organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(3-Chloro-2-methyl­phen­yl)-6-oxo-1,6-di­hydro­pyridine-3-carboxamide

crossmark logo

aSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
*Correspondence e-mail: sihuilong@wit.edu.cn

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 23 May 2023; accepted 7 July 2023; online 14 July 2023)

In the crystal structure of the title compound, C13H11ClN2O2, the mol­ecules form a three-dimensional network based on two types of hydrogen bonds between NH groups and the carbonyl oxygen atoms and amides. The mol­ecule is highly twisted, as evidenced by the dihedral angle between the 6-oxo-1,6-di­hydro­pyridine and benzene rings [88.1 (2)°].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) is a structural isomer of N-phenyl-2-hy­droxy­nicotinanilide, which has inter­esting structural properties (Liu et al., 2020[Liu, H., Yang, X., Cao, S., Yu, F., Long, S., Chen, J., Zhang, M., Parkin, S., Li, T. & Yang, Z. (2020). Cryst. Growth Des. 20, 4346-4357.]; Zhoujin et al., 2021[Zhoujin, Y., Yang, X., Zhang, M., Guo, J., Parkin, S., Li, T., Yu, F. & Long, S. (2021). Cryst. Growth Des. 21, 6155-6165.]). We wondered if isomerization would lead to completely different synthons in the crystal structure. In our study, crystals were obtained by slowly evaporating a pyridine solution of the title compound. The mol­ecule is highly twisted, as evidenced by the dihedral angle between the 6-oxo-1,6-di­hydro­pyridine and benzene rings [88.1 (2)°]. In the crystal, the mol­ecules form chains running in the a-axis direction through hydrogen bonds between NH groups and the carbonyl oxygen atoms of the amides (Fig. 2[link], Table 1[link]). The 6-oxo-1,6-di­hydro­pyridine rings form dimers through additional N—H⋯O hydrogen bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.93 2.793 (3) 177
N2—H2⋯O2ii 0.86 2.08 2.926 (3) 166
Symmetry codes: (i) [-x, -y, -z]; (ii) [x-1, y, z].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
(a) Packing of the mol­ecules in the title compound; (b) chain and dimer formation supported by inter­molecular N–H⋯O=C hydrogen bonds (indicated by blue dashed lines).

Synthesis and crystallization

The title compound was synthesized with 6-oxo-1,6-di­hydro­pyridine-3-carb­oxy­lic acid and 3-chloro-2-methyl­aniline as starting materials (Fig. 3[link]). The pure sample was dissolved in bulk pyridine at 323 K, and the resulting solution was left in a refrigerator. Colorless block-shaped crystals (Fig. 4[link]) were harvested after several days.

[Figure 3]
Figure 3
Synthesis of the title compound.
[Figure 4]
Figure 4
A representative crystal of the title compound.

Refinement

Crystal, data collection and refinement details are presented in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H11ClN2O2
Mr 262.69
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 268
a, b, c (Å) 4.91237 (15), 10.3037 (3), 12.5876 (3)
α, β, γ (°) 105.890 (2), 96.422 (2), 99.361 (2)
V3) 596.35 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.81
Crystal size (mm) 0.11 × 0.05 × 0.04
 
Data collection
Diffractometer Rigaku Oxford Diffraction, Synergy Custom system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.])
Tmin, Tmax 0.482, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5870, 2362, 2023
Rint 0.059
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.184, 1.09
No. of reflections 2362
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.47
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

Data collection: CrysAlis PRO 1.171.41.113a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.41.113a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.113a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

