metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[(μ-aqua)[μ4-4-(carboxyl­atometh­yl)ben­zo­ato]cobalt(II)] hemi[1,4-bis­­(pyridin-4-ylmeth­yl)piper­azine] hemihydrate]

crossmark logo

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 21 July 2023; accepted 25 July 2023; online 28 July 2023)

In the title com­pound, {[Co(C9H6O4)(H2O)]·0.5C16H20N4·0.5H2O}n, two-di­men­sional coordination polymer slabs are held together in the three-dimensional crystal structure by means of O—H⋯N hydrogen bonding between bound water mol­ecules and pyridyl N atoms of cocrystallized 1,4-bis­(pyridin-4-yl­meth­yl)piperazine mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Our group has demonstrated the utility of 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) for the construction of divalent metal coordination polymers with a striking variety of inter­esting topologies (Robinson et al., 2015[Robinson, M. E., Mizzi, J. E., Staples, R. J. & LaDuca, R. L. (2015). Cryst. Growth Des. 15, 2260-2271.]). For instance, the cobalt oxalate (ox) bpmp phase {[Co(H2O)4(bpmp)](ox)}n displays cationic one-dimensional chain motifs with unligated ox moieties. A higher temperature polymorph, {[Co(ox)(bpmp)]·3H2O}n, manifests a threefold inter­penetrated three-dimensional dia topology. Use of isophthalate (iph) as the di­carboxyl­ate ligand afforded {[Co(iph)(bpmp)]·H2O}n, which exhibits a dimer-based two-dimensional layered structure (Martin et al., 2007[Martin, D. P., Braverman, M. A. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 2609-2619.]). The title com­pound was isolated during an attempt to prepare a divalent cobalt coordination polymer containing both bpmp and 4-(carboxyl­atometh­yl)benzoate (cmb) ligands.

The asymmetric unit of the title com­pound contains a divalent Co atom, a fully deprotonated cmb ligand, a bound water mol­ecule, a cocrystallized water mol­ecule best refined at half-occupancy, and half of an unligated bpmp mol­ecule whose central piperazine ring is sited on a crystallographic inversion center. The Co atom is coordinated in a {CoO6} distorted octa­hedral fashion (Fig. 1[link]) with carboxyl­ate O-atom donors from four cmb ligands in the nominal equatorial plane. The two nominally axial positions are taken up by bound water mol­ecules. Pertinent bond distances and angles for the coordination sphere are listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Co1—O1 2.011 (2) Co1—O4iii 2.140 (2)
Co1—O2i 2.029 (2) Co1—O5 2.139 (2)
Co1—O4ii 2.094 (2) Co1—O5i 2.169 (2)
       
O1—Co1—O2i 177.55 (9) O2i—Co1—O5i 87.29 (9)
O1—Co1—O4iii 92.37 (9) O4ii—Co1—O4iii 170.65 (6)
O1—Co1—O4ii 95.23 (9) O4iii—Co1—O5i 93.25 (8)
O1—Co1—O5i 93.31 (9) O4ii—Co1—O5i 80.90 (9)
O1—Co1—O5 92.67 (9) O4ii—Co1—O5 104.48 (9)
O2i—Co1—O4iii 85.22 (9) O5—Co1—O4iii 80.55 (9)
O2i—Co1—O4ii 87.21 (9) O5—Co1—O5i 171.56 (4)
O2i—Co1—O5 86.49 (9)    
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The cobalt coordination environment in the title com­pound with a full cmb ligand and cocrystallized species. Displacement ellipsoids are drawn at the 50% probability level. Water mol­ecule O1W has been omitted. Color code: Co dark blue, O red, N light blue, C black, and H pink. The symmetry codes are as listed in Table 1[link].

