organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(2,6-Di­chloro­phen­yl)-2-oxo-1,2-di­hydro­pyridine-3-carboxamide

crossmark logo

aSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
*Correspondence e-mail: sihuilong@wit.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 May 2023; accepted 7 July 2023; online 14 July 2023)

Crystals of the title compound, C12H8Cl2N2O2, were obtained by slow evaporation of an ethano­lic solution. An intra­molecular amideN—H⋯O=Clactam hydrogen bond is observed. In the crystal, two mol­ecules pair up to form a centrosymmetric lactam–lactam dimers (LLD) by N—H⋯O=C hydrogen bonds, whereas the O=Camide group of the mol­ecule does not participate in hydrogen bonding.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The mol­ecule of the title compound has two main functional groups, i.e. an amide (C6, N2, O2) and a lactam (C1, N1, O1) moiety (Fig. 1[link]). An intra­molecular hydrogen bond is established between the amide NH group and the O atom of the lactam moiety (Fig. 2[link], Table 1[link]). As a result of the large volume of the two chlorine substituents ortho to the C atom where the amide moiety is attached, the mol­ecule has a twisted conformation with a dihedral angle between the two aromatic rings of 70.68 (13)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.01 2.703 (3) 137
N1—H1⋯O1i 0.82 (4) 1.97 (4) 2.794 (3) 175 (3)
Symmetry code: (i) [-x, -y+2, -z+1].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing of the mol­ecules in the crystal structure. N—H⋯O hydrogen bonds are indicated by dashed lines.

In the crystal structure, at least two synthons, i.e. a lactam–lactam dimer (LLD) and a lactam–amide catemer, are possible. In two previous studies, both synthons were observed due to different substitution patterns on the mol­ecules (Liu et al., 2020[Liu, H., Yang, X., Cao, S., Yu, F., Long, S., Chen, J., Zhang, M., Parkin, S., Li, T. & Yang, Z. (2020). Cryst. Growth Des. 20, 4346-4357.]; Zhoujin et al., 2021[Zhoujin, Y., Yang, X., Zhang, M., Guo, J., Parkin, S., Li, T., Yu, F. & Long, S. (2021). Cryst. Growth Des. 21, 6155-6165.]). In the crystal of the title compound, only the LLD synthon is observed in form of a centrosymmetric dimer established through lactamN—H⋯O=Clactam hydrogen bonds, whereas the O=Camide group of the mol­ecule does not participate in the formation of N—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]).

Synthesis and crystallization

The title compound was synthesized in two steps with 2-hy­droxy­nicotinic acid and 2,6-di­chloro­aniline as starting materials. First, 2-hy­droxy­nicotinic acid was converted into 2-hy­droxy­nicotinoyl chloride with thionyl chloride. Then 2-hy­droxy­nicotinoyl chloride was reacted with 2,6-di­chloro­aniline to provide the title compound (Fig. 3[link]). Single crystals of the title compound were obtained through slow evaporation of a saturated ethano­lic solution. The details of the crystallization are as follows: about 30 mg of the compound was placed in a test tube, and an appropriate amount of solvent was added dropwise to dissolve the compound. The solution was filtered into a glass vial covered with a perforated parafilm (Hu et al., 2018[Hu, R., Zhoujin, Y., Liu, M., Zhang, M., Parkin, S., Zhou, P., Wang, J., Yu, F. & Long, S. (2018). RSC Adv. 8, 15459-15470.]). Slow evaporation of the solution led to colorless single crystals in about a week (Fig. 4[link]).

[Figure 3]
Figure 3
Synthesis scheme to obtain (1).
[Figure 4]
Figure 4
A representative crystal of (1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atom of the lactam moiety was refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C12H8Cl2N2O2
Mr 283.10
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 297
a, b, c (Å) 7.3730 (6), 8.0091 (6), 10.8545 (6)
α, β, γ (°) 97.296 (6), 95.228 (6), 102.149 (7)
V3) 616.93 (8)
Z 2
Radiation type Cu Kα
μ (mm−1) 4.71
Crystal size (mm) 0.21 × 0.18 × 0.17
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.140, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5370, 2135, 1943
Rint 0.073
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.210, 1.03
No. of reflections 2135
No. of parameters 168
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.74, −0.61
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

