organic compounds
N-(2,6-Dichlorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide
aSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
*Correspondence e-mail: sihuilong@wit.edu.cn
Crystals of the title compound, C12H8Cl2N2O2, were obtained by slow evaporation of an ethanolic solution. An intramolecular amideN—H⋯O=Clactam hydrogen bond is observed. In the crystal, two molecules pair up to form a centrosymmetric lactam–lactam dimers (LLD) by N—H⋯O=C hydrogen bonds, whereas the O=Camide group of the molecule does not participate in hydrogen bonding.
Keywords: crystal structure; highly twisted conformation; lactam–lactam dimer; N—H⋯O hydrogen bonds.
CCDC reference: 2280201
Structure description
The molecule of the title compound has two main functional groups, i.e. an amide (C6, N2, O2) and a lactam (C1, N1, O1) moiety (Fig. 1). An intramolecular hydrogen bond is established between the amide NH group and the O atom of the lactam moiety (Fig. 2, Table 1). As a result of the large volume of the two chlorine substituents ortho to the C atom where the amide moiety is attached, the molecule has a twisted conformation with a dihedral angle between the two aromatic rings of 70.68 (13)°.
|
In the i.e. a lactam–lactam dimer (LLD) and a lactam–amide catemer, are possible. In two previous studies, both synthons were observed due to different substitution patterns on the molecules (Liu et al., 2020; Zhoujin et al., 2021). In the crystal of the title compound, only the LLD synthon is observed in form of a centrosymmetric dimer established through lactamN—H⋯O=Clactam hydrogen bonds, whereas the O=Camide group of the molecule does not participate in the formation of N—H⋯O hydrogen bonds (Table 1, Fig. 2).
at least two synthons,Synthesis and crystallization
The title compound was synthesized in two steps with 2-hydroxynicotinic acid and 2,6-dichloroaniline as starting materials. First, 2-hydroxynicotinic acid was converted into 2-hydroxynicotinoyl chloride with thionyl chloride. Then 2-hydroxynicotinoyl chloride was reacted with 2,6-dichloroaniline to provide the title compound (Fig. 3). Single crystals of the title compound were obtained through slow evaporation of a saturated ethanolic solution. The details of the crystallization are as follows: about 30 mg of the compound was placed in a test tube, and an appropriate amount of solvent was added dropwise to dissolve the compound. The solution was filtered into a glass vial covered with a perforated parafilm (Hu et al., 2018). Slow evaporation of the solution led to colorless single crystals in about a week (Fig. 4).
Refinement
Crystal data, data collection and structure . The H atom of the lactam moiety was refined freely.
details are summarized in Table 2Structural data
CCDC reference: 2280201
https://doi.org/10.1107/S241431462300603X/wm4188sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462300603X/wm4188Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431462300603X/wm4188Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).C12H8Cl2N2O2 | Z = 2 |
Mr = 283.10 | F(000) = 288 |
Triclinic, P1 | Dx = 1.524 Mg m−3 |
a = 7.3730 (6) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 8.0091 (6) Å | Cell parameters from 4779 reflections |
c = 10.8545 (6) Å | θ = 4.1–76.2° |
α = 97.296 (6)° | µ = 4.71 mm−1 |
β = 95.228 (6)° | T = 297 K |
γ = 102.149 (7)° | Block, clear light colourless |
V = 616.93 (8) Å3 | 0.21 × 0.18 × 0.17 mm |