The bound water mol­ecules bridge adjacent Co atoms to construct [Co(μ-H2O)]n one-dimensional chain submotifs arranged parallel to the b crystal axis, in which the Co⋯Co inter­nuclear distance measures 3.170 (1) Å. Carboxyl­ate groups from cmb ligands and single carboxyl­ate O atoms from other cmb ligands also bridge the same Co⋯Co inter­nuclear distance, thereby affording [Co(OCO)(μ-H2O)(μ-O)]n chain motifs oriented along the b crystal direction (Fig. 2[link]). One carboxyl­ate terminus of the cmb ligands bridges two Co atoms in a chelating synsyn fashion, while the other carboxyl­ate group donates a single O atom to two adjacent Co atoms. One carboxyl­ate O atom (O3) of each cmb ligand remains unligated. The chain motifs are connected into [Co2(μ-H2O)2(cmb)]n two-dimensional slabs by the exo-tetra­dentate cmb ligands; these slabs are oriented parallel to the bc crystal planes (Fig. 3[link]).

[Figure 2]
Figure 2
The [Co(OCO)(μ-H2O)(μ-O)]n coordination polymer chain in the title com­pound.
[Figure 3]
Figure 3
A [Co(μ-H2O)(cmb)]n coordination polymer slab in the title com­pound.

[Co(μ-H2O)(cmb)]n layers are connected into the three-dimensional crystal structure by hydrogen bonding mediated by the unligated bpmp mol­ecules in the inter­lamellar regions. The pyridyl termini of the cocrystallized bpmp mol­ecules accept hydrogen bonds from the bridging water mol­ecules in two adjacent layer motifs (Fig. 4[link]). Cocrystallized water mol­ecules are held in the crystal by donating hydrogen bonds to the bpmp piperazine N atoms. Details regarding the hydrogen-bonding patterns in the title com­pound are listed in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N2 0.95 2.53 2.860 (5) 101
O1W—H1WA⋯N2 0.87 2.16 2.847 (10) 136
O5—H5A⋯O3i 0.85 (2) 1.79 (2) 2.619 (3) 164 (4)
O5—H5B⋯N1 0.86 (2) 1.82 (2) 2.672 (4) 175 (5)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 4]
Figure 4
The supra­molecular three-dimensional structure formed by O—H⋯N hydrogen bonding (hatched bonds) between [Co(cmb)(μ-H2O)]n slabs and cocrystallized bpmp mol­ecules.

Synthesis and crystallization

Co(NO3)2·6H2O (108 mg, 0.37 mmol), 4-(carb­oxy­meth­yl)benzoic acid (cmbH2) (67 mg, 0.37 mmol), 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) (99 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed in 10 ml distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h and then cooled slowly to 273 K. Pink crystals of the title com­plex were obtained in 68% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms attached to C atoms were placed in calculated positions and refined with a riding model. The H atoms bound to the water O5 atom were found via a difference map and were refined freely with a restraint of 0.85 Å for the O—H distances, but those bound to atom O1W were positioned geometrically and refined using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula [Co(C9H6O4)(H2O)]·0.5C16H20N4·0.5H2O
Mr 796.54
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 27.036 (6), 6.3093 (13), 20.653 (5)
β (°) 105.536 (6)
V3) 3394.2 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.05
Crystal size (mm) 0.27 × 0.14 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.669, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 8691, 3089, 2334
Rint 0.044
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.06
No. of reflections 3089
No. of parameters 243
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.65, −0.66
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[(µ-aqua)[µ4-4-(carboxylatomethyl)benzoato]cobalt(II)] hemi[1,4-bis(pyridin-4-ylmethyl)piperazine] hemihydrate] top
Crystal data top
[Co(C9H6O4)(H2O)]·0.5C16H20N4·0.5H2OF(000) = 1648
Mr = 796.54Dx = 1.559 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.036 (6) ÅCell parameters from 3416 reflections
b = 6.3093 (13) Åθ = 2.1–25.4°
c = 20.653 (5) ŵ = 1.05 mm1
β = 105.536 (6)°T = 173 K
V = 3394.2 (13) Å3Block, pink
Z = 40.27 × 0.14 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
3089 independent reflections
Radiation source: sealed tube2334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 8.36 pixels mm-1θmax = 25.4°, θmin = 2.1°
ω scansh = 3132
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 77
Tmin = 0.669, Tmax = 0.745l = 2424
8691 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0475P)2 + 5.8489P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
3089 reflectionsΔρmax = 0.65 e Å3
243 parametersΔρmin = 0.66 e Å3
3 restraints
Special details top