N-(2,6-Dichlorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide top
Crystal data top
C12H8Cl2N2O2Z = 2
Mr = 283.10F(000) = 288
Triclinic, P1Dx = 1.524 Mg m3
a = 7.3730 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.0091 (6) ÅCell parameters from 4779 reflections
c = 10.8545 (6) Åθ = 4.1–76.2°
α = 97.296 (6)°µ = 4.71 mm1
β = 95.228 (6)°T = 297 K
γ = 102.149 (7)°Block, clear light colourless
V = 616.93 (8) Å30.21 × 0.18 × 0.17 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
2135 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source1943 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.073
Detector resolution: 10.0000 pixels mm-1θmax = 66.6°, θmin = 4.1°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 98
Tmin = 0.140, Tmax = 1.000l = 1212
5370 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.077 w = 1/[σ2(Fo2) + (0.173P)2 + 0.0514P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.210(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.74 e Å3
2135 reflectionsΔρmin = 0.61 e Å3
168 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.013 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09456 (12)0.25172 (11)0.21934 (9)0.0689 (4)
Cl20.33699 (11)0.84435 (8)0.03740 (7)0.0606 (4)
O10.0726 (3)0.8647 (3)0.38156 (19)0.0573 (6)
O20.4804 (3)0.5753 (3)0.32403 (18)0.0601 (7)
N10.2015 (3)0.9462 (3)0.5833 (2)0.0451 (6)
N20.2180 (3)0.6370 (3)0.2380 (2)0.0449 (6)
H20.1283180.6886020.2494050.054*
C10.1941 (3)0.8550 (3)0.4661 (2)0.0416 (6)
C20.3370 (3)0.7567 (3)0.4535 (2)0.0394 (6)
C30.4628 (4)0.7595 (4)0.5538 (3)0.0458 (7)
H30.5538670.6957030.5445710.055*
C40.4597 (4)0.8558 (4)0.6713 (3)0.0498 (7)
H40.5465830.8566610.7391680.060*
C50.3257 (4)0.9469 (4)0.6815 (3)0.0478 (7)
H50.3195161.0111070.7580200.057*
C60.3521 (4)0.6494 (3)0.3331 (2)0.0414 (6)
C70.2203 (3)0.5413 (3)0.1196 (2)0.0390 (6)
C80.1698 (3)0.3609 (3)0.0998 (3)0.0441 (6)
C90.1746 (4)0.2670 (4)0.0165 (3)0.0533 (8)
H90.1397750.1469700.0285670.064*
C100.2312 (4)0.3524 (4)0.1133 (3)0.0542 (8)
H100.2361390.2895530.1905620.065*
C110.2804 (4)0.5292 (4)0.0971 (3)0.0484 (7)
H110.3178900.5868350.1628780.058*
C120.2733 (3)0.6204 (3)0.0189 (2)0.0405 (6)
H10.118 (5)0.999 (4)0.589 (3)0.047 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0707 (6)0.0764 (6)0.0693 (7)0.0185 (4)0.0188 (4)0.0360 (5)
Cl20.0779 (6)0.0474 (5)0.0549 (6)0.0110 (4)0.0063 (4)0.0078 (4)
O10.0613 (12)0.0848 (15)0.0359 (10)0.0487 (11)0.0014 (9)0.0050 (10)
O20.0628 (12)0.0913 (15)0.0394 (11)0.0527 (11)0.0088 (9)0.0018 (10)
N10.0521 (13)0.0599 (13)0.0319 (12)0.0322 (10)0.0106 (10)0.0022 (10)
N20.0500 (12)0.0643 (14)0.0291 (12)0.0346 (10)0.0091 (9)0.0001 (10)
C10.0457 (13)0.0540 (14)0.0328 (13)0.0253 (11)0.0125 (11)0.0055 (11)
C20.0446 (13)0.0509 (14)0.0308 (13)0.0230 (10)0.0130 (10)0.0098 (11)
C30.0519 (14)0.0557 (15)0.0370 (14)0.0278 (11)0.0069 (11)0.0063 (12)
C40.0600 (16)0.0652 (17)0.0310 (13)0.0317 (13)0.0034 (12)0.0042 (12)
C50.0566 (15)0.0610 (16)0.0304 (13)0.0234 (12)0.0099 (11)0.0032 (11)
