organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Methyl-2-(4-methyl­phen­­oxy)benzoic acid

crossmark logo

aSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
*Correspondence e-mail: sihuilong@wit.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 12 May 2023; accepted 7 July 2023; online 14 July 2023)

In the title compound, C15H14O3, the dihedral angle between the aromatic rings is 86.7 (9)°. In the crystal, carb­oxy­lic acid inversion dimers linked by pairwise O—H⋯O hydrogen bonds are formed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

2-Phen­oxy­benzoic acids are isosteres of anthranilic acids that are potential anti-inflammatory drugs and conformationally flexible mol­ecules. Many anthranilic acids are polymorphic (Lopez-Mejias et al., 2012[López-Mejías, V., Kampf, J. W. & Matzger, A. J. (2012). J. Am. Chem. Soc. 134, 9872-9875.]; Sacchi, et al., 2021[Sacchi, P., Teutzel-Edens, S. M. & Cruz-Cabeza, A. J. (2021). CrystEngComm, 3, 1680179.]). We wondered if 2-phen­oxy­benzoic acids would behave similarly to anthranilic acids in their polymorphism and as part of our work in this area, we now describe the synthesis and structure of the title compound, C15H14O3.

There is one mol­ecule in the asymmetric unit (Fig. 1[link]). The mol­ecule has a nearly perpendicular conformation as evidenced by the dihedral angle between the benzoic acid ring and the phenol ring [86.7 (9)°]. In the crystal, the mol­ecules form carb­oxy­lic acid inversion dimers through pairwise O—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]). Two weak C—H⋯π interactions are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.86 (2) 1.80 (2) 2.6497 (14) 169 (3)
C4—H4⋯Cg1ii 0.93 2.92 3.6557 (18) 137
C5—H5⋯Cg2iii 0.93 2.97 3.8372 (15) 156
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing of the mol­ecules in the title compound.

Synthesis and crystallization

The title compound was synthesized through an Ullmann reaction between 2-chloro-3-methyl-benzoic acid and 4-methyl­phenol (Fig. 3[link]) in an effort to investigate the effect of substitution position and pattern on the solid-state behavior of 2-phen­oxy­benzoic acids. A pure sample was dissolved in ethyl acetate at 60°C. Then, the solution was cooled to room temperature and was allowed to evaporate slowly in a fume hood. Colorless block-shaped crystals (Fig. 4[link]) were harvested after a week.

[Figure 3]
Figure 3
Reaction scheme.
[Figure 4]
Figure 4
A representative crystal of the title compound.

Refinement

Crystal and refinement data are listed in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H14O3
Mr 242.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 8.95081 (17), 6.54110 (15), 21.9729 (4)
β (°) 91.2391 (18)
V3) 1286.17 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.71
Crystal size (mm) 0.11 × 0.09 × 0.07
 
Data collection
Diffractometer Rigaku Oxford Diffraction, Synergy Custom system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.856, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7830, 2527, 2197
Rint 0.023
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.124, 1.08
No. of reflections 2527
No. of parameters 169
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.17
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

