—C12 | −0.2 (6) |
C19—O1—C3—C2 | −177.7 (4) | C10—C11—C12—C13 | −0.1 (5) |
C7—C2—C3—C4 | 0.0 (6) | C10—C11—C12—C15 | 178.5 (3) |
C1—C2—C3—C4 | −177.9 (4) | C22—O4—C13—C14 | −4.4 (6) |
C7—C2—C3—O1 | 179.8 (4) | C22—O4—C13—C12 | 176.2 (4) |
C1—C2—C3—O1 | 1.9 (5) | C11—C12—C13—C14 | 0.3 (6) |
O1—C3—C4—C5 | −179.5 (4) | C15—C12—C13—C14 | −178.4 (3) |
C2—C3—C4—C5 | 0.3 (6) | C11—C12—C13—O4 | 179.7 (3) |
C3—C4—C5—C6 | −0.3 (6) | C15—C12—C13—O4 | 1.0 (5) |
C3—C4—C5—C8 | 177.8 (4) | O4—C13—C14—C9 | −179.5 (3) |
C20—O2—C6—C7 | −15.1 (8) | C12—C13—C14—C9 | −0.2 (6) |
C20—O2—C6—C5 | 165.5 (6) | C10—C9—C14—C13 | −0.1 (6) |
C4—C5—C6—O2 | 179.6 (4) | C8—C9—C14—C13 | 177.4 (4) |
C8—C5—C6—O2 | 1.5 (6) | C11—C12—C15—C16 | −88.8 (5) |
C4—C5—C6—C7 | 0.1 (6) | C13—C12—C15—C16 | 89.8 (5) |
C8—C5—C6—C7 | −178.0 (4) | C12—C15—C16—C18i | −88.9 (5) |
O2—C6—C7—C2 | −179.3 (4) | C12—C15—C16—C17 | 86.9 (5) |
C5—C6—C7—C2 | 0.1 (6) | C23—O5—C17—C18 | 5.9 (7) |
C3—C2—C7—C6 | −0.2 (6) | C23—O5—C17—C16 | −174.5 (4) |
C1—C2—C7—C6 | 177.8 (4) | C18i—C16—C17—O5 | 178.5 (4) |
C6—C5—C8—C9 | 90.6 (5) | C15—C16—C17—O5 | 2.6 (6) |
C4—C5—C8—C9 | −87.4 (5) | C18i—C16—C17—C18 | −1.9 (5) |
C28i—C28—C27—Br1 | −173.1 (7) | C15—C16—C17—C18 | −177.9 (4) |
C5—C8—C9—C10 | 89.6 (5) | O5—C17—C18—C16i | −178.3 (4) |
C5—C8—C9—C14 | −87.8 (4) | C16—C17—C18—C16i | 2.2 (6) |
C21—O3—C10—C9 | −178.1 (4) | C17—O5—C23—C24 | 177.9 (4) |
C21—O3—C10—C11 | 2.0 (6) | O5—C23—C24—C25A | 75.2 (11) |
C14—C9—C10—O3 | −179.7 (3) | O5—C23—C24—C25B | 39.7 (11) |
C8—C9—C10—O3 | 2.8 (5) | C23—C24—C25A—C26 | −142.2 (19) |
C14—C9—C10—C11 | 0.3 (5) | C23—C24—C25B—C26 | 124.1 (18) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C27—H27A···O2i | 0.97 | 3.06 | 3.82 (1) | 136 |
C27—H27B···O4i | 0.97 | 3.06 | 3.99 (1) | 160 |
C28—H28B···Cg1 | 0.97 | 3.10 | 4.015 | 158 |
C28—H28A···Cg2 | 0.97 | 3.28 | 3.859 | 120 |
C19—H19A···Br1 | 0.96 | 3.14 | 3.968 (5) | 145 |
C23—H23A···Br1 | 0.97 | 3.15 | 4.039 (5) | 154 |
Symmetry code: (i) −x, y, −z+1/2. |
Cg1 and Cg2 are the centroids of the C2–C7 and C9–C13 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C27—H27A···O2i | 0.97 | 3.06 | 3.82 (1) | 136 |
C27—H27B···O4i | 0.97 | 3.06 | 3.99 (1) | 160 |
C28—H28B···Cg1 | 0.97 | 3.10 | 4.015 | 158 |
C28—H28A···Cg2 | 0.97 | 3.28 | 3.859 | 120 |
C19—H19A···Br1 | 0.96 | 3.14 | 3.968 (5) | 145 |
C23—H23A···Br1 | 0.97 | 3.15 | 4.039 (5) | 154 |
Symmetry code: (i) -x, y, 1/2 - z. |
Acknowledgements
The support of the Kuwait University Research Administration (research grant No. SC 08/19) and the facilities of RSPU through grant Nos. GS 03/08 (Rigaku RAPID II, Japan), GS 01/01 (NMR-Bruker DPX Avance 400, Germany) and GS 01/03 (GC MS Thermo Scientific, Germany) are gratefully acknowledged.
Funding information
Funding for this research was provided by: Kuwait University Research Administration (grant No. SC 08/19); RSPU (grant No. GS 03/08; grant No. GS 01/01; grant No. GS 01/03).
References
Al-Azemi, T. F. & Vinodh, M. (2022). RSC Adv. 12, 1797–1806. Web of Science CAS PubMed Google Scholar
Feng, W.-X., Sun, Z., Zhang, Y., Legrand, Y.-M., Petit, E., Su, C.-Y. & Barboiu, M. (2017). Org. Lett. 19, 1438–1441. Web of Science CrossRef CAS PubMed Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hua, Y., Chen, L., Hou, C., Liu, S., Pei, Z. & Lu, Y. (2020). Int. J. Nanomedicine, Vol. 15, 5873–5899. Google Scholar
Kakuta, T., Yamagishi, T. A. & Ogoshi, T. (2018). Acc. Chem. Res. 51, 1656–1666. Web of Science CrossRef CAS PubMed Google Scholar
Khalil-Cruz, L. E., Liu, P., Huang, F. & Khashab, N. M. (2021). Appl. Mater. Interfaces, 13, 31337–31354. CAS Google Scholar
Li, Q., Zhu, H. & Huang, F. (2020). Trends Chem. 2, 850–864. https://doi.org/10.1016/j.trechm.2020.07.004 Google Scholar
Liu, Z., Demontrond, F., Imberty, A., Sue, A. C.-H., Vidal, S. & Zhao, H. (2023). Chin. Chem. Lett. 34, 107872. https://doi.org/10.1016/j.cclet.2022.107872 Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ogoshi, T., Yamagishi, T. & Nakamoto, Y. (2016). Chem. Rev. 116, 7937–8002. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku (2016). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Vinodh, M., Alipour, F. H. & Al-Azemi, T. F. (2023). ACS Omega, 8, 1466–1475. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, H., Han, J. & Li, C. (2021). Polym. Chem. 12, 2808–2824. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.