XtaLAB Synergy R, DW system, HyPix diffractometer | 2135 independent reflections |
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source | 1943 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.073 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 66.6°, θmin = 4.1° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −9→8 |
Tmin = 0.140, Tmax = 1.000 | l = −12→12 |
5370 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.077 | w = 1/[σ2(Fo2) + (0.173P)2 + 0.0514P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.210 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.74 e Å−3 |
2135 reflections | Δρmin = −0.61 e Å−3 |
168 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.013 (4) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.09456 (12) | 0.25172 (11) | 0.21934 (9) | 0.0689 (4) | |
Cl2 | 0.33699 (11) | 0.84435 (8) | 0.03740 (7) | 0.0606 (4) | |
O1 | 0.0726 (3) | 0.8647 (3) | 0.38156 (19) | 0.0573 (6) | |
O2 | 0.4804 (3) | 0.5753 (3) | 0.32403 (18) | 0.0601 (7) | |
N1 | 0.2015 (3) | 0.9462 (3) | 0.5833 (2) | 0.0451 (6) | |
N2 | 0.2180 (3) | 0.6370 (3) | 0.2380 (2) | 0.0449 (6) | |
H2 | 0.128318 | 0.688602 | 0.249405 | 0.054* | |
C1 | 0.1941 (3) | 0.8550 (3) | 0.4661 (2) | 0.0416 (6) | |
C2 | 0.3370 (3) | 0.7567 (3) | 0.4535 (2) | 0.0394 (6) | |
C3 | 0.4628 (4) | 0.7595 (4) | 0.5538 (3) | 0.0458 (7) | |
H3 | 0.553867 | 0.695703 | 0.544571 | 0.055* | |
C4 | 0.4597 (4) | 0.8558 (4) | 0.6713 (3) | 0.0498 (7) | |
H4 | 0.546583 | 0.856661 | 0.739168 | 0.060* | |
C5 | 0.3257 (4) | 0.9469 (4) | 0.6815 (3) | 0.0478 (7) | |
H5 | 0.319516 | 1.011107 | 0.758020 | 0.057* | |
C6 | 0.3521 (4) | 0.6494 (3) | 0.3331 (2) | 0.0414 (6) | |
C7 | 0.2203 (3) | 0.5413 (3) | 0.1196 (2) | 0.0390 (6) | |
C8 | 0.1698 (3) | 0.3609 (3) | 0.0998 (3) | 0.0441 (6) | |
C9 | 0.1746 (4) | 0.2670 (4) | −0.0165 (3) | 0.0533 (8) | |
H9 | 0.139775 | 0.146970 | −0.028567 | 0.064* | |
C10 | 0.2312 (4) | 0.3524 (4) | −0.1133 (3) | 0.0542 (8) | |
H10 | 0.236139 | 0.289553 | −0.190562 | 0.065* | |
C11 | 0.2804 (4) | 0.5292 (4) | −0.0971 (3) | 0.0484 (7) | |
H11 | 0.317890 | 0.586835 | −0.162878 | 0.058* | |
C12 | 0.2733 (3) | 0.6204 (3) | 0.0189 (2) | 0.0405 (6) | |
H1 | 0.118 (5) | 0.999 (4) | 0.589 (3) | 0.047 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0707 (6) | 0.0764 (6) | 0.0693 (7) | 0.0185 (4) | 0.0188 (4) | 0.0360 (5) |
Cl2 | 0.0779 (6) | 0.0474 (5) | 0.0549 (6) | 0.0110 (4) | 0.0063 (4) | 0.0078 (4) |
O1 | 0.0613 (12) | 0.0848 (15) | 0.0359 (10) | 0.0487 (11) | 0.0014 (9) | −0.0050 (10) |
O2 | 0.0628 (12) | 0.0913 (15) | 0.0394 (11) | 0.0527 (11) | 0.0088 (9) | −0.0018 (10) |
N1 | 0.0521 (13) | 0.0599 (13) | 0.0319 (12) | 0.0322 (10) | 0.0106 (10) | 0.0022 (10) |
N2 | 0.0500 (12) | 0.0643 (14) | 0.0291 (12) | 0.0346 (10) | 0.0091 (9) | −0.0001 (10) |
C1 | 0.0457 (13) | 0.0540 (14) | 0.0328 (13) | 0.0253 (11) | 0.0125 (11) | 0.0055 (11) |
C2 | 0.0446 (13) | 0.0509 (14) | 0.0308 (13) | 0.0230 (10) | 0.0130 (10) | 0.0098 (11) |
C3 | 0.0519 (14) | 0.0557 (15) | 0.0370 (14) | 0.0278 (11) | 0.0069 (11) | 0.0063 (12) |
C4 | 0.0600 (16) | 0.0652 (17) | 0.0310 (13) | 0.0317 (13) | 0.0034 (12) | 0.0042 (12) |
C5 | 0.0566 (15) | 0.0610 (16) | 0.0304 (13) | 0.0234 (12) | 0.0099 (11) | 0.0032 (11) |
C6 | 0.0472 (13) | 0.0548 (14) | 0.0311 (13) | 0.0251 (10) | 0.0142 (11) | 0.0096 (11) |
C7 | 0.0380 (12) | 0.0509 (14) | 0.0319 (13) | 0.0213 (10) | 0.0071 (10) | −0.0005 (11) |
C8 | 0.0444 (13) | 0.0512 (14) | 0.0446 (15) | 0.0223 (10) | 0.0121 (11) | 0.0119 (12) |
