organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Oxo-N-phenyl-1,4-di­hydro­pyridine-3-carboxamide

crossmark logo

aSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
*Correspondence e-mail: sihuilong@wit.edu.cn

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 16 May 2023; accepted 7 July 2023; online 14 July 2023)

The title compound, C12H10N2O2, shows a nearly planar conformation. The crystal structure is sustained by hydrogen bonds between the NH and the carbonyl O function of the 4-oxo-1,4-di­hydro­pyridine ring of the mol­ecules, forming infinite chains along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) is a derivative of N-phenyl­nicotinamide, which is an efficient molluscicide (Dunlop et al., 1980[Dunlop, R. W., Duncan, J. & Ayrey, G. (1980). Pestic. Sci. 11, 53-60.]). In addition, the compound can be used as a raw material for many chemical reactions. We were inter­ested in its solid-state behavior since it is a structural isomer of N-phenyl-2-hy­droxy­nicotinanilide, which has inter­esting structural properties (Zhoujin et al., 2021[Zhoujin, Y., Yang, X., Zhang, M., Guo, J., Parkin, S., Li, T., Yu, F. & Long, S. (2021). Cryst. Growth Des. 21, 6155-6165.]). In our study, the compound was synthesized by an amide condensation reaction (Narajan et al., 2016[Narajan, G. K., Ganesh, K. S., Akashdeen, S., Suganthi, M., Mamatha, B. & Mubeen, M. (2016). Int. J. Pharm. Sci. Rev. Res. 41, 344-348.]), and single crystals were obtained by slow evaporation of an acetone solution of the compound. The compound has a nearly planar conformation as evidenced by the dihedral angle between the 4-oxo-1,4-di­hydro­pyridine and benzene rings of 6.80 (8)°. An intra­molecular hydrogen bond is formed between the NH of the amide and the carbonyl O atom on the 4-oxo-1,4-di­hydro­pyridine ring. In the crystal, the mol­ecules form chains along the b-axis direction through hydrogen bonds between the NH group and the carbonyl O atom of the 4-oxo-1,4-di­hydro­pyridine ring (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.91 (2) 1.84 (3) 2.744 (2) 171 (2)
C8—H8⋯O2 0.93 2.27 2.861 (2) 121
N2—H2⋯O1 0.88 (3) 1.91 (2) 2.6731 (18) 144 (2)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing of the mol­ecules in the title compound viewed along the b axis.

Synthesis and crystallization

4-Hy­droxy­nicotinic acid (0.51 g, 3.67 mmol), 1-ethyl-3-(3-di­methyl­amino­prop­yl)carbo­di­imide hydro­chloride (EDC, 1.06 g, 5.51 mmol) and hy­droxy­benzotriazole (HOBT, 0.60 g, 4.40 mmol) were dissolved in 6 ml of DMF and stirred at 0°C for 1 h. Then diiso­propyl­ethyl­amine (DIPEA, 0.95 g, 7.34 mmol) and aniline (0.28 ml, 3.67 mmol) were added and the reaction was completed under continuous stirring at 50°C for 12 h. Then 20 ml of deionized water were added to the reaction mixture, which was placed into a refrigerator at 5°C overnight. The resulting precipitate was collected by filtration and washed with deionized water to obtain 0.306 g (39% based on 4-hy­droxy­nicotinic acid) of the title compound (Fig. 3[link]). The obtained compound was fully dissolved in acetone under ultrasound until a clear solution was obtained, which was then filtered into a transparent glass bottle. The bottle was placed in a fume hood for slow evaporation of the solvent. Colorless rod-shaped crystals (Fig. 4[link]) were obtained in a few days.

[Figure 3]
Figure 3
Reaction scheme.
[Figure 4]
Figure 4
A representative crystal of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H10N2O2
Mr 214.22
Crystal system, space group Orthorhombic, P212121
Temperature (K) 276
a, b, c (Å) 6.68228 (10), 11.79159 (18), 13.1717 (2)
V3) 1037.86 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.79
Crystal size (mm) 0.1 × 0.07 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction, Synergy Custom system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.864, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6101, 2075, 2003
Rint 0.019
(sin θ/λ)max−1) 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.06
No. of reflections 2075
No. of parameters 154
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.14
Absolute structure Flack x determined using 788 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.11 (8)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

Data collection: CrysAlis PRO 1.171.41.113a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.41.113a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.113a (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

