organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(5-Cyano­nonan-5-yl)benzamide

crossmark logo

aUniversity of the District of Columbia, Chemistry, 4200 Connecticut Avenue, NW, Washington DC, 20008, USA
*Correspondence e-mail: xsong@udc.edu

Edited by R. J. Butcher, Howard University, USA (Received 30 June 2023; accepted 21 July 2023; online 28 July 2023)

N-(5-Cyano­nonan-5-yl)benzamide, C17H24N2O, synthesized from the reaction between benzoyl chloride and 2-amino-2-butyl­hexa­nenitrile, is an important inter­mediate in amino acid synthesis. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonds with N⋯O and C⋯O distances of 3.083 (2) and 3.304 (2) Å, respectively, link adjacent mol­ecules into chains along the a axis. The dihedral angle between the mean plane of the phenyl group and the plane of the amide group is 19.504 (4)°.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was synthesized from the reaction between 2-amino-2-butyl­hexa­ne­nitrile and benzoyl chloride, and is an important inter­mediate in amino acid synthesis. Shu et al. (2008[Shu, L. & Wang, P. (2008). Org. Process Res. Dev. 12, 298-300.]) reported that a benzamide was an inter­mediate in their five-step synthesis of Fmoc-α-methyl­valine (Fmoc is the fluorenyl­meth­oxy­carbonyl protecting group). Paventi et al. (1987[Paventi, M., Chubb, F. L. & Edward, J. T. (1987). Can. J. Chem. 65, 2114-2117.]) found that the benzoyl group in the mol­ecule had assisted the hydrolysis of the nitrile in the acid hydrolysis of benzoyl­amino­nitrile to afford an α-amino acid. Some amino­nitriles were difficult to convert into α-amino acids without introducing a benzoyl group. An oxazoline inter­mediate was proposed to ease the acid hydrolysis of the nitrile in 2-benzamido­adamantane-2-carbo­nitrile.

In the crystal of the title compound (Fig. 1[link]), inter­molecular N—H⋯O and C—H⋯O hydrogen bonds with N⋯O and C⋯O distances of 3.083 (2) and 3.304 (2) Å, respectively, link adjacent mol­ecules into chains along the a axis (Table 1[link] and Figs. 2[link] and 3[link]). The dihedral angle between the mean plane of the phenyl group and the plane of the amide O1/C1/N1/C12 group (r.m.s. deviation 0.002 Å) is 19.504 (4)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.52 3.3046 (17) 142
N2—H2N⋯O1i 0.860 (16) 2.229 (16) 3.0829 (13) 171.7 (13)
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Inter­molecular N—H⋯O and N—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

A two-step procedure was used to synthesize N-(5-cyano­nonan-5-yl)benzamide. The first step was the Strecker synthesis using nonan-5-one, ammonia, ammonium chloride and NaCN as starting materials to afford 2-amino-2-butyl­hexa­nenitrile. The second step was the reaction between 2-amino-2-butyl­hexa­nenitrile and benzoyl chloride in an aqueous solution of sodium bicarbonate to afford crude N-(5-cyano­nonan-5-yl)benzamide. This was then purified via column chromatography, and slow evaporation of a dilute solution in ethyl acetate afforded a needle-like crystal (m.p. 383–385 K).

1H NMR (CDCl3, ppm): δ 7.835–7.707 (2H, m), 7.621–7.526 (1H, m), 7.525–7.406 (2H, m), 6.145–5.982 (1H, s), 2.231–2.205 (4H, m), 1.656–1.339 (8H, m), 1.038–0.867 (6H, m). 13C NMR (CDCl3, ppm): δ 166.7, 133.8, 132.0, 128.9, 127.0, 119.9, 55.4, 36.3, 26.4, 22.6, 13.7.

Refinement

The crystal data, data collection and structure refinement details are summarized in Table 2[link]. The amide H atom was refined isotropically. All other H atoms were refined with isotropic displacement parameters, calculated as Uiso(H) = 1.5Ueq(C) for methyl groups and 1.2Ueq(C) otherwise.

