inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

H-type Ce2[Si2O7]

crossmark logo

aInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
*Correspondence e-mail: schleid@iac.uni-stuttgart.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 June 2023; accepted 5 July 2023; online 7 July 2023)

The title compound, dicerium(III) oxidodisilicate, Ce2[Si2O7], was obtained as a by-product in its H-type structure after attempts to synthesize CeSb2O4Cl from fused silica ampoules. It crystallizes isotypically with H-La2[Si2O7]. The four crystallographically distinct CeIII cations form distorted square anti­prisms, capped square anti­prisms, and bicapped square anti­prisms as coordination polyhedra consisting of oxygen atoms. Four crystallographically different silicon atoms recruit the centers of two different isolated [Si2O7]6– units.

3D view (loading...)
[Scheme 3D1]

Structure description

H-type Ce2[Si2O7], like H-La2[Si2O7] (Müller-Bunz & Schleid, 2000[Müller-Bunz, H. & Schleid, Th. (2000). Z. Anorg. Allg. Chem. 626, 2549-2556.]), crystallizes isotypically with the triclinic form of potassium dichromate [K2[Cr2O7]; Brandon & Brown, 1968[Brandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933-941.]] in the space group P[\overline{1}]. According to the single-crystal X-ray structure analysis, four crystallographically distinct CeIII cations with coordination numbers ranging from eight to ten are present (Fig. 1[link]), with oxygen atoms forming distorted square anti­prisms (Ce2), capped square anti­prisms (Ce4), and bicapped square anti­prisms (Ce1 and Ce3) as coordination polyhedra. The cerium–oxygen distances d(Ce—O) cover an inter­val from 2.366 (4) to 2.817 (4) Å (Table 1[link]) plus 3.11 (4)–3.34 (4) Å to most caps. All oxygen atoms belong to pyroanionic oxidodisilicate anions [Si2O7]6– (Fig. 2[link]), each consisting of two vertex-connected [SiO4]4– tetra­hedra. Here, four crystallographically different silicon atoms recruit the centers of these two isolated [Si2O7]6– units [d(Si—O) = 1.588 (4)–1.676 (4) Å (Table 1[link]); ∠(O—Si—O) = 100.67 (19)–117.4 (2)°]. Both exhibit an ecliptical conformation with Si—O—Si angles of 129.2 (2) and 128.8 (2)°, leading to a backbone-to-backbone alignment of the Si—O—Si bridges. The silicon–oxygen distances are in the usual range for this element combination, with slightly longer contacts to the bridging oxygen atoms (Table 1[link]). The shortest, of course non-bonding, cerium–silicon distances of 3.2118 (14)–3.3391 (14) Å reflect the close proximity of CeIII to the discrete [Si2O7]6– anions. Figure 3[link] shows the content of an extended unit-cell with highlighted [Si2O7]6– bi­tetra­hedra. The similarity to the other so-far known polymorphs of Ce2[Si2O7] [A- (Kępiński et al., 2002[Kępiński, L., Wołcyrz, M. & Marchewka, M. (2002). J. Solid State Chem. 168, 110-118.]; Deng & Ibers, 2005[Deng, B. & Ibers, J. A. (2005). Acta Cryst. E61, i76-i78.]) and G-type (Tas & Akinc, 1994[Tas, A. C. & Akinc, M. (1994). J. Am. Ceram. Soc. 77, 2968-2970.]; Christensen, 1994[Christensen, A. N. (1994). Z. Kristallogr. 209, 7-13.]; Christensen & Hazell, 1994[Christensen, A. N. & Hazell, R. G. (1994). Acta Chem. Scand. 48, 1012-1014.]) and even I-type Ce2Si2O7 (≡ Ce6[Si4O13][SiO4]2) (Kępiński et al., 2002[Kępiński, L., Wołcyrz, M. & Marchewka, M. (2002). J. Solid State Chem. 168, 110-118.])] is striking and will be discussed in an upcoming review article (Hartenbach et al., 2023[Hartenbach, I., Locke, R. J. C. & Schleid, Th. (2023). Z. Anorg. Allg. Chem. In preparation.]) as a follow up of the pioneering one by Felsche (1970[Felsche, J. (1970). J. Less-Common Met. 21, 1-14.]).