3-Methyl-2-(4-methylphenoxy)benzoic acid top
Crystal data top
C15H14O3F(000) = 512
Mr = 242.26Dx = 1.251 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 8.95081 (17) ÅCell parameters from 5741 reflections
b = 6.54110 (15) Åθ = 4.0–76.9°
c = 21.9729 (4) ŵ = 0.71 mm1
β = 91.2391 (18)°T = 293 K
V = 1286.17 (5) Å3Block, colourless
Z = 40.11 × 0.09 × 0.07 mm
Data collection top
Rigaku Oxford Diffraction, Synergy Custom system, HyPix
diffractometer
2527 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source2197 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.0000 pixels mm-1θmax = 77.6°, θmin = 4.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2021)
k = 88
Tmin = 0.856, Tmax = 1.000l = 2720
7830 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0665P)2 + 0.1182P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2527 reflectionsΔρmax = 0.17 e Å3
169 parametersΔρmin = 0.17 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound H atoms were placed geometrically (C—H = 0.93–0.96 Å) and refined as riding atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24620 (10)0.17742 (14)0.64109 (4)0.0593 (3)
O20.15526 (12)0.4152 (2)0.54426 (5)0.0769 (3)
H20.110 (3)0.422 (5)0.5094 (8)0.190 (13)*
O30.05029 (11)0.58182 (18)0.56942 (4)0.0725 (3)
C10.21476 (13)0.3529 (2)0.67392 (6)0.0536 (3)
C20.12444 (13)0.5035 (2)0.64797 (6)0.0541 (3)
C30.08109 (16)0.6693 (2)0.68345 (7)0.0656 (4)
H30.0189880.7696560.6668170.079*
C40.13026 (18)0.6842 (3)0.74310 (7)0.0745 (4)
H40.1026020.7956300.7666250.089*
C50.22069 (17)0.5335 (3)0.76790 (6)0.0728 (4)
H50.2537750.5460050.8081440.087*
C60.26370 (15)0.3642 (2)0.73468 (6)0.0639 (4)
C70.3572 (2)0.1978 (3)0.76307 (8)0.0875 (5)
H7A0.3244010.0675620.7476990.131*
H7B0.3470630.2008890.8064630.131*
H7C0.4601170.2184130.7532090.131*
C80.38771 (14)0.15863 (19)0.61722 (6)0.0531 (3)
C90.48515 (15)0.3192 (2)0.61186 (7)0.0643 (4)
H90.4588350.4489130.6252470.077*
C100.62304 (16)0.2860 (2)0.58630 (7)0.0672 (4)
H100.6889590.3951090.5828470.081*
C110.66564 (15)0.0951 (2)0.56573 (6)0.0624 (3)
C120.56571 (17)0.0629 (2)0.57189 (7)0.0676 (4)
H120.5916970.1924550.5583020.081*
C130.42802 (17)0.0346 (2)0.59764 (6)0.0634 (4)
H130.3628900.1442780.6018290.076*
C140.81667 (19)0.0625 (3)0.53797 (9)0.0852 (5)
H14A0.8444040.1826350.5157910.128*
H14B0.8119090.0523420.5108060.128*
H14C0.8897060.0366190.5696720.128*
C150.07176 (14)0.4993 (2)0.58337 (6)0.0554 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0555 (5)0.0529 (5)0.0694 (6)0.0043 (4)0.0001 (4)0.0034 (4)
O20.0720 (6)0.1022 (9)0.0567 (6)0.0235 (6)0.0036 (5)0.0043 (5)
O30.0633 (6)0.0874 (8)0.0666 (6)0.0174 (5)0.0013 (4)0.0021 (5)
C10.0477 (6)0.0558 (7)0.0573 (7)0.0064 (5)0.0040 (5)0.0015 (5)
C20.0488 (6)0.0583 (7)0.0556 (6)0.0038 (5)0.0058 (5)0.0010 (5)
C30.0608 (8)0.0676 (9)0.0689 (8)0.0038 (6)0.0092 (6)0.0065 (7)
C40.0707 (9)0.0826 (11)0.0707 (9)0.0025 (7)0.0111 (7)0.0222 (8)
C50.0674 (8)0.0947 (12)0.0562 (7)0.0093 (8)0.0003 (6)0.0114 (7)
C60.0559 (7)0.0769 (9)0.0587 (7)0.0078 (6)0.0021 (6)0.0025 (6)
C70.0902 (11)0.0955 (13)0.0758 (10)0.0046 (9)0.0197 (9)0.0106 (9)
C80.0541 (6)0.0514 (7)0.0536 (6)0.0022 (5)0.0039 (5)0.0015 (5)
C90.0614 (7)0.0487 (7)0.0832 (9)0.0010 (6)0.0074 (6)0.0071 (6)
