metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(tetra­butyl­ammonium) tetra­chlorido­manganate(II) di­chloro­methane disolvate

crossmark logo

aPenn State Beaver, 100 University Drive, Monaca, PA 15061, USA, and bThe Pennsylvania State University, Dept., Biochemistry and Molecular Biology, University Park, PA 16802, USA
*Correspondence e-mail: mth7@psu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 May 2023; accepted 10 July 2023; online 14 July 2023)

The title compound, (C16H36N)2[MnCl4]·2CH2Cl2, is an ionic organic–inorganic hybride compound consisting of a tetra­butyl­ammonium cation and a tetra­chlorido­manganate(II) anion in a 2:1 stoichiometric ratio. The cation contains a central nitro­gen atom bonded to four n-butyl groups in a tetra­hedral arrangement, while the anion contains a central MnII atom tetra­hedrally coordinated by four chlorido ligands. It co-crystallized with two equivalents of di­chloro­methane solvent, CH2Cl2, to give the following empirical formula: [(C4H9)4N]2[MnCl4]·(CH2Cl2)2. The crystal structure is mainly stabilized by Coulombic inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

During our efforts to prepare novel manganese-containing coordination complexes, we synthesized the previously reported non-solvated compound bis­(tetra­butyl­ammonium) tetra­chlorido­manganate(II). In conducting our experiments, we inadvertently obtained the disolvated title compound and determined its crystal structure. After reviewing the literature, we realised that no crystallographic data had yet been reported on either the non-solvated or solvated forms of this substance. The only crystallographic data related to this system was the powder X-ray diffraction data for the non-solvated form at 900 K after it had already undergone thermal decomposition (Styczeń et al., 2009[Styczeń, E., Wyrzykowski, D., Gazda, M. & Warnke, Z. (2009). Thermochim. Acta, 481, 46-51.]). Herein we present the results of the single-crystal structure analysis of the title compound.

The structural formula shows a ratio of 2:1 for the tetra­butyl­ammonium cation and the tetra­chlorido­manganate(II) anion, combined with two solvent mol­ecules of di­chloro­methane (Fig. 1[link]). The above three mol­ecular entities have inter­nal symmetries allowing them to occupy different special positions in the lattice with point group symmetries [\overline{4}].. (multiplicity 4, Wyckoff letter a) for the anion, and .2. (8 d) both for the cation and the solvent mol­ecule. The root-mean-square deviations from ideal Td symmetry for the anion, S4 symmetry for the cation and C2v symmetry for the solvent mol­ecule amount to 0.0123, 0.0501 and 0 Å, respectively, as calculated with PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), based on the SYMMOL program by Pilati & Forni (1998[Pilati, T. & Forni, A. (1998). J. Appl. Cryst. 31, 503-504.], 2000[Pilati, T. & Forni, A. (2000). J. Appl. Cryst. 33, 417.]). The tetra­butyl­ammonium cation, (C4H9)4N+, consists of a central nitro­gen atom tetra­hedrally surrounded by ordered butyl groups, with N—C bond lengths ranging from 1.505 (12) Å to 1.511 (11) Å and C—N—C bond angles in the range of 105.8 (5)–111.7 (11)°. The complex anion MnCl42– is consistent with the structure previously published for the tetra­methyl­ammonium salt (Rodríguez-Lazcano et al., 2009[Rodríguez-Lazcano, Y., Nataf, L. & Rodríguez, F. (2009). J. Lumin. 129, 2000-2003.]) – the central MnII atom is bound with four chloride ligands tetra­hedrally arranged. The Cl—Mn—Cl bond angles are 108.80 (12)-109.81 (12)°. The Mn—Cl bond lengths are all 2.364 (2) Å.

[Figure 1]
Figure 1
Mol­ecular structures of the entities present in the title compound, with displacement ellipsoids drawn at the 50% probability level.

The crystal structure (Fig. 2[link]) is stabilized primarily by Coulombic forces in the absence of classical hydrogen-bonding inter­actions.

[Figure 2]
Figure 2
Packing diagram of the crystal structure, which is stabilized primarily by Coulombic forces.