Table 2
Experimental details

Crystal data
Chemical formula C17H24N2O
Mr 272.38
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 298
a, b, c (Å) 10.3939 (1), 17.6680 (2), 17.6653 (2)
V3) 3244.05 (6)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.54
Crystal size (mm) 0.06 × 0.03 × 0.02
 
Data collection
Diffractometer Rigaku XtaLAB Synergy diffrac­tometer with a HyPix detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.852, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15515, 3322, 2883
Rint 0.027
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.112, 1.08
No. of reflections 3322
No. of parameters 188
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.19
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2023); cell refinement: CrysAlis PRO (Rigaku OD, 2023); data reduction: CrysAlis PRO (Rigaku OD, 2023); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N-(5-Cyanononan-5-yl)benzamide top
Crystal data top
C17H24N2ODx = 1.115 Mg m3
Mr = 272.38Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 10946 reflections
a = 10.3939 (1) Åθ = 4.3–77.8°
b = 17.6680 (2) ŵ = 0.54 mm1
c = 17.6653 (2) ÅT = 298 K
V = 3244.05 (6) Å3Needle, clear light colourless
Z = 80.06 × 0.03 × 0.02 mm
F(000) = 1184
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix
diffractometer
3322 independent reflections
Radiation source: micro-focus sealed X-ray tube2883 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.027
ω scansθmax = 78.0°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2023)
h = 1012
Tmin = 0.852, Tmax = 1.000k = 1722
15515 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0401P)2 + 1.052P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3322 reflectionsΔρmax = 0.24 e Å3
188 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.00252 (16)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68510 (9)0.39486 (6)0.24909 (6)0.0447 (3)
N20.47630 (10)0.42156 (6)0.27067 (6)0.0354 (3)
H2N0.3976 (15)0.4095 (8)0.2635 (9)0.039 (4)*
N30.63961 (13)0.41287 (9)0.43755 (8)0.0585 (4)
C10.57087 (12)0.38404 (7)0.23375 (7)0.0346 (3)
C20.53211 (12)0.32919 (7)0.17351 (7)0.0370 (3)
C30.62231 (15)0.27549 (8)0.15148 (9)0.0458 (3)
H30.7020730.2738700.1752830.055*
C40.59447 (18)0.22447 (8)0.09449 (10)0.0563 (4)
H40.6554680.1888380.0798700.068*
C50.4763 (2)0.22650 (9)0.05942 (10)0.0629 (5)
H50.4572680.1919910.0212790.075*
C60.38608 (18)0.27953 (10)0.08067 (10)0.0618 (4)
H60.3063820.2807100.0567640.074*
C70.41359 (14)0.33116 (9)0.13756 (9)0.0485 (4)
H70.3526240.3670460.1515700.058*
C80.13369 (18)0.42176 (12)0.51281 (11)0.0687 (5)
H8A0.1307080.3699200.4966350.103*
H8B0.0487570.4381700.5264840.103*
H8C0.1896510.4262190.5558140.103*
C90.18399 (14)0.47054 (9)0.44905 (9)0.0487 (4)
H9A0.1901570.5225240.4663420.058*
H9B0.1234690.4691320.4072720.058*
C100.31508 (13)0.44461 (8)0.42125 (8)0.0431 (3)
H10A0.3715360.4373250.4643670.052*
