organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(4-Eth­­oxy­phen­yl)-3-oxobutanamide

crossmark logo

aDepartment of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA 70813, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: rao_uppu@subr.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 26 June 2023; accepted 26 June 2023; online 4 July 2023)

The title compound, C12H15NO3, crystallizes with Z′ = 2 in space group Pca21 with the two independent mol­ecules having almost the same conformation, differing mostly at the end of the butanamide chain. A local inversion center near 1/8, 3/4, z relates the two mol­ecules, as is common for structures in this space group with Z′ = 2. The mol­ecule crystallizes as the keto tautomer, and the β-diketone moieties are twisted out of planarity, with O—C⋯C—O pseudo torsion angles of −74.4 (5) and −83.9 (5)°. The N—H group of each independent mol­ecule donates an inter­molecular hydrogen bond to an amide carbonyl oxygen atom by positive or negative translations along the b axis, thus forming anti­parallel chains propagating in the [010] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-(4-Eth­oxy­phen­yl)-3-oxobutanamide is a putative inter­mediate in the biotransformation of bucetin [N-(4-eth­oxy­phen­yl)-3-hy­droxy­butanamide], an analgesic–anti­pyretic once considered to be a safer alternative for phenacetin (Fujimura & Shinozaki, 1996[Fujimura, H. & Shinozaki, K. (1996). US Patent 3,284,298 (issued August 2, 1996).]; Grüssner & Schnider, 1996[Grüssner, A. & Schnider, O. (1996). US Patent 3,264,344 (issued November 8, 1996).]; Togei et al., 1987[Togei, K., Sano, N., Maeda, T., Shibata, M. & Otsuka, H. (1987). J. Natl Cancer Inst. 79, 1151-1158.]). Shibasaki et al. (1968[Shibasaki, J., Koizumi, T., Tanaka, T. & Nakatomi, M. (1968). Chem. Pharm. Bull. 16, 1726-1731.]) demonstrated that approximately 62% of orally administered bucetin in rabbits is converted to glucuronides of N-(4-hy­droxy­phen­yl)-3-oxobutanamide, N-(4-hy­droxy­phen­yl)-3-hy­droxy­butanamide, and N-(4-hy­droxy­phen­yl)acetamide. Intra­venous administration of bucetin, on the other hand, mainly resulted in the formation of the glucuronide of N-(4-hy­droxy­phen­yl)acetamide, with a maximum yield of 98%. These findings indicate that oxidative O-de-­ethyl­ation, keto conversion, and γ-deca­rboxylation are involved in the biotransformation of bucetin, leading to the endogenous production of N-(4-hy­droxy­phen­yl)acetamide, the relevant analgesic compound. However, the specific order of O-de-ethyl­ation and keto conversion remains uncertain (Shibasaki et al., 1968[Shibasaki, J., Koizumi, T., Tanaka, T. & Nakatomi, M. (1968). Chem. Pharm. Bull. 16, 1726-1731.]).