Synthesis and crystallization

A similar protocol was followed as previously reported in the literature (Styczeń et al., 2009[Styczeń, E., Wyrzykowski, D., Gazda, M. & Warnke, Z. (2009). Thermochim. Acta, 481, 46-51.]). Pink MnCl4·4H2O (5.05 mmol, 1.00 g) was dissolved in warm absolute ethanol (10–15 ml). Separately, two equivalents of white (C4H9)4NCl·H2O (10.1 mmol, 2.81 g) were also dissolved in warm absolute ethanol (10–15 ml). The two ethanol solutions were then mixed, and the solution turned a light-green color. The ethanol was removed under reduced pressure with heating to produce a pale-green solid. The solid was recrystallized from di­chloro­methane/ether to give pale-green crystals. After drying the crystals under reduced pressure at 311 K, they were massed (3.07 g, 89.2% yield). They were analyzed by IR and elemental analysis. IR (cm−1): 2962m, 2943m, 2875m, 1484s, 1468m, 1378m, 1151w, 1025w, 881m, 749m, 732m. Analysis calculated for (C16H36N)2MnCl4: C, 56.38; H, 10.65, N, 4.11. Found: C, 56.47; H, 11.47, N, 4.04. X-ray quality crystals were obtained from a mixture of di­chloro­methane/ether during a reaction involving the non-solvated form of the title compound as the starting material.

Refinement

Crystal data, data collection and structure refinement details for the reported structure is summarized in Table 1[link]. The crystal diffracted poorly at high resolution. The average intensity drops below the 3σ level at 0.9933 Å. Consequently, the reliability factors are comparatively high. As a result of the special symmetry of the di­chloro­methane solvent mol­ecule, the two H atoms (H9A and H9B) were refined with half-occupancy.

Table 1
Experimental details

Crystal data
Chemical formula (C16H36N)2[MnCl4]·2CH2Cl2
Mr 851.50
Crystal system, space group Tetragonal, I[\overline{4}]2d
Temperature (K) 173
a, c (Å) 14.0775 (3), 24.3492 (8)
V3) 4825.4 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.46
Crystal size (mm) 0.38 × 0.28 × 0.13
 