C100.0609 (8)0.0582 (8)0.0826 (9)0.0010 (6)0.0072 (7)0.0027 (7)
C110.0651 (8)0.0622 (8)0.0599 (7)0.0098 (6)0.0012 (6)0.0003 (6)
C120.0807 (9)0.0523 (8)0.0698 (8)0.0117 (7)0.0016 (7)0.0061 (6)
C130.0735 (8)0.0481 (7)0.0683 (8)0.0023 (6)0.0031 (6)0.0007 (6)
C140.0781 (10)0.0813 (11)0.0969 (12)0.0168 (9)0.0168 (9)0.0063 (9)
C150.0523 (6)0.0560 (7)0.0581 (7)0.0014 (5)0.0052 (5)0.0013 (5)
Geometric parameters (Å, º) top
O1—C11.3875 (15)C7—H7B0.9600
O1—C81.3868 (15)C7—H7C0.9600
O2—H20.860 (10)C8—C91.3719 (19)
O2—C151.2759 (16)C8—C131.3857 (18)
O3—C151.2508 (16)C9—H90.9300
C1—C21.3890 (19)C9—C101.3841 (19)
C1—C61.3980 (18)C10—H100.9300
C2—C31.3957 (19)C10—C111.385 (2)
C2—C151.4862 (18)C11—C121.375 (2)
C3—H30.9300C11—C141.510 (2)
C3—C41.377 (2)C12—H120.9300
C4—H40.9300C12—C131.380 (2)
C4—C51.380 (2)C13—H130.9300
C5—H50.9300C14—H14A0.9600
C5—C61.386 (2)C14—H14B0.9600
C6—C71.501 (2)C14—H14C0.9600
C7—H7A0.9600
C8—O1—C1117.85 (9)C9—C8—C13120.10 (12)
C15—O2—H2108 (2)C13—C8—O1116.38 (11)
O1—C1—C2119.74 (11)C8—C9—H9120.4
O1—C1—C6118.51 (12)C8—C9—C10119.27 (13)
C2—C1—C6121.47 (12)C10—C9—H9120.4
C1—C2—C3119.22 (12)C9—C10—H10119.1
C1—C2—C15123.29 (12)C9—C10—C11121.88 (14)
C3—C2—C15117.49 (12)C11—C10—H10119.1
C2—C3—H3120.0C10—C11—C14120.94 (15)
C4—C3—C2120.00 (14)C12—C11—C10117.47 (13)
C4—C3—H3120.0C12—C11—C14121.59 (14)
C3—C4—H4120.1C11—C12—H12119.0
C3—C4—C5119.85 (14)C11—C12—C13121.92 (13)
C5—C4—H4120.1C13—C12—H12119.0
C4—C5—H5119.0C8—C13—H13120.3
C4—C5—C6122.02 (13)C12—C13—C8119.36 (13)
C6—C5—H5119.0C12—C13—H13120.3
C1—C6—C7121.27 (14)C11—C14—H14A109.5
C5—C6—C1117.42 (14)C11—C14—H14B109.5
C5—C6—C7121.30 (14)C11—C14—H14C109.5
C6—C7—H7A109.5H14A—C14—H14B109.5
C6—C7—H7B109.5H14A—C14—H14C109.5
C6—C7—H7C109.5H14B—C14—H14C109.5
H7A—C7—H7B109.5O2—C15—C2118.22 (11)
H7A—C7—H7C109.5O3—C15—O2122.84 (12)
H7B—C7—H7C109.5O3—C15—C2118.92 (11)
C9—C8—O1123.51 (11)
O1—C1—C2—C3173.51 (11)C3—C4—C5—C60.5 (2)
O1—C1—C2—C157.17 (18)C4—C5—C6—C11.5 (2)
O1—C1—C6—C5174.93 (12)C4—C5—C6—C7177.62 (15)
O1—C1—C6—C74.16 (19)C6—C1—C2—C30.29 (19)
O1—C8—C9—C10178.73 (12)C6—C1—C2—C15179.03 (12)
O1—C8—C13—C12178.25 (12)C8—O1—C1—C2105.42 (13)
C1—O1—C8—C915.62 (18)C8—O1—C1—C680.60 (14)
C1—O1—C8—C13165.09 (11)C8—C9—C10—C110.2 (2)
C1—C2—C3—C41.3 (2)C9—C8—C13—C121.1 (2)
C1—C2—C15—O230.72 (19)C9—C10—C11—C120.4 (2)
C1—C2—C15—O3150.82 (13)C9—C10—C11—C14179.97 (14)
C2—C1—C6—C51.06 (19)C10—C11—C12—C130.2 (2)
C2—C1—C6—C7178.03 (13)C11—C12—C13—C80.9 (2)
C2—C3—C4—C50.9 (2)C13—C8—C9—C100.5 (2)
C3—C2—C15—O2148.61 (14)C14—C11—C12—C13179.47 (14)
C3—C2—C15—O329.85 (18)C15—C2—C3—C4178.07 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.86 (2)1.80 (2)2.6497 (14)169 (3)
C4—H4···Cg1ii0.932.923.6557 (18)137
C5—H5···Cg2iii0.932.973.8372 (15)156
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+3/2; (iii) x+1, y+1/2, z+3/2.
 

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLópez-Mejías, V., Kampf, J. W. & Matzger, A. J. (2012). J. Am. Chem. Soc. 134, 9872–9875.  Web of Science PubMed Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSacchi, P., Teutzel-Edens, S. M. & Cruz-Cabeza, A. J. (2021). CrystEngComm, 3, 1680179.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146