The mol­ecular structure of N-(4-eth­oxy­phen­yl)-3-oxobutanamide, C12H15NO3, contains a β-diketone functionality that is similar in nature to the one present in linear and cyclic 1,3-diketone compounds (Hansen, 2021[Hansen, P. E. (2021). Pharmaceuticals 14, article number 1189.]; Shokova et al., 2015[Shokova, E. A., Kim, J. K. & Kovalev, V. V. (2015). J. Org. Chem. 51, 755-830.]). Understandably, the diketone functionality also exists in its enol tautomeric form. This structural characteristic makes the amide side chain susceptible to electrophilic substitution reactions, particularly with oxidizing agents in the cellular milieu such as per­oxy­nitrite (O=NOO)-per­oxy­nitrous acid (O=NOOH; pKa ≃ 6.8) and hypochlorite (OCl)-hypo­chlorous acid (HOCl; pKa ≃ 7.5) conjugate acid–base systems (Agu et al., 2020[Agu, O. A., Deere, C. J., Claville, M. & Uppu, R. M. (2020). The Toxicologist (supplement to Toxicol. Sci.) 174 (1), 368-368.]; Uppu & Pryor, 1996[Uppu, R. M. & Pryor, W. A. (1996). Biochem. Biophys. Res. Commun. 229, 764-769.]; Zhang & Banwell, 2011[Zhang, Y. & Banwell, M. G. (2011). Tetrahedron Lett. 52, 335-338.]). Furthermore, the keto conversion process of bucetin eliminates the chiral center, potentially facilitating the formation of various types of metal-ion chelates (Basak & Singh, 2015[Basak, S. & Singh, H. (2015). Inorg. Chim. Acta, 428, 1-18.]; Karki et al., 2016[Karki, R., Bhandari, P. & Rawat, D. S. (2016). Coord. Chem. Rev. 315, 1-46.]). To further comprehend the processes and potential implications for the overall toxicity of bucetin and its congeners, in the present study, the crystal structure of the title compound is reported.

The title compound, shown in Fig. 1[link], crystallizes with two independent mol­ecules in the asymmetric unit. The conformations of the two mol­ecules are quite similar, with the largest difference being at the end of the butanamide chain (O2—C9—C10 and O5—C21—C22). An overlay of the two mol­ecules (Fig. 2[link]) shows the small difference, with r.m.s. deviation = 0.10 Å and maximum deviation 0.30 (1) Å for C10⋯C22. This small difference in conformation can also be seen in torsion angles describing the twist of the β-diketone units, −74.4 (5)° for O1—C7⋯C9—O2 and −83.9 (5)° for O4—C19⋯C21—O5.

[Figure 1]
Figure 1
The asymmetric unit of the title compound showing 50% displacement ellipsoids.
[Figure 2]
Figure 2
Overlay of the two independent mol­ecules.

The N—H moiety in both mol­ecules donates an inter­molecular hydrogen bond (Table 1[link]) to amide carbonyl oxygen atoms as shown in Fig. 3[link]. The N1⋯O1 (at x, y – 1, z) distance is 2.878 (6) Å and the N2⋯O4 (at x, y + 1, z) distance is 2.856 (6) Å. Thus, the two independent mol­ecules form anti­parallel chains in the [010] direction, as shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.92 (6) 1.98 (6) 2.878 (6) 165 (5)
N2—H2N⋯O4ii 0.89 (7) 1.98 (7) 2.856 (6) 168 (5)
Symmetry codes: (i) [x, y-1, z]; (ii) x, y+1, z.
[Figure 3]
Figure 3
Partial packing diagram with N—H⋯O hydrogen bonds shown as blue lines.

The unit cell is illustrated in Fig. 4[link], which shows local approximate inversion centers at 0.123 0.737, 0.750 and 0.623, 0.263, 0.750. Marsh et al. (1998[Marsh, R. E., Schomaker, V. & Herbstein, F. H. (1998). Acta Cryst. B54, 921-924.]) have shown that approximately 75% of structures with Z′ = 2 in space groups Pca21 and Pna21 have such local centers and that in Pca21, the local centers tend to be near 1/8, 1/4, z. This agrees well with what we observe in the title structure, after an origin shift of x – 1/2 or y – 1/2.

[Figure 4]
Figure 4
The unit-cell packing, viewed approximately down [010].