Table 1
Selected bond lengths (Å)

Ce1—O6 2.386 (4) Ce3—O1vii 2.396 (4)
Ce1—O13 2.439 (4) Ce3—O7 2.457 (4)
Ce1—O12 2.445 (4) Ce3—O2iii 2.490 (4)
Ce1—O10 2.480 (4) Ce3—O3iv 2.534 (4)
Ce1—O14i 2.486 (4) Ce3—O6 2.555 (4)
Ce1—O9ii 2.516 (4) Ce3—O13 2.632 (4)
Ce1—O11i 2.663 (4) Ce3—O14 2.687 (4)
Ce1—Si4i 3.2597 (15) Ce3—O4iii 2.705 (4)
Ce1—Si2 3.3340 (15) Ce3—Si4 3.2767 (15)
Ce1—Si3 3.4775 (14) Ce3—Si1iii 3.3138 (14)
Ce1—Ce3 3.9086 (4) Ce3—Si2ix 3.3545 (14)
Ce1—Ce4ii 3.9449 (4) Ce3—Si1x 3.4591 (15)
Ce2—O8 2.366 (4) Si1—O1iii 1.592 (4)
Ce2—O2 2.370 (4) Si1—O2 1.624 (4)
Ce2—O12 2.376 (4) Si1—O3 1.632 (4)
Ce2—O10 2.494 (4) Si1—O4 1.664 (4)
Ce2—O10iii 2.526 (4) Si1—Ce3iii 3.3138 (14)
Ce2—O13iii 2.643 (4) Si1—Ce4iii 3.4549 (14)
Ce2—O9iii 2.675 (4) Si1—Ce3xi 3.4591 (15)
Ce2—O3 2.817 (4) Si2—O5 1.589 (4)
Ce2—Si1 3.2118 (14) Si2—O7i 1.636 (4)
Ce2—Si3iii 3.2386 (15) Si2—O6 1.642 (4)
Ce2—Si4iv 3.4514 (15) Si2—O4x 1.660 (4)
Ce2—Ce1iii 3.9450 (4) Si2—Ce4ii 3.3391 (14)
Ce4—O5 2.415 (4) Si2—Ce3i 3.3544 (14)
Ce4—O1 2.420 (4) Si3—O8v 1.595 (4)
Ce4—O3v 2.517 (4) Si3—O9 1.632 (4)
Ce4—O7vi 2.576 (4) Si3—O10 1.641 (4)
Ce4—O7vii 2.603 (4) Si3—O11iii 1.648 (4)
Ce4—O8v 2.655 (4) Si3—Ce2iii 3.2386 (15)
Ce4—O14vi 2.681 (4) Si4—O12iv 1.588 (4)
Ce4—O9 2.749 (4) Si4—O13 1.620 (4)
Ce4—O6viii 2.812 (4) Si4—O14 1.631 (4)
Ce4—Si3 3.2807 (14) Si4—O11 1.676 (4)
Ce4—Si2viii 3.3391 (14) Si4—Ce1ix 3.2597 (15)
Ce4—Si1iii 3.4549 (14) Si4—Ce2iv 3.4514 (15)
Symmetry codes: (i) [x-1, y, z]; (ii) [x, y-1, z]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+1, -y, -z+1]; (v) [-x, -y+1, -z+1]; (vi) [x-1, y+1, z]; (vii) [-x+1, -y+1, -z]; (viii) x, y+1, z; (ix) x+1, y, z; (x) [x, y, z-1]; (xi) x, y, z+1.
[Figure 1]
Figure 1
Oxygen environment of the four crystallographically different CeIII cations in H-type Ce2[Si2O7]. The yellow dotted bonds reflect cerium–oxygen distances longer than 3.0 Å. Displacement ellipsoids are drawn at the 95% probability level. Symmetry codes refer to Table 1[link].
[Figure 2]
Figure 2
The two distinct oxidodisilicate anions [Si2O7]6– made of two vertex-connected [SiO4]4– tetra­hedra in H-type Ce2[Si2O7], where the position of the oxygen atoms define a backbone arrangement (left), and their Newman projection (right). Displacement ellipsoids are drawn at the 95% probability level. Symmetry codes refer to Table 1[link].
[Figure 3]
Figure 3
View of the triclinic crystal structure of H-type Ce2[Si2O7] along [100] emphasizing the discrete [Si2O7]6– anions. Displacement ellipsoids are drawn at the 95% probability level.

Synthesis and crystallization

Single crystals of H-Ce2[Si2O7] were obtained as a by-product during the synthesis of CeSb2O4Cl (Locke, 2023[Locke, R. J. C. (2023). Planned doctoral thesis, University of Stuttgart, Germany.]; Weis, 2023[Weis, M. (2023). Bachelor Thesis, University of Stuttgart, Germany.]) by reacting Ce2O3 with fused silica (SiO2) as reaction vessel at a temperature of 1023 K, taking advantage of the presumed mineralizers Sb2O3 and CeCl3. The transparent, colorless crystals exhibit a platelet-like habit.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula Ce2[Si2O7]
Mr 448.42
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.7671 (4), 6.8228 (4), 12.4237 (8)
α, β, γ (°) 83.116 (2), 87.975 (2), 88.854 (2)
V3) 569.05 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 16.20
Crystal size (mm) 0.05 × 0.03 × 0.01
 
Data collection
Diffractometer Stadi-Vari
Absorption correction Numerical (LANA; Koziskova et al., 2016[Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136-140.])