H10B0.3060430.3963170.3956900.052*
C110.37556 (13)0.50125 (7)0.36746 (8)0.0388 (3)
H11A0.3901170.5479830.3949780.047*
H11B0.3140760.5121100.3276040.047*
C120.50346 (12)0.47737 (7)0.33020 (7)0.0356 (3)
C130.57641 (13)0.54701 (8)0.29944 (8)0.0433 (3)
H13A0.5954210.5805310.3414600.052*
H13B0.6578220.5301280.2785700.052*
C140.50566 (16)0.59173 (8)0.23929 (9)0.0510 (4)
H14A0.4240380.6089400.2595900.061*
H14B0.4877520.5589790.1964930.061*
C150.58252 (18)0.65952 (9)0.21246 (11)0.0601 (4)
H15A0.6049880.6902890.2559740.072*
H15B0.6619830.6417480.1898020.072*
C160.5124 (2)0.70834 (11)0.15573 (11)0.0803 (6)
H16A0.5048940.6815920.1086330.120*
H16B0.5596060.7543760.1478750.120*
H16C0.4281310.7200840.1746120.120*
C170.58394 (13)0.44031 (8)0.38925 (8)0.0413 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0285 (5)0.0569 (6)0.0487 (5)0.0014 (4)0.0003 (4)0.0047 (5)
N20.0269 (5)0.0385 (6)0.0409 (6)0.0016 (4)0.0001 (4)0.0063 (4)
N30.0533 (8)0.0720 (9)0.0503 (7)0.0081 (7)0.0086 (6)0.0002 (6)
C10.0304 (6)0.0375 (6)0.0359 (6)0.0015 (5)0.0029 (5)0.0027 (5)
C20.0373 (7)0.0361 (6)0.0377 (6)0.0003 (5)0.0048 (5)0.0007 (5)
C30.0473 (8)0.0395 (7)0.0506 (8)0.0057 (6)0.0068 (6)0.0012 (6)
C40.0712 (11)0.0392 (7)0.0584 (9)0.0067 (7)0.0142 (8)0.0052 (7)
C50.0875 (13)0.0489 (9)0.0523 (9)0.0082 (8)0.0043 (9)0.0148 (7)
C60.0600 (10)0.0696 (11)0.0558 (9)0.0041 (8)0.0106 (8)0.0160 (8)
C70.0430 (8)0.0544 (8)0.0482 (8)0.0044 (6)0.0027 (6)0.0104 (6)
C80.0595 (10)0.0813 (12)0.0653 (11)0.0059 (9)0.0233 (9)0.0014 (9)
C90.0400 (8)0.0557 (8)0.0505 (8)0.0011 (6)0.0079 (6)0.0062 (7)
C100.0412 (7)0.0439 (7)0.0442 (7)0.0006 (6)0.0068 (6)0.0020 (6)
C110.0358 (7)0.0384 (7)0.0422 (7)0.0023 (5)0.0031 (5)0.0042 (5)
C120.0314 (6)0.0374 (6)0.0380 (6)0.0012 (5)0.0000 (5)0.0041 (5)
C130.0384 (7)0.0405 (7)0.0509 (8)0.0066 (6)0.0051 (6)0.0052 (6)
C140.0580 (9)0.0457 (8)0.0491 (8)0.0105 (7)0.0018 (7)0.0016 (6)
C150.0675 (11)0.0460 (8)0.0668 (10)0.0092 (8)0.0102 (9)0.0051 (7)
C160.1201 (18)0.0588 (11)0.0620 (11)0.0232 (11)0.0118 (12)0.0109 (9)
C170.0350 (7)0.0459 (7)0.0428 (7)0.0001 (6)0.0003 (6)0.0064 (6)
Geometric parameters (Å, º) top
O1—C11.2327 (15)C9—H9A0.9700
N2—C11.3531 (16)C9—H9B0.9700
N2—C121.4691 (16)C10—C111.5164 (19)
N2—H2N0.855 (16)C10—H10A0.9700
N3—C171.1393 (19)C10—H10B0.9700
C1—C21.4946 (18)C11—C121.5422 (17)
C2—C71.386 (2)C11—H11A0.9700
C2—C31.3894 (19)C11—H11B0.9700
C3—C41.382 (2)C12—C171.4888 (19)
C3—H30.9300C12—C131.5439 (18)
C4—C51.376 (3)C13—C141.515 (2)
C4—H40.9300C13—H13A0.9700
C5—C61.377 (3)C13—H13B0.9700
C5—H50.9300C14—C151.516 (2)
C6—C71.387 (2)C14—H14A0.9700
C6—H60.9300C14—H14B0.9700
C7—H70.9300C15—C161.510 (3)
C8—C91.512 (2)C15—H15A0.9700
C8—H8A0.9600C15—H15B0.9700
C8—H8B0.9600C16—H16A0.9600
C8—H8C0.9600C16—H16B0.9600
C9—C101.5191 (19)C16—H16C0.9600
C1—N2—C12122.30 (11)C9—C10—H10B109.2
C1—N2—H2N120.1 (10)H10A—C10—H10B107.9