C60.0472 (13)0.0548 (14)0.0311 (13)0.0251 (10)0.0142 (11)0.0096 (11)
C70.0380 (12)0.0509 (14)0.0319 (13)0.0213 (10)0.0071 (10)0.0005 (11)
C80.0444 (13)0.0512 (14)0.0446 (15)0.0223 (10)0.0121 (11)0.0119 (12)
C90.0537 (15)0.0443 (13)0.0626 (19)0.0219 (11)0.0054 (13)0.0062 (13)
C100.0576 (15)0.0658 (17)0.0430 (16)0.0290 (13)0.0135 (13)0.0082 (14)
C110.0531 (14)0.0656 (17)0.0315 (13)0.0227 (12)0.0139 (11)0.0040 (12)
C120.0421 (12)0.0461 (13)0.0357 (13)0.0158 (9)0.0088 (10)0.0029 (11)
Geometric parameters (Å, º) top
Cl1—C81.724 (3)C3—C41.409 (4)
Cl2—C121.736 (3)C4—H40.9300
O1—C11.244 (3)C4—C51.350 (4)
O2—C61.223 (3)C5—H50.9300
N1—C11.375 (4)C7—C81.398 (4)
N1—C51.339 (4)C7—C121.378 (4)
N1—H10.82 (4)C8—C91.392 (4)
N2—H20.8600C9—H90.9300
N2—C61.341 (3)C9—C101.374 (5)
N2—C71.414 (3)C10—H100.9300
C1—C21.448 (3)C10—C111.369 (5)
C2—C31.359 (4)C11—H110.9300
C2—C61.497 (3)C11—C121.384 (4)
C3—H30.9300
C1—N1—H1113 (2)O2—C6—N2122.4 (2)
C5—N1—C1125.1 (2)O2—C6—C2120.6 (2)
C5—N1—H1122 (2)N2—C6—C2117.0 (2)
C6—N2—H2119.2C8—C7—N2121.1 (2)
C6—N2—C7121.6 (2)C12—C7—N2122.0 (2)
C7—N2—H2119.2C12—C7—C8116.9 (2)
O1—C1—N1119.5 (2)C7—C8—Cl1119.9 (2)
O1—C1—C2126.0 (2)C9—C8—Cl1119.1 (2)
N1—C1—C2114.5 (2)C9—C8—C7121.0 (3)
C1—C2—C6122.5 (2)C8—C9—H9120.2
C3—C2—C1119.7 (2)C10—C9—C8119.7 (3)
C3—C2—C6117.8 (2)C10—C9—H9120.2
C2—C3—H3119.0C9—C10—H10119.6
C2—C3—C4122.1 (2)C11—C10—C9120.7 (3)
C4—C3—H3119.0C11—C10—H10119.6
C3—C4—H4121.3C10—C11—H11120.6
C5—C4—C3117.5 (3)C10—C11—C12118.8 (3)
C5—C4—H4121.3C12—C11—H11120.6
N1—C5—C4121.1 (3)C7—C12—Cl2119.05 (19)
N1—C5—H5119.4C7—C12—C11122.9 (2)
C4—C5—H5119.4C11—C12—Cl2118.0 (2)
Cl1—C8—C9—C10178.9 (2)C5—N1—C1—O1179.7 (3)
O1—C1—C2—C3179.2 (3)C5—N1—C1—C20.9 (4)
O1—C1—C2—C61.2 (4)C6—N2—C7—C876.0 (3)
N1—C1—C2—C30.5 (4)C6—N2—C7—C12103.5 (3)
N1—C1—C2—C6179.9 (2)C6—C2—C3—C4179.7 (2)
N2—C7—C8—Cl12.5 (3)C7—N2—C6—O22.1 (4)
N2—C7—C8—C9179.1 (2)C7—N2—C6—C2178.9 (2)
N2—C7—C12—Cl20.6 (3)C7—C8—C9—C100.5 (4)
N2—C7—C12—C11178.6 (2)C8—C7—C12—Cl2179.79 (17)
C1—N1—C5—C40.9 (5)C8—C7—C12—C111.0 (4)
C1—C2—C3—C40.1 (4)C8—C9—C10—C110.9 (5)
C1—C2—C6—O2176.1 (3)C9—C10—C11—C120.4 (4)
C1—C2—C6—N24.8 (4)C10—C11—C12—Cl2179.8 (2)
C2—C3—C4—C50.0 (5)C10—C11—C12—C70.5 (4)
C3—C2—C6—O24.3 (4)C12—C7—C8—Cl1177.95 (18)
C3—C2—C6—N2174.8 (2)C12—C7—C8—C90.4 (4)
C3—C4—C5—N10.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.012.703 (3)137
N1—H1···O1i0.82 (4)1.97 (4)2.794 (3)175 (3)
Symmetry code: (i) x, y+2, z+1.
 

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHu, R., Zhoujin, Y., Liu, M., Zhang, M., Parkin, S., Zhou, P., Wang, J., Yu, F. & Long, S. (2018). RSC Adv. 8, 15459–15470.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, H., Yang, X., Cao, S., Yu, F., Long, S., Chen, J., Zhang, M., Parkin, S., Li, T. & Yang, Z. (2020). Cryst. Growth Des. 20, 4346–4357.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhoujin, Y., Yang, X., Zhang, M., Guo, J., Parkin, S., Li, T., Yu, F. & Long, S. (2021). Cryst. Growth Des. 21, 6155–6165.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146