Tmin, Tmax 0.414, 0.808
No. of measured, independent and observed [I > 2σ(I)] reflections 23791, 4046, 3376
Rint 0.035
(sin θ/λ)max−1) 0.767
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.00
No. of reflections 4046
No. of parameters 199
Δρmax, Δρmin (e Å−3) 2.54, −2.81
Computer programs: X-AREA (Stoe, 2020[Stoe (2020). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe, 2020); cell refinement: X-AREA (Stoe, 2020); data reduction: X-AREA (Stoe, 2020); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Dicerium(III) oxidodisilicate top
Crystal data top
Ce2[Si2O7]Z = 4
Mr = 448.42F(000) = 800
Triclinic, P1Dx = 5.234 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7671 (4) ÅCell parameters from 23784 reflections
b = 6.8228 (4) Åθ = 1.7–33.1°
c = 12.4237 (8) ŵ = 16.20 mm1
α = 83.116 (2)°T = 293 K
β = 87.975 (2)°Platelet, colourless
γ = 88.854 (2)°0.05 × 0.03 × 0.01 mm
V = 569.05 (6) Å3
Data collection top
Stadi-Vari
diffractometer
4046 independent reflections
Radiation source: fine-focus sealed tube3376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 5.81 pixels mm-1θmax = 33.0°, θmin = 1.7°
DECTRIS PILATUS 200K scansh = 1010
Absorption correction: numerical
(LANA; Koziskova et al., 2016)
k = 1010
Tmin = 0.414, Tmax = 0.808l = 1919
23791 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.030Secondary atom site location: difference Fourier map
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4046 reflectionsΔρmax = 2.54 e Å3
199 parametersΔρmin = 2.81 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.23961 (4)0.21088 (4)0.35322 (2)0.01505 (7)
Ce20.37019 (4)0.36951 (4)0.63911 (2)0.01288 (7)
Ce40.07768 (4)0.83629 (4)0.15567 (2)0.01239 (7)
Ce30.67603 (4)0.23866 (4)0.13758 (2)0.01296 (7)
Si10.4321 (2)0.2825 (2)0.89563 (11)0.0115 (2)
Si20.1605 (2)0.3171 (2)0.08912 (11)0.0120 (2)
Si30.1616 (2)0.6927 (2)0.41176 (11)0.0116 (2)
Si40.7737 (2)0.1022 (2)0.39232 (11)0.0122 (2)
O10.3784 (6)0.8159 (5)0.0460 (3)0.0138 (7)
O20.4898 (6)0.4620 (5)0.8025 (3)0.0142 (7)
O30.2938 (6)0.1348 (5)0.8380 (3)0.0152 (7)
O40.3020 (6)0.4046 (5)0.9831 (3)0.0144 (7)
O50.0549 (6)0.4850 (6)0.1496 (3)0.0204 (8)
O60.3068 (6)0.1720 (5)0.1671 (3)0.0135 (7)
O70.9958 (6)0.1729 (6)0.0479 (3)0.0151 (7)
O80.0207 (6)0.3667 (6)0.6549 (3)0.0157 (7)
O90.2996 (6)0.8508 (5)0.3356 (3)0.0161 (7)
O100.3069 (6)0.5021 (5)0.4473 (3)0.0144 (7)
O110.9092 (6)0.2162 (5)0.4758 (3)0.0140 (7)
O120.3041 (6)0.0981 (6)0.5432 (3)0.0163 (7)
O130.5976 (6)0.2494 (6)0.3458 (3)0.0156 (7)
O140.9272 (6)0.0858 (5)0.2895 (3)0.0152 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.01240 (13)0.01724 (13)0.01669 (14)0.00301 (10)0.00049 (10)0.00672 (10)
Ce20.01202 (13)0.01287 (12)0.01415 (13)0.00143 (9)0.00067 (10)0.00300 (9)
Ce40.01122 (13)0.01164 (12)0.01448 (13)0.00012 (9)0.00034 (9)0.00260 (9)
Ce30.01290 (13)0.01218 (12)0.01400 (13)0.00150 (9)0.00060 (10)0.00289 (9)