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was refined by Least Squares using version 2018/3 of XL (Sheldrick, 2015) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.74834 (2)0.12245 (6)0.74217 (2)0.01613 (16)
O10.77518 (9)0.2010 (3)0.66350 (10)0.0218 (5)
O20.77731 (9)0.5545 (3)0.67641 (10)0.0214 (5)
O30.84413 (9)0.8638 (3)0.37647 (11)0.0251 (6)
O40.79387 (8)0.6398 (3)0.30472 (10)0.0177 (5)
O50.69426 (9)0.3776 (3)0.72357 (11)0.0176 (5)
N10.61639 (12)0.3261 (5)0.77903 (15)0.0320 (7)
N20.50168 (11)0.4195 (5)0.93570 (14)0.0300 (7)
C10.78312 (12)0.3868 (5)0.64604 (14)0.0174 (7)
C20.80076 (12)0.4150 (5)0.58368 (15)0.0200 (7)
C30.80611 (13)0.6162 (5)0.56001 (16)0.0222 (7)
H30.7990690.7362330.5838580.027*
C40.82169 (14)0.6449 (5)0.50162 (16)0.0272 (8)
H40.8246410.7842290.4856010.033*
C50.83291 (12)0.4727 (5)0.46672 (14)0.0185 (7)
C60.82768 (13)0.2713 (5)0.49056 (16)0.0255 (8)
H60.8351910.1516540.4669030.031*
C70.81175 (13)0.2408 (5)0.54812 (16)0.0251 (8)
H70.8082680.1011570.5635450.030*
C80.85144 (13)0.4970 (5)0.40366 (14)0.0202 (7)
H8A0.8892290.5138290.4172830.024*
H8B0.8435140.3649300.3770150.024*
C90.82837 (13)0.6809 (5)0.35940 (15)0.0195 (7)
C100.60190 (15)0.4890 (7)0.81086 (19)0.0395 (10)
H100.6173590.6233220.8090650.047*
C110.56540 (16)0.4711 (6)0.8464 (2)0.0419 (10)
H110.5560360.5916210.8679830.050*
C120.54265 (14)0.2779 (6)0.85029 (17)0.0304 (8)
C130.55802 (15)0.1093 (6)0.81812 (19)0.0355 (9)
H130.5435380.0271440.8197870.043*
C140.59459 (15)0.1393 (6)0.78341 (19)0.0354 (9)
H140.6046980.0208410.7615800.043*
C150.50169 (15)0.2492 (7)0.88805 (19)0.0373 (10)
H15A0.4675250.2425470.8551630.045*
H15B0.5075360.1126210.9125250.045*
C160.54563 (14)0.4017 (6)0.99510 (18)0.0345 (9)
H16A0.5779290.4030100.9811730.041*
H16B0.5437480.2659311.0183440.041*
C170.45449 (14)0.4153 (7)0.95746 (19)0.0371 (10)
H17A0.4521010.2795720.9804610.045*
H17B0.4243690.4263460.9178540.045*
O1W0.4535 (4)0.7370 (16)0.8420 (5)0.131 (4)0.5
H1WA0.4559060.6727930.8799810.196*0.5
H1WB0.4687360.8580730.8533310.196*0.5
H5A0.6813 (14)0.440 (6)0.6864 (13)0.044 (12)*
H5B0.6705 (14)0.359 (7)0.743 (2)0.072 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0225 (3)0.0114 (2)0.0161 (2)0.00011 (18)0.00797 (18)0.00042 (16)
O10.0344 (15)0.0149 (12)0.0194 (11)0.0002 (10)0.0130 (10)0.0009 (9)