Synthesis and crystallization

N-(4-Eth­oxy­phen­yl)-3-oxobutanamide, C12H15NO3 (CAS No. 122–87-2) was obtained from AmBeed, Arlington Heights, IL, USA and was used without further purification. Crystals in the form of colorless laths were prepared by slow cooling of a nearly saturated solution of the title compound in boiling deionized water.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H15NO3
Mr 221.25
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 100
a, b, c (Å) 16.4113 (8), 4.9076 (3), 28.8889 (15)
V3) 2326.7 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.75
Crystal size (mm) 0.31 × 0.09 × 0.03
 
Data collection
Diffractometer Bruker Kappa APEXII CCD DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.732, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 16274, 4191, 3503
Rint 0.061
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.156, 1.04
No. of reflections 4191
No. of parameters 299
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.32
Absolute structure Flack x determined using 1426 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.3 (3)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

N-(4-Ethoxyphenyl)-3-oxobutanamide top
Crystal data top
C12H15NO3Dx = 1.263 Mg m3
Mr = 221.25Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pca21Cell parameters from 3285 reflections
a = 16.4113 (8) Åθ = 3.1–68.1°
b = 4.9076 (3) ŵ = 0.75 mm1
c = 28.8889 (15) ÅT = 100 K
V = 2326.7 (2) Å3Lath, colourless
Z = 80.31 × 0.09 × 0.03 mm
F(000) = 944
Data collection top
Bruker Kappa APEXII CCD DUO
diffractometer
4191 independent reflections
Radiation source: IµS microfocus3503 reflections with I > 2σ(I)
QUAZAR multilayer optics monochromatorRint = 0.061
φ and ω scansθmax = 68.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1919
Tmin = 0.732, Tmax = 0.978k = 55
16274 measured reflectionsl = 3434
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.1042P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.156(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.20 e Å3
4191 reflectionsΔρmin = 0.32 e Å3
299 parametersAbsolute structure: Flack x determined using 1426 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraintAbsolute structure parameter: 0.3 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were located in difference maps and those on C were thereafter treated as riding in geometrically idealized positions with C—H distances of 0.95 Å for phenyl, 0.99 Å for CH2, and 0.98 Å for methyl. The coordinates of the N-bound H atoms were refined. Uiso(H) values were assigned as 1.2Ueq for the attached atom (1.5 for methyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4059 (2)0.8722 (7)0.59122 (13)0.0370 (8)
O20.3364 (2)0.5583 (9)0.49998 (18)0.0416 (10)