Si10.0113 (6)0.0107 (6)0.0129 (6)0.0003 (5)0.0001 (5)0.0034 (4)
Si20.0102 (6)0.0121 (6)0.0135 (6)0.0006 (5)0.0002 (5)0.0015 (5)
Si30.0121 (6)0.0099 (6)0.0128 (6)0.0008 (5)0.0011 (5)0.0018 (5)
Si40.0092 (6)0.0148 (6)0.0131 (6)0.0026 (5)0.0011 (5)0.0041 (5)
O10.0108 (16)0.0161 (16)0.0153 (17)0.0003 (13)0.0006 (13)0.0048 (13)
O20.0168 (18)0.0111 (15)0.0150 (16)0.0021 (13)0.0014 (13)0.0019 (12)
O30.0141 (17)0.0124 (16)0.0202 (18)0.0004 (13)0.0037 (14)0.0058 (13)
O40.0132 (17)0.0150 (16)0.0147 (17)0.0007 (13)0.0043 (13)0.0025 (13)
O50.021 (2)0.0129 (17)0.028 (2)0.0013 (15)0.0074 (16)0.0077 (15)
O60.0129 (17)0.0142 (16)0.0135 (16)0.0006 (13)0.0004 (13)0.0032 (13)
O70.0149 (17)0.0154 (16)0.0158 (17)0.0025 (14)0.0009 (14)0.0044 (13)
O80.0119 (17)0.0204 (18)0.0159 (17)0.0027 (14)0.0009 (13)0.0058 (14)
O90.0142 (18)0.0142 (17)0.0195 (18)0.0007 (13)0.0016 (14)0.0003 (13)
O100.0152 (18)0.0130 (16)0.0150 (17)0.0036 (13)0.0010 (13)0.0023 (13)
O110.0144 (17)0.0149 (16)0.0141 (16)0.0007 (13)0.0008 (13)0.0074 (13)
O120.0189 (19)0.0148 (17)0.0156 (17)0.0027 (14)0.0010 (14)0.0032 (13)
O130.0131 (17)0.0162 (17)0.0169 (17)0.0012 (13)0.0042 (14)0.0013 (13)
O140.0130 (17)0.0132 (16)0.0192 (18)0.0012 (13)0.0006 (14)0.0018 (13)
Geometric parameters (Å, º) top
Ce1—O62.386 (4)Ce3—Si1x3.4591 (15)
Ce1—O132.439 (4)Si1—O1iii1.592 (4)
Ce1—O122.445 (4)Si1—O21.624 (4)
Ce1—O102.480 (4)Si1—O31.632 (4)
Ce1—O14i2.486 (4)Si1—O41.664 (4)
Ce1—O9ii2.516 (4)Si1—Ce3iii3.3138 (14)
Ce1—O11i2.663 (4)Si1—Ce4iii3.4549 (14)
Ce1—Si4i3.2597 (15)Si1—Ce3xi3.4591 (15)
Ce1—Si23.3340 (15)Si2—O51.589 (4)
Ce1—Si33.4775 (14)Si2—O7i1.636 (4)
Ce1—Ce33.9086 (4)Si2—O61.642 (4)
Ce1—Ce4ii3.9449 (4)Si2—O4x1.660 (4)
Ce2—O82.366 (4)Si2—Ce4ii3.3391 (14)
Ce2—O22.370 (4)Si2—Ce3i3.3544 (14)
Ce2—O122.376 (4)Si3—O8v1.595 (4)
Ce2—O102.494 (4)Si3—O91.632 (4)
Ce2—O10iii2.526 (4)Si3—O101.641 (4)
Ce2—O13iii2.643 (4)Si3—O11iii1.648 (4)
Ce2—O9iii2.675 (4)Si3—Ce2iii3.2386 (15)
Ce2—O32.817 (4)Si4—O12iv1.588 (4)
Ce2—Si13.2118 (14)Si4—O131.620 (4)
Ce2—Si3iii3.2386 (15)Si4—O141.631 (4)
Ce2—Si4iv3.4514 (15)Si4—O111.676 (4)
Ce2—Ce1iii3.9450 (4)Si4—Ce1ix3.2597 (15)
Ce4—O52.415 (4)Si4—Ce2iv3.4514 (15)
Ce4—O12.420 (4)O1—Si1iii1.593 (4)
Ce4—O3v2.517 (4)O1—Ce3vii2.396 (4)
Ce4—O7vi2.576 (4)O2—Ce3iii2.490 (4)
Ce4—O7vii2.603 (4)O3—Ce4v2.517 (4)
Ce4—O8v2.655 (4)O3—Ce3iv2.534 (4)
Ce4—O14vi2.681 (4)O4—Si2xi1.660 (4)
Ce4—O92.749 (4)O4—Ce3iii2.705 (4)
Ce4—O6viii2.812 (4)O6—Ce4ii2.812 (4)
Ce4—Si33.2807 (14)O7—Si2ix1.636 (4)
Ce4—Si2viii3.3391 (14)O7—Ce4xii2.576 (4)
Ce4—Si1iii3.4549 (14)O7—Ce4vii2.603 (4)
Ce3—O1vii2.396 (4)O8—Si3v1.595 (4)
Ce3—O72.457 (4)O8—Ce4v2.655 (4)
Ce3—O2iii2.490 (4)O9—Ce1viii2.516 (4)
Ce3—O3iv2.534 (4)O9—Ce2iii2.675 (4)
Ce3—O62.555 (4)O10—Ce2iii2.526 (4)
Ce3—O132.632 (4)O11—Si3iii1.648 (4)
Ce3—O142.687 (4)O11—Ce1ix2.663 (4)
Ce3—O4iii2.705 (4)O12—Si4iv1.588 (4)
Ce3—Si43.2767 (15)O13—Ce2iii2.643 (4)