C12—N2—H2N117.2 (10)C10—C11—C12116.38 (11)
O1—C1—N2121.18 (12)C10—C11—H11A108.2
O1—C1—C2121.11 (11)C12—C11—H11A108.2
N2—C1—C2117.71 (11)C10—C11—H11B108.2
C7—C2—C3119.23 (13)C12—C11—H11B108.2
C7—C2—C1123.33 (12)H11A—C11—H11B107.3
C3—C2—C1117.41 (12)N2—C12—C17108.31 (10)
C4—C3—C2120.54 (15)N2—C12—C11108.88 (10)
C4—C3—H3119.7C17—C12—C11107.80 (11)
C2—C3—H3119.7N2—C12—C13112.17 (11)
C5—C4—C3119.85 (15)C17—C12—C13108.73 (11)
C5—C4—H4120.1C11—C12—C13110.83 (10)
C3—C4—H4120.1C14—C13—C12115.10 (11)
C4—C5—C6120.18 (15)C14—C13—H13A108.5
C4—C5—H5119.9C12—C13—H13A108.5
C6—C5—H5119.9C14—C13—H13B108.5
C5—C6—C7120.29 (16)C12—C13—H13B108.5
C5—C6—H6119.9H13A—C13—H13B107.5
C7—C6—H6119.9C13—C14—C15112.07 (14)
C2—C7—C6119.91 (14)C13—C14—H14A109.2
C2—C7—H7120.0C15—C14—H14A109.2
C6—C7—H7120.0C13—C14—H14B109.2
C9—C8—H8A109.5C15—C14—H14B109.2
C9—C8—H8B109.5H14A—C14—H14B107.9
H8A—C8—H8B109.5C16—C15—C14113.86 (16)
C9—C8—H8C109.5C16—C15—H15A108.8
H8A—C8—H8C109.5C14—C15—H15A108.8
H8B—C8—H8C109.5C16—C15—H15B108.8
C8—C9—C10112.28 (14)C14—C15—H15B108.8
C8—C9—H9A109.1H15A—C15—H15B107.7
C10—C9—H9A109.1C15—C16—H16A109.5
C8—C9—H9B109.1C15—C16—H16B109.5
C10—C9—H9B109.1H16A—C16—H16B109.5
H9A—C9—H9B107.9C15—C16—H16C109.5
C11—C10—C9112.05 (12)H16A—C16—H16C109.5
C11—C10—H10A109.2H16B—C16—H16C109.5
C9—C10—H10A109.2N3—C17—C12175.77 (15)
C11—C10—H10B109.2
C12—N2—C1—O10.53 (19)C8—C9—C10—C11169.86 (13)
C12—N2—C1—C2179.26 (11)C9—C10—C11—C12174.73 (12)
O1—C1—C2—C7159.19 (14)C1—N2—C12—C1755.56 (15)
N2—C1—C2—C720.60 (19)C1—N2—C12—C11172.52 (11)
O1—C1—C2—C318.64 (18)C1—N2—C12—C1364.45 (15)
N2—C1—C2—C3161.57 (12)C10—C11—C12—N275.12 (14)
C7—C2—C3—C40.1 (2)C10—C11—C12—C1742.17 (15)
C1—C2—C3—C4178.02 (13)C10—C11—C12—C13161.06 (12)
C2—C3—C4—C50.3 (2)N2—C12—C13—C1461.10 (15)
C3—C4—C5—C60.4 (3)C17—C12—C13—C14179.14 (12)
C4—C5—C6—C70.1 (3)C11—C12—C13—C1460.82 (15)
C3—C2—C7—C60.4 (2)C12—C13—C14—C15179.43 (13)
C1—C2—C7—C6178.21 (14)C13—C14—C15—C16176.64 (15)
C5—C6—C7—C20.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.523.3046 (17)142
N2—H2N···O1i0.860 (16)2.229 (16)3.0829 (13)171.7 (13)
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

Financial assistance from the National Science Foundation and the University of the District of Columbia (UDC) is gratefully acknowledged.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 2117621 to Xueqing Song); National Science Foundation, Directorate for Education and Human Resources (grant No. 1622811 to Freddie Dixon); National Science Foundation, Directorate for Education and Human Resources (grant No. 1833656 to Freddie Dixon).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaventi, M., Chubb, F. L. & Edward, J. T. (1987). Can. J. Chem. 65, 2114–2117.  CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShu, L. & Wang, P. (2008). Org. Process Res. Dev. 12, 298–300.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146