O30.1960 (2)0.5495 (8)0.77556 (15)0.0318 (9)
N10.3749 (2)0.4356 (10)0.61261 (17)0.0279 (9)
H1N0.376 (3)0.257 (13)0.603 (2)0.034*
C10.3280 (4)0.4895 (9)0.6532 (2)0.0253 (13)
C20.3476 (3)0.6947 (10)0.68408 (16)0.0291 (10)
H20.3909180.8165640.6772460.035*
C30.3040 (3)0.7231 (10)0.72522 (17)0.0284 (9)
H30.3171280.8652350.7462690.034*
C40.2411 (3)0.5422 (10)0.7353 (2)0.0271 (12)
C50.2219 (3)0.3388 (10)0.70439 (17)0.0309 (10)
H50.1786740.2163370.7111700.037*
C60.2650 (3)0.3111 (10)0.66356 (16)0.0286 (9)
H60.2514320.1694140.6425160.034*
C70.4104 (2)0.6254 (10)0.58497 (18)0.0295 (10)
C80.4576 (4)0.5086 (9)0.5444 (3)0.0255 (12)
H8A0.5076720.6174180.5395840.031*
H8B0.4742130.3196200.5517540.031*
C90.4082 (4)0.5078 (10)0.5000 (3)0.0323 (13)
C100.4544 (4)0.4355 (16)0.4575 (3)0.0487 (15)
H10A0.4163010.4074530.4318530.073*
H10B0.4853390.2676440.4629420.073*
H10C0.4920580.5835960.4497760.073*
C110.2132 (3)0.7601 (11)0.80814 (18)0.0326 (10)
H11A0.1989410.9403440.7950330.039*
H11B0.2718210.7602810.8162060.039*
C120.1621 (3)0.7016 (11)0.85056 (17)0.0370 (11)
H12A0.1042730.7016280.8420450.055*
H12B0.1719480.8424210.8739610.055*
H12C0.1768860.5230000.8631710.055*
O40.6561 (2)0.6038 (8)0.40666 (14)0.0420 (8)
O50.5875 (2)0.9503 (9)0.49781 (19)0.0435 (10)
O60.4501 (2)0.9546 (7)0.22415 (15)0.0301 (8)
N20.6290 (3)1.0406 (9)0.38715 (18)0.0264 (10)
H2N0.641 (3)1.208 (13)0.397 (2)0.032*
C130.5832 (4)0.9997 (9)0.3459 (3)0.0276 (14)
C140.6010 (3)0.7971 (10)0.31464 (16)0.0288 (10)
H140.6434420.6714980.3212430.035*
C150.5576 (3)0.7736 (10)0.27343 (16)0.0297 (10)
H150.5704380.6326400.2521090.036*
C160.4955 (3)0.9561 (10)0.2636 (2)0.0261 (11)
C170.4762 (3)1.1597 (11)0.29542 (17)0.0294 (10)
H170.4332251.2837960.2890510.035*
C180.5197 (3)1.1807 (10)0.33630 (16)0.0291 (10)
H180.5063191.3191420.3579840.035*
C190.6629 (3)0.8490 (10)0.41366 (16)0.0276 (9)
C200.7110 (4)0.9482 (12)0.4546 (2)0.0309 (12)
H20A0.7312381.1344030.4482210.037*
H20B0.7588510.8283010.4591460.037*
C210.6607 (3)0.9520 (11)0.4987 (3)0.0314 (12)
C220.7074 (4)0.9522 (15)0.5434 (3)0.0468 (16)
H22A0.6702340.9933320.5690830.070*
H22B0.7502651.0908630.5421160.070*
H22C0.7320110.7726200.5483160.070*
C230.4662 (3)0.7422 (10)0.19102 (18)0.0321 (10)
H23A0.4519540.5623210.2042330.038*
H23B0.5246910.7408700.1826120.038*
C240.4147 (3)0.8001 (11)0.14883 (17)0.0360 (11)
H24A0.3570620.8054630.1577400.054*
H24B0.4230550.6561150.1258100.054*
H24C0.4304100.9761650.1355680.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0448 (18)0.028 (2)0.0384 (19)0.0009 (15)0.0072 (15)0.0003 (16)
O20.0267 (19)0.059 (2)0.039 (2)0.0075 (17)0.0055 (16)0.007 (2)
O30.0274 (18)0.0360 (19)0.032 (2)0.0007 (14)0.0038 (15)0.0065 (17)
N10.027 (2)0.029 (2)0.028 (2)0.0025 (16)0.0001 (18)0.003 (2)
C10.020 (2)0.034 (3)0.022 (3)0.0030 (16)0.003 (2)0.0009 (16)