Ce3—Si1iii3.3138 (14)O14—Ce1ix2.486 (4)
Ce3—Si2ix3.3545 (14)O14—Ce4xii2.681 (4)
O6—Ce1—O1380.46 (13)O1vii—Ce3—O13158.15 (12)
O6—Ce1—O12147.59 (13)O7—Ce3—O13128.05 (12)
O13—Ce1—O1281.45 (13)O2iii—Ce3—O1361.06 (12)
O6—Ce1—O10127.63 (12)O3iv—Ce3—O1392.21 (12)
O13—Ce1—O1073.40 (13)O6—Ce3—O1373.85 (12)
O12—Ce1—O1071.25 (12)O1vii—Ce3—O14134.41 (12)
O6—Ce1—O14i75.12 (13)O7—Ce3—O1471.46 (12)
O13—Ce1—O14i152.98 (13)O2iii—Ce3—O14109.22 (12)
O12—Ce1—O14i113.96 (13)O3iv—Ce3—O1464.76 (12)
O10—Ce1—O14i131.49 (12)O6—Ce3—O14119.09 (12)
O6—Ce1—O9ii70.85 (13)O13—Ce3—O1458.17 (12)
O13—Ce1—O9ii87.75 (13)O1vii—Ce3—O4iii73.44 (12)
O12—Ce1—O9ii81.79 (12)O7—Ce3—O4iii84.49 (12)
O10—Ce1—O9ii148.87 (13)O2iii—Ce3—O4iii58.16 (11)
O14i—Ce1—O9ii73.55 (13)O3iv—Ce3—O4iii152.59 (11)
O6—Ce1—O11i133.66 (12)O6—Ce3—O4iii105.35 (12)
O13—Ce1—O11i145.82 (12)O13—Ce3—O4iii115.11 (11)
O12—Ce1—O11i69.02 (12)O14—Ce3—O4iii127.02 (11)
O10—Ce1—O11i80.90 (11)O1vii—Ce3—Si4154.61 (9)
O14i—Ce1—O11i59.92 (12)O7—Ce3—Si4101.12 (9)
O9ii—Ce1—O11i104.08 (12)O2iii—Ce3—Si487.58 (9)
O6—Ce1—Si4i104.09 (9)O3iv—Ce3—Si472.78 (9)
O13—Ce1—Si4i171.06 (9)O6—Ce3—Si493.50 (9)
O12—Ce1—Si4i90.92 (10)O13—Ce3—Si429.31 (9)
O10—Ce1—Si4i108.63 (9)O14—Ce3—Si429.70 (8)
O14i—Ce1—Si4i29.22 (9)O4iii—Ce3—Si4130.95 (8)
O9ii—Ce1—Si4i86.55 (9)O1vii—Ce3—Si1iii96.03 (9)
O11i—Ce1—Si4i30.83 (8)O7—Ce3—Si1iii110.56 (9)
O6—Ce1—Si227.50 (9)O2iii—Ce3—Si1iii28.21 (9)
O13—Ce1—Si298.21 (9)O3iv—Ce3—Si1iii171.84 (9)
O12—Ce1—Si2174.13 (9)O6—Ce3—Si1iii88.46 (9)
O10—Ce1—Si2114.33 (9)O13—Ce3—Si1iii86.88 (9)
O14i—Ce1—Si264.12 (9)O14—Ce3—Si1iii121.00 (8)
O9ii—Ce1—Si292.34 (9)O4iii—Ce3—Si1iii29.98 (8)
O11i—Ce1—Si2112.92 (9)Si4—Ce3—Si1iii109.25 (3)
Si4i—Ce1—Si288.90 (4)O1vii—Ce3—Si2ix93.12 (9)
O6—Ce1—Si3116.03 (9)O7—Ce3—Si2ix27.57 (9)
O13—Ce1—Si391.87 (10)O2iii—Ce3—Si2ix110.34 (9)
O12—Ce1—Si391.19 (9)O3iv—Ce3—Si2ix95.45 (9)
O10—Ce1—Si325.65 (9)O6—Ce3—Si2ix177.57 (8)
O14i—Ce1—Si3109.06 (9)O13—Ce3—Si2ix108.41 (9)
O9ii—Ce1—Si3172.95 (9)O14—Ce3—Si2ix62.18 (8)
O11i—Ce1—Si372.54 (8)O4iii—Ce3—Si2ix74.63 (9)
Si4i—Ce1—Si392.94 (3)Si4—Ce3—Si2ix88.27 (4)
Si2—Ce1—Si394.68 (3)Si1iii—Ce3—Si2ix92.53 (3)
O6—Ce1—Ce339.25 (9)O1vii—Ce3—Si1x23.77 (9)
O13—Ce1—Ce341.41 (9)O7—Ce3—Si1x92.53 (9)
O12—Ce1—Ce3119.59 (9)O2iii—Ce3—Si1x93.20 (9)
O10—Ce1—Ce3100.84 (9)O3iv—Ce3—Si1x96.79 (9)
O14i—Ce1—Ce3114.11 (9)O6—Ce3—Si1x68.02 (9)
O9ii—Ce1—Ce378.88 (9)O13—Ce3—Si1x139.39 (9)
O11i—Ce1—Ce3171.37 (9)O14—Ce3—Si1x157.57 (8)
Si4i—Ce1—Ce3143.27 (3)O4iii—Ce3—Si1x64.36 (8)
Si2—Ce1—Ce358.60 (3)Si4—Ce3—Si1x160.04 (4)
Si3—Ce1—Ce3105.38 (2)Si1iii—Ce3—Si1x78.82 (4)
O6—Ce1—Ce4ii44.83 (9)Si2ix—Ce3—Si1x110.00 (3)
O13—Ce1—Ce4ii111.23 (9)O1iii—Si1—O2112.2 (2)
O12—Ce1—Ce4ii120.79 (9)O1iii—Si1—O3116.1 (2)
O10—Ce1—Ce4ii167.15 (9)O2—Si1—O3106.2 (2)
O14i—Ce1—Ce4ii42.09 (9)O1iii—Si1—O4108.8 (2)
O9ii—Ce1—Ce4ii43.77 (9)O2—Si1—O4100.67 (19)
O11i—Ce1—Ce4ii98.80 (8)O3—Si1—O4111.8 (2)