C9 | 0.0537 (15) | 0.0443 (13) | 0.0626 (19) | 0.0219 (11) | 0.0054 (13) | −0.0062 (13) |
C10 | 0.0576 (15) | 0.0658 (17) | 0.0430 (16) | 0.0290 (13) | 0.0135 (13) | −0.0082 (14) |
C11 | 0.0531 (14) | 0.0656 (17) | 0.0315 (13) | 0.0227 (12) | 0.0139 (11) | 0.0040 (12) |
C12 | 0.0421 (12) | 0.0461 (13) | 0.0357 (13) | 0.0158 (9) | 0.0088 (10) | 0.0029 (11) |
Cl1—C8 | 1.724 (3) | C3—C4 | 1.409 (4) |
Cl2—C12 | 1.736 (3) | C4—H4 | 0.9300 |
O1—C1 | 1.244 (3) | C4—C5 | 1.350 (4) |
O2—C6 | 1.223 (3) | C5—H5 | 0.9300 |
N1—C1 | 1.375 (4) | C7—C8 | 1.398 (4) |
N1—C5 | 1.339 (4) | C7—C12 | 1.378 (4) |
N1—H1 | 0.82 (4) | C8—C9 | 1.392 (4) |
N2—H2 | 0.8600 | C9—H9 | 0.9300 |
N2—C6 | 1.341 (3) | C9—C10 | 1.374 (5) |
N2—C7 | 1.414 (3) | C10—H10 | 0.9300 |
C1—C2 | 1.448 (3) | C10—C11 | 1.369 (5) |
C2—C3 | 1.359 (4) | C11—H11 | 0.9300 |
C2—C6 | 1.497 (3) | C11—C12 | 1.384 (4) |
C3—H3 | 0.9300 | ||
C1—N1—H1 | 113 (2) | O2—C6—N2 | 122.4 (2) |
C5—N1—C1 | 125.1 (2) | O2—C6—C2 | 120.6 (2) |
C5—N1—H1 | 122 (2) | N2—C6—C2 | 117.0 (2) |
C6—N2—H2 | 119.2 | C8—C7—N2 | 121.1 (2) |
C6—N2—C7 | 121.6 (2) | C12—C7—N2 | 122.0 (2) |
C7—N2—H2 | 119.2 | C12—C7—C8 | 116.9 (2) |
O1—C1—N1 | 119.5 (2) | C7—C8—Cl1 | 119.9 (2) |
O1—C1—C2 | 126.0 (2) | C9—C8—Cl1 | 119.1 (2) |
N1—C1—C2 | 114.5 (2) | C9—C8—C7 | 121.0 (3) |
C1—C2—C6 | 122.5 (2) | C8—C9—H9 | 120.2 |
C3—C2—C1 | 119.7 (2) | C10—C9—C8 | 119.7 (3) |
C3—C2—C6 | 117.8 (2) | C10—C9—H9 | 120.2 |
C2—C3—H3 | 119.0 | C9—C10—H10 | 119.6 |
C2—C3—C4 | 122.1 (2) | C11—C10—C9 | 120.7 (3) |
C4—C3—H3 | 119.0 | C11—C10—H10 | 119.6 |
C3—C4—H4 | 121.3 | C10—C11—H11 | 120.6 |
C5—C4—C3 | 117.5 (3) | C10—C11—C12 | 118.8 (3) |
C5—C4—H4 | 121.3 | C12—C11—H11 | 120.6 |
N1—C5—C4 | 121.1 (3) | C7—C12—Cl2 | 119.05 (19) |
N1—C5—H5 | 119.4 | C7—C12—C11 | 122.9 (2) |
C4—C5—H5 | 119.4 | C11—C12—Cl2 | 118.0 (2) |
Cl1—C8—C9—C10 | 178.9 (2) | C5—N1—C1—O1 | −179.7 (3) |
O1—C1—C2—C3 | 179.2 (3) | C5—N1—C1—C2 | −0.9 (4) |
O1—C1—C2—C6 | −1.2 (4) | C6—N2—C7—C8 | 76.0 (3) |
N1—C1—C2—C3 | 0.5 (4) | C6—N2—C7—C12 | −103.5 (3) |
N1—C1—C2—C6 | −179.9 (2) | C6—C2—C3—C4 | −179.7 (2) |
N2—C7—C8—Cl1 | 2.5 (3) | C7—N2—C6—O2 | −2.1 (4) |
N2—C7—C8—C9 | −179.1 (2) | C7—N2—C6—C2 | 178.9 (2) |
N2—C7—C12—Cl2 | −0.6 (3) | C7—C8—C9—C10 | 0.5 (4) |
N2—C7—C12—C11 | 178.6 (2) | C8—C7—C12—Cl2 | 179.79 (17) |
C1—N1—C5—C4 | 0.9 (5) | C8—C7—C12—C11 | −1.0 (4) |
C1—C2—C3—C4 | −0.1 (4) | C8—C9—C10—C11 | −0.9 (5) |
C1—C2—C6—O2 | 176.1 (3) | C9—C10—C11—C12 | 0.4 (4) |
C1—C2—C6—N2 | −4.8 (4) | C10—C11—C12—Cl2 | 179.8 (2) |
C2—C3—C4—C5 | 0.0 (5) | C10—C11—C12—C7 | 0.5 (4) |
C3—C2—C6—O2 | −4.3 (4) | C12—C7—C8—Cl1 | −177.95 (18) |
C3—C2—C6—N2 | 174.8 (2) | C12—C7—C8—C9 | 0.4 (4) |
C3—C4—C5—N1 | −0.4 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1 | 0.86 | 2.01 | 2.703 (3) | 137 |
N1—H1···O1i | 0.82 (4) | 1.97 (4) | 2.794 (3) | 175 (3) |
Symmetry code: (i) −x, −y+2, −z+1. |
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hu, R., Zhoujin, Y., Liu, M., Zhang, M., Parkin, S., Zhou, P., Wang, J., Yu, F. & Long, S. (2018). RSC Adv. 8, 15459–15470. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liu, H., Yang, X., Cao, S., Yu, F., Long, S., Chen, J., Zhang, M., Parkin, S., Li, T. & Yang, Z. (2020). Cryst. Growth Des. 20, 4346–4357. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zhoujin, Y., Yang, X., Zhang, M., Guo, J., Parkin, S., Li, T., Yu, F. & Long, S. (2021). Cryst. Growth Des. 21, 6155–6165. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.