4-Oxo-N-phenyl-1,4-dihydropyridine-3-carboxamide top
Crystal data top
C12H10N2O2Dx = 1.371 Mg m3
Mr = 214.22Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 5537 reflections
a = 6.68228 (10) Åθ = 3.3–77.1°
b = 11.79159 (18) ŵ = 0.79 mm1
c = 13.1717 (2) ÅT = 276 K
V = 1037.86 (3) Å3Block, clear light colourless
Z = 40.1 × 0.07 × 0.05 mm
F(000) = 448
Data collection top
Rigaku Oxford Diffraction, Synergy Custom system, HyPix
diffractometer
2075 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source2003 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.019
Detector resolution: 10.0000 pixels mm-1θmax = 77.2°, θmin = 5.0°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1314
Tmin = 0.864, Tmax = 1.000l = 1416
6101 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0478P)2 + 0.0929P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.030(Δ/σ)max < 0.001
wR(F2) = 0.083Δρmax = 0.21 e Å3
S = 1.06Δρmin = 0.14 e Å3
2075 reflectionsExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
154 parametersExtinction coefficient: 0.027 (3)
0 restraintsAbsolute structure: Flack x determined using 788 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.11 (8)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The positions of H atoms at N1 and N2 were obtained from the difference Fourier map and were refined freely. Other H atoms were positioned geometrically with C—H = 0.93 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C) (Table 2).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25139 (19)0.41568 (10)0.25242 (11)0.0504 (4)
O20.4568 (3)0.68655 (14)0.4334 (2)0.0985 (8)
N10.0559 (2)0.71242 (14)0.26837 (14)0.0522 (4)
H10.122 (4)0.780 (2)0.2688 (18)0.060 (6)*
N20.5233 (2)0.50907 (12)0.37556 (12)0.0418 (3)
C10.1596 (3)0.50951 (14)0.25749 (13)0.0415 (4)
C20.2281 (3)0.60428 (14)0.31705 (14)0.0417 (4)
C30.1157 (3)0.70093 (15)0.32024 (16)0.0497 (4)
H30.1598420.7611650.3599320.060*
C40.1229 (3)0.62714 (18)0.20986 (16)0.0553 (5)
H40.2406860.6364830.1731820.066*
C50.0226 (3)0.52847 (17)0.20341 (15)0.0534 (5)
H50.0733100.4709450.1625470.064*
C60.4136 (3)0.60500 (15)0.38116 (17)0.0485 (5)
C70.7012 (2)0.48310 (14)0.42740 (12)0.0372 (4)
C80.8102 (3)0.56149 (14)0.48339 (13)0.0414 (4)
H80.7665640.6361940.4881770.050*
C90.9846 (3)0.52788 (17)0.53218 (15)0.0489 (4)
H91.0568780.5804180.5699580.059*
C101.0519 (3)0.41749 (18)0.52534 (16)0.0534 (5)
H101.1683670.3955850.5586570.064*
C110.9447 (3)0.33961 (16)0.46848 (15)0.0512 (5)
H110.9898880.2652480.4631180.061*
C120.7708 (3)0.37210 (15)0.41965 (14)0.0447 (4)
H120.6998180.3194690.3813480.054*
H20.471 (3)0.455 (2)0.3385 (19)0.061 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0506 (7)0.0403 (6)0.0602 (8)0.0014 (5)0.0053 (6)0.0110 (5)
O20.0752 (11)0.0582 (10)0.162 (2)0.0273 (8)0.0592 (12)0.0567 (11)
N10.0498 (8)0.0454 (8)0.0614 (10)0.0053 (7)0.0058 (7)0.0124 (7)
N20.0383 (7)0.0354 (7)0.0518 (8)0.0002 (6)0.0030 (6)0.0095 (6)
C10.0434 (8)0.0399 (8)0.0411 (8)0.0060 (7)0.0023 (7)0.0022 (7)
C20.0404 (8)0.0369 (8)0.0478 (9)0.0013 (6)0.0012 (7)0.0006 (7)