Si4i—Ce1—Ce4ii68.76 (2)O1iii—Si1—Ce2126.94 (14)
Si2—Ce1—Ce4ii53.82 (2)O2—Si1—Ce245.33 (13)
Si3—Ce1—Ce4ii142.11 (3)O3—Si1—Ce261.23 (15)
Ce3—Ce1—Ce4ii77.595 (9)O4—Si1—Ce2121.26 (15)
O8—Ce2—O2107.78 (13)O1iii—Si1—Ce3iii125.40 (15)
O8—Ce2—O1279.73 (13)O2—Si1—Ce3iii46.43 (13)
O2—Ce2—O12144.59 (13)O3—Si1—Ce3iii118.24 (15)
O8—Ce2—O1083.10 (13)O4—Si1—Ce3iii54.31 (13)
O2—Ce2—O10142.07 (12)Ce2—Si1—Ce3iii77.32 (3)
O12—Ce2—O1072.15 (13)O1iii—Si1—Ce4iii38.46 (14)
O8—Ce2—O10iii152.66 (13)O2—Si1—Ce4iii79.83 (15)
O2—Ce2—O10iii85.76 (13)O3—Si1—Ce4iii108.61 (15)
O12—Ce2—O10iii103.20 (12)O4—Si1—Ce4iii137.53 (15)
O10—Ce2—O10iii72.34 (14)Ce2—Si1—Ce4iii89.45 (3)
O8—Ce2—O13iii95.55 (13)Ce3iii—Si1—Ce4iii114.92 (4)
O2—Ce2—O13iii62.31 (12)O1iii—Si1—Ce3xi37.34 (13)
O12—Ce2—O13iii152.92 (13)O2—Si1—Ce3xi118.77 (15)
O10—Ce2—O13iii80.83 (12)O3—Si1—Ce3xi133.73 (16)
O10iii—Ce2—O13iii69.29 (12)O4—Si1—Ce3xi71.50 (14)
O8—Ce2—O9iii144.80 (13)Ce2—Si1—Ce3xi158.39 (5)
O2—Ce2—O9iii77.89 (13)Ce3iii—Si1—Ce3xi101.18 (4)
O12—Ce2—O9iii77.40 (13)Ce4iii—Si1—Ce3xi71.44 (3)
O10—Ce2—O9iii114.27 (12)O5—Si2—O7i110.3 (2)
O10iii—Ce2—O9iii60.08 (12)O5—Si2—O6113.3 (2)
O13iii—Ce2—O9iii116.64 (12)O7i—Si2—O6105.8 (2)
O8—Ce2—O376.47 (13)O5—Si2—O4x113.3 (2)
O2—Ce2—O359.52 (11)O7i—Si2—O4x108.5 (2)
O12—Ce2—O390.43 (12)O6—Si2—O4x105.2 (2)
O10—Ce2—O3155.27 (12)O5—Si2—Ce172.52 (17)
O10iii—Ce2—O3130.15 (12)O7i—Si2—Ce1111.94 (15)
O13iii—Ce2—O3114.59 (11)O6—Si2—Ce142.13 (13)
O9iii—Ce2—O377.30 (11)O4x—Si2—Ce1133.61 (15)
O8—Ce2—Si194.61 (10)O5—Si2—Ce4ii123.40 (16)
O2—Ce2—Si129.17 (9)O7i—Si2—Ce4ii48.86 (14)
O12—Ce2—Si1118.01 (10)O6—Si2—Ce4ii57.20 (13)
O10—Ce2—Si1169.12 (8)O4x—Si2—Ce4ii123.07 (14)
O10iii—Ce2—Si1107.23 (9)Ce1—Si2—Ce4ii72.48 (3)
O13iii—Ce2—Si188.84 (9)O5—Si2—Ce3i67.40 (16)
O9iii—Ce2—Si173.43 (9)O7i—Si2—Ce3i44.01 (14)
O3—Ce2—Si130.51 (8)O6—Si2—Ce3i114.70 (14)
O8—Ce2—Si3iii169.04 (9)O4x—Si2—Ce3i135.93 (15)
O2—Ce2—Si3iii81.72 (10)Ce1—Si2—Ce3i89.90 (3)
O12—Ce2—Si3iii89.35 (10)Ce4ii—Si2—Ce3i69.54 (3)
O10—Ce2—Si3iii92.69 (9)O8v—Si3—O9109.9 (2)
O10iii—Ce2—Si3iii29.96 (9)O8v—Si3—O10111.7 (2)
O13iii—Ce2—Si3iii93.75 (9)O9—Si3—O10105.6 (2)
O9iii—Ce2—Si3iii30.16 (9)O8v—Si3—O11iii112.5 (2)
O3—Ce2—Si3iii104.81 (8)O9—Si3—O11iii110.1 (2)
Si1—Ce2—Si3iii91.36 (4)O10—Si3—O11iii106.8 (2)
O8—Ce2—Si4iv72.98 (10)O8v—Si3—Ce2iii128.57 (15)
O2—Ce2—Si4iv123.96 (9)O9—Si3—Ce2iii55.43 (14)
O12—Ce2—Si4iv23.56 (9)O10—Si3—Ce2iii50.22 (14)
O10—Ce2—Si4iv93.93 (9)O11iii—Si3—Ce2iii118.79 (15)
O10iii—Ce2—Si4iv119.59 (8)O8v—Si3—Ce453.26 (15)
O13iii—Ce2—Si4iv167.97 (9)O9—Si3—Ce456.77 (15)
O9iii—Ce2—Si4iv75.37 (9)O10—Si3—Ce4121.00 (14)
O3—Ce2—Si4iv66.98 (8)O11iii—Si3—Ce4132.16 (15)
Si1—Ce2—Si4iv95.56 (3)Ce2iii—Si3—Ce492.12 (4)
Si3iii—Ce2—Si4iv97.33 (3)O8v—Si3—Ce171.73 (15)
O8—Ce2—Ce1iii132.77 (9)O9—Si3—Ce1112.56 (14)
O2—Ce2—Ce1iii56.85 (9)O10—Si3—Ce140.86 (13)
O12—Ce2—Ce1iii140.76 (9)O11iii—Si3—Ce1132.06 (15)