C20.0237 (19)0.032 (3)0.031 (2)0.0030 (17)0.0004 (17)0.0022 (19)
C30.029 (2)0.028 (2)0.029 (2)0.0017 (17)0.0030 (18)0.0004 (19)
C40.021 (2)0.029 (2)0.031 (3)0.0067 (17)0.001 (2)0.004 (2)
C50.0256 (19)0.032 (2)0.035 (2)0.0019 (18)0.0008 (17)0.002 (2)
C60.027 (2)0.028 (2)0.030 (2)0.0009 (18)0.0037 (18)0.0004 (18)
C70.026 (2)0.029 (3)0.034 (2)0.0003 (18)0.0044 (18)0.001 (2)
C80.025 (2)0.022 (2)0.030 (3)0.0018 (15)0.001 (2)0.0024 (16)
C90.032 (3)0.036 (3)0.029 (3)0.0005 (17)0.002 (2)0.0024 (18)
C100.038 (3)0.073 (4)0.036 (3)0.008 (3)0.002 (3)0.004 (3)
C110.027 (2)0.041 (3)0.030 (2)0.002 (2)0.0008 (18)0.005 (2)
C120.036 (2)0.045 (3)0.029 (2)0.002 (2)0.002 (2)0.002 (2)
O40.057 (2)0.030 (2)0.0396 (19)0.0004 (16)0.0100 (17)0.0013 (16)
O50.031 (2)0.061 (3)0.039 (2)0.0039 (16)0.0005 (17)0.006 (2)
O60.0274 (17)0.0349 (18)0.0280 (19)0.0050 (14)0.0025 (15)0.0017 (16)
N20.026 (2)0.024 (2)0.028 (2)0.0023 (15)0.0042 (17)0.0044 (17)
C130.024 (3)0.027 (3)0.032 (4)0.0048 (15)0.001 (2)0.0032 (17)
C140.0260 (19)0.030 (3)0.030 (2)0.0006 (18)0.0009 (18)0.0012 (19)
C150.028 (2)0.032 (3)0.029 (2)0.0021 (18)0.0019 (18)0.0038 (18)
C160.023 (2)0.033 (2)0.023 (3)0.0039 (18)0.003 (2)0.001 (2)
C170.026 (2)0.029 (2)0.034 (2)0.0025 (18)0.0022 (16)0.002 (2)
C180.030 (2)0.024 (2)0.033 (2)0.0001 (18)0.0034 (18)0.0014 (19)
C190.027 (2)0.026 (3)0.031 (2)0.0010 (18)0.0004 (17)0.0006 (19)
C200.027 (2)0.037 (3)0.029 (3)0.001 (2)0.001 (2)0.000 (2)
C210.028 (3)0.032 (3)0.035 (3)0.0023 (19)0.000 (2)0.001 (2)
C220.034 (3)0.081 (4)0.025 (3)0.005 (3)0.002 (2)0.001 (3)
C230.026 (2)0.041 (3)0.029 (2)0.0041 (19)0.0003 (18)0.004 (2)
C240.033 (2)0.044 (3)0.030 (2)0.001 (2)0.0009 (19)0.004 (2)
Geometric parameters (Å, º) top
O1—C71.227 (6)O4—C191.226 (6)
O2—C91.205 (7)O5—C211.201 (7)
O3—C41.379 (8)O6—C161.361 (8)
O3—C111.426 (6)O6—C231.440 (6)
N1—C71.358 (7)N2—C191.334 (7)
N1—C11.427 (8)N2—C131.424 (9)
N1—H1N0.92 (6)N2—H2N0.89 (7)
C1—C21.383 (8)C13—C141.375 (8)
C1—C61.388 (8)C13—C181.396 (7)
C2—C31.394 (7)C14—C151.392 (7)
C2—H20.9500C14—H140.9500
C3—C41.393 (7)C15—C161.386 (8)
C3—H30.9500C15—H150.9500
C4—C51.376 (8)C16—C171.394 (7)
C5—C61.382 (7)C17—C181.384 (7)
C5—H50.9500C17—H170.9500
C6—H60.9500C18—H180.9500
C7—C81.518 (8)C19—C201.503 (8)
C8—C91.516 (10)C20—C211.518 (9)
C8—H8A0.9900C20—H20A0.9900
C8—H8B0.9900C20—H20B0.9900
C9—C101.485 (11)C21—C221.502 (10)
C10—H10A0.9800C22—H22A0.9800
C10—H10B0.9800C22—H22B0.9800
C10—H10C0.9800C22—H22C0.9800
C11—C121.513 (7)C23—C241.511 (7)
C11—H11A0.9900C23—H23A0.9900
C11—H11B0.9900C23—H23B0.9900
C12—H12A0.9800C24—H24A0.9800
C12—H12B0.9800C24—H24B0.9800
C12—H12C0.9800C24—H24C0.9800
C4—O3—C11118.0 (4)C16—O6—C23117.4 (4)
C7—N1—C1125.9 (5)C19—N2—C13127.0 (4)
C7—N1—H1N118 (4)C19—N2—H2N112 (4)
C1—N1—H1N116 (4)C13—N2—H2N121 (4)