C30.0482 (9)0.0395 (9)0.0613 (11)0.0018 (7)0.0056 (8)0.0019 (8)
C40.0516 (10)0.0588 (11)0.0555 (11)0.0042 (9)0.0138 (9)0.0172 (9)
C50.0586 (11)0.0510 (10)0.0506 (10)0.0091 (9)0.0146 (9)0.0035 (8)
C60.0429 (9)0.0349 (8)0.0677 (12)0.0013 (7)0.0071 (8)0.0117 (8)
C70.0363 (7)0.0371 (8)0.0383 (7)0.0004 (6)0.0048 (6)0.0016 (6)
C80.0422 (8)0.0374 (8)0.0445 (9)0.0024 (6)0.0020 (7)0.0028 (7)
C90.0469 (9)0.0532 (10)0.0465 (9)0.0069 (8)0.0044 (8)0.0033 (8)
C100.0470 (9)0.0621 (11)0.0510 (10)0.0061 (8)0.0060 (8)0.0042 (9)
C110.0550 (10)0.0451 (9)0.0536 (11)0.0116 (8)0.0016 (9)0.0004 (8)
C120.0483 (9)0.0376 (8)0.0482 (9)0.0002 (7)0.0003 (8)0.0051 (7)
Geometric parameters (Å, º) top
O1—C11.267 (2)C4—C51.346 (3)
O2—C61.217 (2)C5—H50.9300
N1—H10.91 (2)C7—C81.389 (2)
N1—C31.341 (3)C7—C121.393 (2)
N1—C41.344 (3)C8—H80.9300
N2—C61.350 (2)C8—C91.388 (2)
N2—C71.405 (2)C9—H90.9300
N2—H20.88 (3)C9—C101.380 (3)
C1—C21.440 (2)C10—H100.9300
C1—C51.428 (2)C10—C111.384 (3)
C2—C31.365 (2)C11—H110.9300
C2—C61.500 (2)C11—C121.382 (3)
C3—H30.9300C12—H120.9300
C4—H40.9300
C3—N1—H1120.0 (15)O2—C6—N2124.36 (17)
C3—N1—C4120.09 (17)O2—C6—C2121.23 (16)
C4—N1—H1119.8 (15)N2—C6—C2114.41 (15)
C6—N2—C7128.00 (15)C8—C7—N2123.83 (15)
C6—N2—H2115.0 (16)C8—C7—C12119.29 (15)
C7—N2—H2116.8 (16)C12—C7—N2116.87 (15)
O1—C1—C2123.54 (16)C7—C8—H8120.1
O1—C1—C5121.55 (16)C9—C8—C7119.73 (16)
C5—C1—C2114.91 (16)C9—C8—H8120.1
C1—C2—C6125.01 (15)C8—C9—H9119.6
C3—C2—C1119.31 (16)C10—C9—C8120.84 (17)
C3—C2—C6115.63 (15)C10—C9—H9119.6
N1—C3—C2122.60 (17)C9—C10—H10120.3
N1—C3—H3118.7C9—C10—C11119.48 (17)
C2—C3—H3118.7C11—C10—H10120.3
N1—C4—H4119.4C10—C11—H11119.9
N1—C4—C5121.13 (17)C12—C11—C10120.18 (18)
C5—C4—H4119.4C12—C11—H11119.9
C1—C5—H5119.0C7—C12—H12119.8
C4—C5—C1121.92 (17)C11—C12—C7120.47 (17)
C4—C5—H5119.0C11—C12—H12119.8
O1—C1—C2—C3178.02 (16)C5—C1—C2—C31.9 (3)
O1—C1—C2—C60.6 (3)C5—C1—C2—C6179.37 (17)
O1—C1—C5—C4178.76 (18)C6—N2—C7—C89.9 (3)
N1—C4—C5—C10.4 (3)C6—N2—C7—C12171.15 (18)
N2—C7—C8—C9179.95 (16)C6—C2—C3—N1178.90 (18)
N2—C7—C12—C11179.93 (16)C7—N2—C6—O20.9 (4)
C1—C2—C3—N11.2 (3)C7—N2—C6—C2178.75 (16)
C1—C2—C6—O2176.4 (2)C7—C8—C9—C100.4 (3)
C1—C2—C6—N23.3 (3)C8—C7—C12—C111.1 (3)
C2—C1—C5—C41.2 (3)C8—C9—C10—C110.4 (3)
C3—N1—C4—C51.2 (3)C9—C10—C11—C120.5 (3)
C3—C2—C6—O21.2 (3)C10—C11—C12—C70.3 (3)
C3—C2—C6—N2179.15 (17)C12—C7—C8—C91.1 (2)
C4—N1—C3—C20.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (2)1.84 (3)2.744 (2)171 (2)
C8—H8···O20.932.272.861 (2)121
N2—H2···O10.88 (3)1.91 (2)2.6731 (18)144 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDunlop, R. W., Duncan, J. & Ayrey, G. (1980). Pestic. Sci. 11, 53–60.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNarajan, G. K., Ganesh, K. S., Akashdeen, S., Suganthi, M., Mamatha, B. & Mubeen, M. (2016). Int. J. Pharm. Sci. Rev. Res. 41, 344–348.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhoujin, Y., Yang, X., Zhang, M., Guo, J., Parkin, S., Li, T., Yu, F. & Long, S. (2021). Cryst. Growth Des. 21, 6155–6165.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146