O10—Ce2—Ce1iii88.69 (9)Ce2iii—Si3—Ce171.85 (3)
O10iii—Ce2—Ce1iii37.59 (8)Ce4—Si3—Ce190.17 (3)
O13iii—Ce2—Ce1iii37.25 (9)O12iv—Si4—O13113.3 (2)
O9iii—Ce2—Ce1iii80.15 (8)O12iv—Si4—O14117.4 (2)
O3—Ce2—Ce1iii115.42 (8)O13—Si4—O14105.4 (2)
Si1—Ce2—Ce1iii85.07 (3)O12iv—Si4—O11108.3 (2)
Si3iii—Ce2—Ce1iii56.89 (2)O13—Si4—O11109.4 (2)
Si4iv—Ce2—Ce1iii154.20 (3)O14—Si4—O11102.3 (2)
O5—Ce4—O185.88 (13)O12iv—Si4—Ce1ix124.17 (16)
O5—Ce4—O3v89.90 (13)O13—Si4—Ce1ix122.54 (15)
O1—Ce4—O3v147.59 (13)O14—Si4—Ce1ix48.06 (14)
O5—Ce4—O7vi142.34 (14)O11—Si4—Ce1ix54.50 (13)
O1—Ce4—O7vi89.55 (12)O12iv—Si4—Ce3122.57 (15)
O3v—Ce4—O7vi74.52 (12)O13—Si4—Ce352.68 (14)
O5—Ce4—O7vii79.14 (14)O14—Si4—Ce354.71 (15)
O1—Ce4—O7vii68.22 (12)O11—Si4—Ce3129.08 (15)
O3v—Ce4—O7vii79.42 (12)Ce1ix—Si4—Ce392.60 (4)
O7vi—Ce4—O7vii64.55 (13)O12iv—Si4—Ce2iv36.72 (14)
O5—Ce4—O8v66.01 (13)O13—Si4—Ce2iv106.37 (15)
O1—Ce4—O8v128.92 (13)O14—Si4—Ce2iv86.82 (14)
O3v—Ce4—O8v77.17 (12)O11—Si4—Ce2iv138.90 (15)
O7vi—Ce4—O8v138.50 (12)Ce1ix—Si4—Ce2iv118.44 (4)
O7vii—Ce4—O8v137.57 (12)Ce3—Si4—Ce2iv88.97 (3)
O5—Ce4—O14vi134.07 (13)Si1iii—O1—Ce3vii118.88 (19)
O1—Ce4—O14vi135.66 (12)Si1iii—O1—Ce4117.4 (2)
O3v—Ce4—O14vi65.09 (12)Ce3vii—O1—Ce4113.89 (15)
O7vi—Ce4—O14vi69.81 (12)Si1—O2—Ce2105.51 (18)
O7vii—Ce4—O14vi127.90 (12)Si1—O2—Ce3iii105.37 (18)
O8v—Ce4—O14vi70.98 (12)Ce2—O2—Ce3iii114.04 (15)
O5—Ce4—O9101.90 (14)Si1—O3—Ce4v122.03 (19)
O1—Ce4—O989.74 (12)Si1—O3—Ce3iv125.0 (2)
O3v—Ce4—O9122.51 (12)Ce4v—O3—Ce3iv98.17 (13)
O7vi—Ce4—O9115.46 (11)Si1—O3—Ce288.26 (16)
O7vii—Ce4—O9157.89 (12)Ce4v—O3—Ce298.75 (13)
O8v—Ce4—O958.52 (12)Ce3iv—O3—Ce2123.54 (14)
O14vi—Ce4—O966.93 (12)Si2xi—O4—Si1129.2 (2)
O5—Ce4—O6viii150.12 (13)Si2xi—O4—Ce3iii133.16 (19)
O1—Ce4—O6viii70.33 (11)Si1—O4—Ce3iii95.71 (16)
O3v—Ce4—O6viii119.89 (11)Si2—O5—Ce4138.9 (2)
O7vi—Ce4—O6viii57.87 (11)Si2—O6—Ce1110.37 (18)
O7vii—Ce4—O6viii106.96 (11)Si2—O6—Ce3115.34 (19)
O8v—Ce4—O6viii115.35 (11)Ce1—O6—Ce3104.53 (14)
O14vi—Ce4—O6viii65.44 (11)Si2—O6—Ce4ii93.40 (16)
O9—Ce4—O6viii61.50 (11)Ce1—O6—Ce4ii98.43 (12)
O5—Ce4—Si382.23 (11)Ce3—O6—Ce4ii132.92 (14)
O1—Ce4—Si3110.48 (9)Si2ix—O7—Ce3108.42 (18)
O3v—Ce4—Si3100.71 (9)Si2ix—O7—Ce4xii102.57 (19)
O7vi—Ce4—Si3133.72 (8)Ce3—O7—Ce4xii98.63 (13)
O7vii—Ce4—Si3161.37 (9)Si2ix—O7—Ce4vii123.2 (2)
O8v—Ce4—Si328.79 (9)Ce3—O7—Ce4vii105.80 (14)
O14vi—Ce4—Si366.87 (9)Ce4xii—O7—Ce4vii115.45 (13)
O9—Ce4—Si329.77 (8)Si3v—O8—Ce2138.7 (2)
O6viii—Ce4—Si389.27 (8)Si3v—O8—Ce4v97.95 (18)
O5—Ce4—Si2viii163.01 (10)Ce2—O8—Ce4v107.50 (15)
O1—Ce4—Si2viii80.50 (9)Si3—O9—Ce1viii117.11 (19)
O3v—Ce4—Si2viii96.17 (9)Si3—O9—Ce2iii94.41 (17)
O7vi—Ce4—Si2viii28.57 (9)Ce1viii—O9—Ce2iii130.18 (16)
O7vii—Ce4—Si2viii86.37 (9)Si3—O9—Ce493.46 (17)
O8v—Ce4—Si2viii130.82 (8)Ce1viii—O9—Ce496.94 (13)
O14vi—Ce4—Si2viii62.47 (8)Ce2iii—O9—Ce4119.87 (14)
O9—Ce4—Si2viii88.21 (8)Si3—O10—Ce1113.49 (19)