C2—C1—C6119.6 (6)C14—C13—C18119.2 (6)
C2—C1—N1122.6 (5)C14—C13—N2122.6 (5)
C6—C1—N1117.5 (5)C18—C13—N2118.1 (5)
C1—C2—C3120.2 (5)C13—C14—C15120.9 (5)
C1—C2—H2119.9C13—C14—H14119.6
C3—C2—H2119.9C15—C14—H14119.6
C4—C3—C2119.7 (5)C16—C15—C14119.9 (5)
C4—C3—H3120.2C16—C15—H15120.1
C2—C3—H3120.2C14—C15—H15120.1
C5—C4—O3116.3 (5)O6—C16—C15124.8 (5)
C5—C4—C3119.8 (5)O6—C16—C17115.6 (5)
O3—C4—C3123.9 (5)C15—C16—C17119.6 (5)
C4—C5—C6120.6 (5)C18—C17—C16119.9 (5)
C4—C5—H5119.7C18—C17—H17120.0
C6—C5—H5119.7C16—C17—H17120.0
C5—C6—C1120.2 (5)C17—C18—C13120.4 (5)
C5—C6—H6119.9C17—C18—H18119.8
C1—C6—H6119.9C13—C18—H18119.8
O1—C7—N1124.4 (5)O4—C19—N2124.0 (4)
O1—C7—C8121.1 (4)O4—C19—C20119.7 (4)
N1—C7—C8114.5 (4)N2—C19—C20116.3 (4)
C9—C8—C7112.4 (5)C19—C20—C21112.3 (5)
C9—C8—H8A109.1C19—C20—H20A109.1
C7—C8—H8A109.1C21—C20—H20A109.1
C9—C8—H8B109.1C19—C20—H20B109.1
C7—C8—H8B109.1C21—C20—H20B109.1
H8A—C8—H8B107.8H20A—C20—H20B107.9
O2—C9—C10123.2 (7)O5—C21—C22121.9 (7)
O2—C9—C8121.5 (7)O5—C21—C20121.7 (7)
C10—C9—C8115.2 (5)C22—C21—C20116.4 (5)
C9—C10—H10A109.5C21—C22—H22A109.5
C9—C10—H10B109.5C21—C22—H22B109.5
H10A—C10—H10B109.5H22A—C22—H22B109.5
C9—C10—H10C109.5C21—C22—H22C109.5
H10A—C10—H10C109.5H22A—C22—H22C109.5
H10B—C10—H10C109.5H22B—C22—H22C109.5
O3—C11—C12106.7 (4)O6—C23—C24107.3 (4)
O3—C11—H11A110.4O6—C23—H23A110.3
C12—C11—H11A110.4C24—C23—H23A110.3
O3—C11—H11B110.4O6—C23—H23B110.3
C12—C11—H11B110.4C24—C23—H23B110.3
H11A—C11—H11B108.6H23A—C23—H23B108.5
C11—C12—H12A109.5C23—C24—H24A109.5
C11—C12—H12B109.5C23—C24—H24B109.5
H12A—C12—H12B109.5H24A—C24—H24B109.5
C11—C12—H12C109.5C23—C24—H24C109.5
H12A—C12—H12C109.5H24A—C24—H24C109.5
H12B—C12—H12C109.5H24B—C24—H24C109.5
C7—N1—C1—C238.1 (8)C19—N2—C13—C1435.7 (9)
C7—N1—C1—C6147.9 (5)C19—N2—C13—C18146.8 (5)
C6—C1—C2—C30.4 (7)C18—C13—C14—C151.1 (8)
N1—C1—C2—C3174.3 (5)N2—C13—C14—C15176.3 (5)
C1—C2—C3—C40.6 (7)C13—C14—C15—C160.0 (7)
C11—O3—C4—C5179.0 (4)C23—O6—C16—C152.1 (7)
C11—O3—C4—C32.0 (7)C23—O6—C16—C17178.0 (4)
C2—C3—C4—C50.7 (7)C14—C15—C16—O6178.9 (5)
C2—C3—C4—O3178.2 (4)C14—C15—C16—C171.0 (7)
O3—C4—C5—C6178.5 (4)O6—C16—C17—C18179.1 (4)
C3—C4—C5—C60.5 (7)C15—C16—C17—C180.9 (7)
C4—C5—C6—C10.3 (7)C16—C17—C18—C130.2 (7)
C2—C1—C6—C50.3 (7)C14—C13—C18—C171.2 (8)
N1—C1—C6—C5174.5 (5)N2—C13—C18—C17176.3 (5)
C1—N1—C7—O10.7 (8)C13—N2—C19—O43.0 (9)
C1—N1—C7—C8179.3 (5)C13—N2—C19—C20177.8 (5)
O1—C7—C8—C982.6 (6)O4—C19—C20—C2183.8 (6)
N1—C7—C8—C997.4 (5)N2—C19—C20—C2195.4 (5)
C7—C8—C9—O210.0 (7)C19—C20—C21—O519.3 (8)
C7—C8—C9—C10171.2 (5)C19—C20—C21—C22159.5 (5)
C4—O3—C11—C12174.0 (4)C16—O6—C23—C24174.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.92 (6)1.98 (6)2.878 (6)165 (5)
N2—H2N···O4ii0.89 (7)1.98 (7)2.856 (6)168 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Funding information