Data collection
Diffractometer ROD, Synergy Custom system, HyPix-Arc 150
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.060, 0.359
No. of measured, independent and observed [I > 2σ(I)] reflections 9265, 2334, 1567
Rint 0.038
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.222, 1.06
No. of reflections 2334
No. of parameters 108
No. of restraints 47
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.32
Absolute structure Flack x determined using 458 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.018 (8)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Bis(tetrabutylammonium) tetrachloridomanganate(II) dichloromethane disolvate top
Crystal data top
(C16H36N)2[MnCl4]·2CH2Cl2Dx = 1.172 Mg m3
Mr = 851.50Cu Kα radiation, λ = 1.54184 Å
Tetragonal, I42dCell parameters from 3369 reflections
a = 14.0775 (3) Åθ = 3.6–60.8°
c = 24.3492 (8) ŵ = 6.46 mm1
V = 4825.4 (3) Å3T = 173 K
Z = 4Plate, clear yellow
F(000) = 18200.38 × 0.28 × 0.13 mm
Data collection top
ROD, Synergy Custom system, HyPix-Arc 150
diffractometer
2334 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source1567 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.0000 pixels mm-1θmax = 74.1°, θmin = 3.6°
ω scansh = 1716
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2021)
k = 1617
Tmin = 0.060, Tmax = 0.359l = 2729
9265 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.075 w = 1/[σ2(Fo2) + (0.1133P)2 + 4.1001P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.222(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.35 e Å3
2334 reflectionsΔρmin = 0.32 e Å3
108 parametersAbsolute structure: Flack x determined using 458 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
47 restraintsAbsolute structure parameter: 0.018 (8)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.5000000.0000000.7500000.0722 (7)
Cl10.37996 (17)0.06513 (19)0.69347 (9)0.0925 (8)
Cl20.2523 (6)0.1511 (5)0.4325 (2)0.248 (4)
C90.2500000.2191 (18)0.3750000.152 (9)
H90.204 (11)0.254 (12)0.382 (8)0.182*
N10.3681 (8)0.2500000.6250000.090 (3)
C10.4291 (7)0.2541 (7)0.6760 (3)0.094 (3)
H1A0.4668530.1948270.6779480.112*
H1B0.3866920.2551780.7084080.112*
C20.4966 (8)0.3374 (6)0.6802 (3)0.100 (3)
H2A0.5400870.3371040.6482220.120*
H2B0.4599160.3973670.6793220.120*
C30.5535 (9)0.3328 (8)0.7322 (5)0.125 (4)
H3A0.5874810.2712630.7331810.150*
H3B0.5091070.3340000.7636960.150*
C40.6252 (10)0.4116 (9)0.7396 (6)0.142 (5)
H4A0.6649400.4162470.7066570.213*
H4B0.6652490.3977090.7715010.213*
H4C0.5918550.4718540.7453950.213*
C50.3081 (8)0.1621 (7)0.6308 (4)0.101 (3)
H5A0.2700750.1679900.6648710.121*
H5B0.3509800.1069500.6355310.121*
C60.2413 (9)0.1411 (9)0.5839 (5)0.127 (4)
H6A0.2784490.1287090.5501140.152*
H6B0.2001730.1969050.5771320.152*
C70.1799 (11)0.0552 (10)0.5969 (6)0.155 (5)
H7A0.2210010.0014950.6081090.186*
H7B0.1371940.0704020.6279820.186*
C80.1215 (16)0.026 (2)0.5479 (8)0.260 (13)
H8A0.1626220.0220880.5154830.390*
H8B0.0719930.0740820.5413780.390*
H8C0.0919900.0353800.5548300.390*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0805 (10)0.0805 (10)0.0555 (13)0.0000.0000.000
Cl10.0873 (14)0.1130 (18)0.0771 (12)0.0069 (13)0.0096 (11)0.0207 (12)
Cl20.359 (8)0.258 (7)0.127 (3)0.111 (7)0.053 (5)0.044 (4)
C90.17 (2)0.137 (19)0.145 (18)0.0000.050 (17)0.000
N10.115 (8)0.085 (7)0.070 (6)0.0000.0000.020 (5)
C10.122 (7)0.096 (6)0.063 (5)0.006 (6)0.003 (5)0.014 (4)
C20.130 (7)0.093 (6)0.077 (5)0.000 (7)0.003 (6)0.009 (5)