N-(3-Chloro-2-methylphenyl)-6-oxo-1,6-dihydropyridine-3-carboxamide top
Crystal data top
C13H11ClN2O2Z = 2
Mr = 262.69F(000) = 272
Triclinic, P1Dx = 1.463 Mg m3
a = 4.91237 (15) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.3037 (3) ÅCell parameters from 4316 reflections
c = 12.5876 (3) Åθ = 3.7–77.4°
α = 105.890 (2)°µ = 2.81 mm1
β = 96.422 (2)°T = 268 K
γ = 99.361 (2)°Block, clear light colourless
V = 596.35 (3) Å30.11 × 0.05 × 0.04 mm
Data collection top
Rigaku Oxford Diffraction, Synergy Custom system, HyPix
diffractometer
2362 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source2023 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.059
Detector resolution: 10.0000 pixels mm-1θmax = 77.6°, θmin = 3.7°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1212
Tmin = 0.482, Tmax = 1.000l = 1511
5870 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.1286P)2 + 0.0079P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2362 reflectionsΔρmax = 0.34 e Å3
164 parametersΔρmin = 0.47 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. positions of H atoms at N1 and N2 were obtained from a difference Fourier map. Other H atoms were positioned geometrically with C—H = 0.93 Å (aromatic H) or 0.96 Å (methyl H), and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x=1.5 for methyl H, and x=1.2 for all other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.70169 (15)0.48597 (7)0.88602 (4)0.0568 (3)
O10.2394 (4)0.10879 (18)0.04783 (12)0.0467 (4)
O21.0545 (3)0.2472 (2)0.40507 (14)0.0554 (5)
N10.2702 (4)0.07879 (18)0.12455 (14)0.0351 (4)
H10.1137620.0203880.1031990.042*
N20.6373 (4)0.23089 (19)0.46700 (13)0.0367 (4)
H20.4596440.2210230.4483000.044*
C10.3982 (4)0.1067 (2)0.23115 (16)0.0344 (5)
H1A0.3135950.0642700.2788440.041*
C20.6488 (4)0.1959 (2)0.27013 (16)0.0327 (4)
C30.7723 (5)0.2563 (2)0.19387 (18)0.0387 (5)
H30.9468260.3149720.2173200.046*
C40.6407 (5)0.2301 (2)0.08749 (18)0.0403 (5)
H40.7245470.2724520.0396060.048*
C50.3741 (4)0.1379 (2)0.04762 (16)0.0338 (5)
C60.7985 (4)0.2265 (2)0.38631 (17)0.0357 (5)
C70.7463 (4)0.2510 (2)0.58157 (16)0.0330 (5)
C80.6758 (4)0.3534 (2)0.66538 (16)0.0312 (4)
C90.7869 (5)0.3634 (2)0.77585 (17)0.0369 (5)
C100.9636 (5)0.2817 (3)0.80184 (19)0.0436 (5)
H101.0343390.2925350.8761280.052*
C111.0340 (6)0.1845 (3)0.7173 (2)0.0498 (6)
H111.1561890.1299660.7339100.060*
C120.9234 (6)0.1669 (2)0.6069 (2)0.0465 (6)
H120.9674230.0989840.5495500.056*
C130.4974 (5)0.4497 (2)0.64070 (18)0.0413 (5)
H13A0.6148740.5329520.6388790.062*
H13B0.3840690.4711750.6979910.062*
H13C0.3789640.4068240.5694130.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0737 (5)0.0721 (5)0.0188 (4)0.0169 (3)0.0033 (3)0.0046 (3)
O10.0527 (10)0.0628 (10)0.0219 (8)0.0063 (7)0.0090 (7)0.0172 (7)
O20.0327 (9)0.1011 (14)0.0257 (9)0.0141 (8)0.0021 (6)0.0103 (9)
N10.0348 (9)0.0473 (9)0.0185 (9)0.0040 (7)0.0040 (6)0.0080 (7)
N20.0337 (9)0.0570 (10)0.0151 (9)0.0098 (7)0.0028 (6)0.0060 (7)
C10.0374 (11)0.0466 (10)0.0172 (10)0.0085 (8)0.0000 (8)0.0078 (8)
C20.0349 (10)0.0440 (10)0.0158 (9)0.0105 (8)0.0012 (7)0.0037 (8)
C30.0354 (11)0.0483 (11)0.0284 (11)0.0051 (8)0.0008 (8)0.0087 (9)
C40.0455 (12)0.0502 (11)0.0258 (11)0.0050 (9)0.0024 (9)0.0162 (9)
C50.0400 (11)0.0406 (10)0.0211 (10)0.0116 (8)0.0009 (8)0.0101 (8)
C60.0344 (11)0.0491 (11)0.0186 (10)0.0098 (8)0.0036 (8)0.0045 (8)
C70.0355 (10)0.0430 (10)0.0184 (10)0.0052 (8)0.0026 (7)0.0102 (8)
C80.0344 (10)0.0409 (10)0.0181 (10)0.0031 (7)0.0002 (7)0.0125 (8)
C90.0455 (12)0.0473 (11)0.0155 (10)0.0026 (8)0.0009 (8)0.0116 (8)
C100.0500 (13)0.0597 (13)0.0229 (11)0.0053 (10)0.0048 (9)0.0227 (10)
C110.0577 (15)0.0569 (13)0.0415 (14)0.0171 (11)0.0031 (11)0.0269 (12)
C120.0582 (15)0.0492 (12)0.0333 (13)0.0196 (10)0.0010 (10)0.0117 (10)
C130.0504 (13)0.0490 (11)0.0247 (11)0.0157 (9)0.0013 (9)0.0114 (9)
Geometric parameters (Å, º) top
Cl1—C91.743 (2)C3—C41.355 (3)
O1—C51.238 (2)C4—C51.434 (3)
O2—C61.225 (3)C7—C81.391 (3)
N1—C11.349 (3)C7—C121.394 (3)
N1—C51.379 (3)C8—C91.406 (3)
N2—C61.351 (3)C8—C131.497 (3)
N2—C71.427 (2)C9—C101.376 (3)
C1—C21.360 (3)C10—C111.366 (4)
C2—C31.418 (3)C11—C121.387 (3)
C2—C61.487 (3)
C1—N1—C5124.19 (18)N2—C6—C2116.39 (17)
C6—N2—C7123.50 (17)C8—C7—N2119.96 (17)
N1—C1—C2121.18 (19)C8—C7—C12121.34 (18)
C1—C2—C3117.44 (18)C12—C7—N2118.70 (19)
C1—C2—C6122.53 (18)C7—C8—C9116.00 (18)
C3—C2—C6119.98 (18)C7—C8—C13122.62 (17)
C4—C3—C2121.2 (2)C9—C8—C13121.36 (19)
C3—C4—C5120.99 (19)C8—C9—Cl1118.95 (17)
O1—C5—N1119.92 (19)C10—C9—Cl1117.88 (16)
O1—C5—C4125.14 (19)C10—C9—C8123.2 (2)
N1—C5—C4114.93 (17)C11—C10—C9119.3 (2)
O2—C6—N2123.42 (19)C10—C11—C12120.1 (2)
O2—C6—C2120.18 (19)C11—C12—C7120.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.932.793 (3)177
N2—H2···O2ii0.862.082.926 (3)166
Symmetry codes: (i) x, y, z; (ii) x1, y, z.
 

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, H., Yang, X., Cao, S., Yu, F., Long, S., Chen, J., Zhang, M., Parkin, S., Li, T. & Yang, Z. (2020). Cryst. Growth Des. 20, 4346–4357.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhoujin, Y., Yang, X., Zhang, M., Guo, J., Parkin, S., Li, T., Yu, F. & Long, S. (2021). Cryst. Growth Des. 21, 6155–6165.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146