O6viii—Ce4—Si2viii29.40 (8)Si3—O10—Ce2124.03 (18)
Si3—Ce4—Si2viii112.00 (3)Ce1—O10—Ce2105.83 (14)
O5—Ce4—Si1iii79.59 (10)Si3—O10—Ce2iii99.82 (17)
O1—Ce4—Si1iii24.16 (9)Ce1—O10—Ce2iii104.00 (12)
O3v—Ce4—Si1iii166.44 (8)Ce2—O10—Ce2iii107.66 (14)
O7vi—Ce4—Si1iii108.85 (9)Si3iii—O11—Si4128.8 (2)
O7vii—Ce4—Si1iii90.11 (9)Si3iii—O11—Ce1ix136.4 (2)
O8v—Ce4—Si1iii105.82 (9)Si4—O11—Ce1ix94.67 (15)
O14vi—Ce4—Si1iii128.47 (9)Si4iv—O12—Ce2119.7 (2)
O9—Ce4—Si1iii68.63 (8)Si4iv—O12—Ce1124.8 (2)
O6viii—Ce4—Si1iii71.29 (8)Ce2—O12—Ce1110.77 (15)
Si3—Ce4—Si1iii86.45 (3)Si4—O13—Ce1131.2 (2)
Si2viii—Ce4—Si1iii91.70 (3)Si4—O13—Ce398.00 (18)
O1vii—Ce3—O771.08 (13)Ce1—O13—Ce3100.78 (13)
O1vii—Ce3—O2iii115.42 (13)Si4—O13—Ce2iii118.1 (2)
O7—Ce3—O2iii134.51 (12)Ce1—O13—Ce2iii101.75 (14)
O1vii—Ce3—O3iv81.85 (13)Ce3—O13—Ce2iii101.24 (13)
O7—Ce3—O3iv76.31 (12)Si4—O14—Ce1ix102.72 (18)
O2iii—Ce3—O3iv147.15 (12)Si4—O14—Ce4xii143.4 (2)
O1vii—Ce3—O684.56 (12)Ce1ix—O14—Ce4xii99.49 (13)
O7—Ce3—O6150.12 (11)Si4—O14—Ce395.60 (18)
O2iii—Ce3—O671.43 (12)Ce1ix—O14—Ce3131.95 (15)
O3iv—Ce3—O683.50 (12)Ce4xii—O14—Ce390.65 (12)
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y+1, z+1; (vi) x1, y+1, z; (vii) x+1, y+1, z; (viii) x, y+1, z; (ix) x+1, y, z; (x) x, y, z1; (xi) x, y, z+1; (xii) x+1, y1, z.
 

Acknowledgements

We thank Dr Falk Lissner for the single-crystal X-ray diffraction measurements.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933–941.  CrossRef ICSD CAS Google Scholar
First citationChristensen, A. N. (1994). Z. Kristallogr. 209, 7–13.  CrossRef CAS Web of Science Google Scholar
First citationChristensen, A. N. & Hazell, R. G. (1994). Acta Chem. Scand. 48, 1012–1014.  CrossRef ICSD CAS Web of Science Google Scholar
First citationDeng, B. & Ibers, J. A. (2005). Acta Cryst. E61, i76–i78.  Web of Science CrossRef ICSD CAS IUCr Journals Google Scholar
First citationFelsche, J. (1970). J. Less-Common Met. 21, 1–14.  CrossRef CAS Web of Science Google Scholar
First citationHartenbach, I., Locke, R. J. C. & Schleid, Th. (2023). Z. Anorg. Allg. Chem. In preparation.  Google Scholar
First citationKępiński, L., Wołcyrz, M. & Marchewka, M. (2002). J. Solid State Chem. 168, 110–118.  Google Scholar
First citationKoziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136–140.  Web of Science CrossRef CAS Google Scholar
First citationLocke, R. J. C. (2023). Planned doctoral thesis, University of Stuttgart, Germany.  Google Scholar
First citationMüller-Bunz, H. & Schleid, Th. (2000). Z. Anorg. Allg. Chem. 626, 2549–2556.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (2020). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTas, A. C. & Akinc, M. (1994). J. Am. Ceram. Soc. 77, 2968–2970.  CrossRef ICSD CAS Web of Science Google Scholar
First citationWeis, M. (2023). Bachelor Thesis, University of Stuttgart, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146