Research reported in this publication was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health (NIH) under grant number P2O GM103424–21 and the US Department of Education (US DoE; Title III, HBGI Part B grant No. P031B040030). Its contents are solely the responsibility of authors and do not represent the official views of NIH, NIGMS, or US DoE. The upgrade of the diffractometer was made possible by grant No. LEQSF(2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents.

References

First citationAgu, O. A., Deere, C. J., Claville, M. & Uppu, R. M. (2020). The Toxicologist (supplement to Toxicol. Sci.) 174 (1), 368–368.  Google Scholar
First citationBasak, S. & Singh, H. (2015). Inorg. Chim. Acta, 428, 1–18.  Google Scholar
First citationBruker (2016). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFujimura, H. & Shinozaki, K. (1996). US Patent 3,284,298 (issued August 2, 1996).  Google Scholar
First citationGrüssner, A. & Schnider, O. (1996). US Patent 3,264,344 (issued November 8, 1996).  Google Scholar
First citationHansen, P. E. (2021). Pharmaceuticals 14, article number 1189.  Web of Science CrossRef Google Scholar
First citationKarki, R., Bhandari, P. & Rawat, D. S. (2016). Coord. Chem. Rev. 315, 1–46.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarsh, R. E., Schomaker, V. & Herbstein, F. H. (1998). Acta Cryst. B54, 921–924.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShibasaki, J., Koizumi, T., Tanaka, T. & Nakatomi, M. (1968). Chem. Pharm. Bull. 16, 1726–1731.  CrossRef CAS Google Scholar
First citationShokova, E. A., Kim, J. K. & Kovalev, V. V. (2015). J. Org. Chem. 51, 755–830.  CAS Google Scholar
First citationTogei, K., Sano, N., Maeda, T., Shibata, M. & Otsuka, H. (1987). J. Natl Cancer Inst. 79, 1151–1158.  CAS PubMed Web of Science Google Scholar
First citationUppu, R. M. & Pryor, W. A. (1996). Biochem. Biophys. Res. Commun. 229, 764–769.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y. & Banwell, M. G. (2011). Tetrahedron Lett. 52, 335–338.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146