C30.152 (10)0.106 (8)0.117 (9)0.022 (8)0.028 (8)0.008 (6)
C40.146 (10)0.140 (11)0.139 (11)0.018 (9)0.018 (9)0.005 (9)
C50.117 (8)0.098 (7)0.088 (6)0.007 (6)0.000 (6)0.008 (5)
C60.141 (10)0.131 (10)0.109 (8)0.030 (9)0.017 (8)0.008 (7)
C70.166 (13)0.163 (12)0.136 (11)0.029 (11)0.028 (10)0.005 (10)
C80.22 (2)0.32 (3)0.24 (2)0.11 (2)0.07 (2)0.06 (2)
Geometric parameters (Å, º) top
Mn1—Cl1i2.364 (2)C3—H3B0.9900
Mn1—Cl1ii2.364 (2)C3—C41.510 (10)
Mn1—Cl1iii2.364 (2)C4—H4A0.9800
Mn1—Cl12.364 (2)C4—H4B0.9800
Cl2—C91.695 (15)C4—H4C0.9800
C9—H90.83 (15)C5—H5A0.9900
C9—H9iv0.83 (15)C5—H5B0.9900
N1—C1v1.511 (11)C5—C61.510 (10)
N1—C11.511 (11)C6—H6A0.9900
N1—C51.505 (12)C6—H6B0.9900
N1—C5v1.505 (12)C6—C71.519 (11)
C1—H1A0.9900C7—H7A0.9900
C1—H1B0.9900C7—H7B0.9900
C1—C21.513 (9)C7—C81.505 (11)
C2—H2A0.9900C8—H8A0.9800
C2—H2B0.9900C8—H8B0.9800
C2—C31.500 (9)C8—H8C0.9800
C3—H3A0.9900
Cl1i—Mn1—Cl1ii109.81 (6)H3A—C3—H3B107.5
Cl1ii—Mn1—Cl1108.80 (12)C4—C3—H3A108.5
Cl1i—Mn1—Cl1iii108.80 (12)C4—C3—H3B108.5
Cl1iii—Mn1—Cl1109.81 (6)C3—C4—H4A109.5
Cl1i—Mn1—Cl1109.81 (6)C3—C4—H4B109.5
Cl1ii—Mn1—Cl1iii109.81 (6)C3—C4—H4C109.5
Cl2—C9—Cl2iv111.3 (14)H4A—C4—H4B109.5
Cl2iv—C9—H9120 (10)H4A—C4—H4C109.5
Cl2—C9—H9100 (10)H4B—C4—H4C109.5
Cl2iv—C9—H9iv100 (10)N1—C5—H5A108.3
Cl2—C9—H9iv120 (10)N1—C5—H5B108.3
H9—C9—H9iv107 (10)N1—C5—C6116.1 (8)
C1—N1—C1v110.7 (10)H5A—C5—H5B107.4
C5v—N1—C1v105.8 (5)C6—C5—H5A108.3
C5—N1—C1105.8 (5)C6—C5—H5B108.3
C5—N1—C1v111.4 (6)C5—C6—H6A109.5
C5v—N1—C1111.4 (6)C5—C6—H6B109.5
C5—N1—C5v111.7 (11)C5—C6—C7110.6 (9)
N1—C1—H1A108.2H6A—C6—H6B108.1
N1—C1—H1B108.2C7—C6—H6A109.5
N1—C1—C2116.2 (7)C7—C6—H6B109.5
H1A—C1—H1B107.4C6—C7—H7A109.4
C2—C1—H1A108.2C6—C7—H7B109.4
C2—C1—H1B108.2H7A—C7—H7B108.0
C1—C2—H2A109.4C8—C7—C6111.0 (12)
C1—C2—H2B109.4C8—C7—H7A109.4
H2A—C2—H2B108.0C8—C7—H7B109.4
C3—C2—C1111.0 (7)C7—C8—H8A109.5
C3—C2—H2A109.4C7—C8—H8B109.5
C3—C2—H2B109.4C7—C8—H8C109.5
C2—C3—H3A108.5H8A—C8—H8B109.5
C2—C3—H3B108.5H8A—C8—H8C109.5
C2—C3—C4115.2 (9)H8B—C8—H8C109.5
N1—C1—C2—C3179.5 (10)C1—C2—C3—C4178.4 (11)
N1—C5—C6—C7175.7 (11)C5v—N1—C1—C258.2 (12)
C1v—N1—C1—C259.3 (7)C5—N1—C1—C2179.8 (9)
C1v—N1—C5—C658.6 (12)C5v—N1—C5—C659.6 (8)
C1—N1—C5—C6179.0 (10)C5—C6—C7—C8173.2 (16)
Symmetry codes: (i) y+1/2, x+1/2, z+3/2; (ii) x+1, y, z; (iii) y+1/2, x1/2, z+3/2; (iv) x+1/2, y, z+3/4; (v) x, y+1/2, z+5/4.
 

Acknowledgements

Authors contributions are as follows. Conceptualization, MTH; validation, MTH and HPY; formal analysis, HPY; investigation, MTH (synthesis and characterization) and HPY (XRD); resources, MTH and HPY; writing (original draft), MTH and HPY; writing (review and editing of the manuscript), MTH and HPY; visualization, MTH and HPY; funding acquisition, MTH and HPY.

Funding information

NIH funding for the X-ray instrumentation – award Nos. 1S10OD028589–01 and 1S10RR023439–01 to Dr Neela Yennawar – is acknowledged.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPilati, T. & Forni, A. (1998). J. Appl. Cryst. 31, 503–504.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPilati, T. & Forni, A. (2000). J. Appl. Cryst. 33, 417.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRodríguez-Lazcano, Y., Nataf, L. & Rodríguez, F. (2009). J. Lumin. 129, 2000–2003.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStyczeń, E., Wyrzykowski, D., Gazda, M. & Warnke, Z. (2009). Thermochim. Acta, 481, 46–51.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146