O20.0313 (14)0.0169 (12)0.0196 (11)0.0004 (10)0.0132 (10)0.0000 (9)
O30.0346 (15)0.0200 (13)0.0178 (11)0.0065 (11)0.0019 (10)0.0005 (9)
O40.0228 (13)0.0150 (12)0.0127 (10)0.0003 (9)0.0003 (9)0.0008 (8)
O50.0221 (13)0.0143 (12)0.0168 (11)0.0021 (10)0.0061 (10)0.0019 (9)
N10.0281 (19)0.0404 (19)0.0293 (16)0.0012 (15)0.0109 (14)0.0035 (14)
N20.0225 (17)0.0423 (19)0.0271 (15)0.0019 (14)0.0101 (13)0.0023 (13)
C10.0181 (18)0.0184 (17)0.0152 (15)0.0010 (14)0.0037 (13)0.0017 (13)
C20.0214 (19)0.0233 (18)0.0160 (15)0.0024 (14)0.0059 (13)0.0013 (13)
C30.034 (2)0.0137 (16)0.0223 (16)0.0006 (15)0.0127 (15)0.0021 (13)
C40.045 (2)0.0169 (18)0.0232 (17)0.0018 (16)0.0160 (16)0.0033 (14)
C50.0194 (18)0.0206 (17)0.0148 (14)0.0006 (14)0.0034 (13)0.0001 (13)
C60.036 (2)0.0184 (18)0.0257 (17)0.0017 (16)0.0138 (16)0.0015 (14)
C70.037 (2)0.0154 (17)0.0270 (17)0.0014 (16)0.0160 (16)0.0031 (14)
C80.0246 (19)0.0197 (17)0.0171 (15)0.0014 (15)0.0069 (14)0.0028 (13)
C90.0214 (19)0.0230 (18)0.0172 (15)0.0015 (14)0.0104 (14)0.0021 (13)
C100.046 (3)0.035 (2)0.043 (2)0.004 (2)0.022 (2)0.0025 (19)
C110.053 (3)0.034 (2)0.050 (2)0.002 (2)0.032 (2)0.006 (2)
C120.028 (2)0.035 (2)0.0288 (18)0.0014 (18)0.0088 (16)0.0007 (16)
C130.038 (2)0.030 (2)0.042 (2)0.0035 (18)0.0172 (18)0.0008 (17)
C140.040 (2)0.034 (2)0.036 (2)0.0052 (19)0.0168 (18)0.0008 (17)
C150.036 (2)0.043 (2)0.037 (2)0.005 (2)0.0162 (18)0.0036 (18)
C160.022 (2)0.050 (3)0.033 (2)0.0060 (18)0.0099 (16)0.0004 (18)
C170.020 (2)0.061 (3)0.0313 (19)0.0041 (19)0.0076 (16)0.0082 (18)
O1W0.165 (10)0.120 (8)0.115 (8)0.008 (8)0.052 (7)0.013 (7)
Geometric parameters (Å, º) top
Co1—O12.011 (2)C5—C81.523 (4)
Co1—O2i2.029 (2)C6—H60.9500
Co1—O4ii2.094 (2)C6—C71.382 (4)
Co1—O4iii2.140 (2)C7—H70.9500
Co1—O52.139 (2)C8—H8A0.9900
Co1—O5i2.169 (2)C8—H8B0.9900
O1—C11.262 (4)C8—C91.505 (4)
O2—C11.261 (4)C10—H100.9500
O3—C91.248 (4)C10—C111.383 (5)
O4—C91.284 (4)C11—H110.9500
O5—H5A0.851 (19)C11—C121.377 (5)
O5—H5B0.855 (19)C12—C131.376 (5)
N1—C101.334 (5)C12—C151.526 (5)
N1—C141.332 (5)C13—H130.9500
N2—C151.457 (5)C13—C141.381 (5)
N2—C161.466 (5)C14—H140.9500
N2—C171.462 (4)C15—H15A0.9900
C1—C21.499 (4)C15—H15B0.9900
C2—C31.382 (4)C16—H16A0.9900
C2—C71.397 (4)C16—H16B0.9900
C3—H30.9500C16—C17iv1.515 (5)
C3—C41.392 (4)C17—H17A0.9900
C4—H40.9500C17—H17B0.9900
C4—C51.382 (4)O1W—H1WA0.8698
C5—C61.384 (5)O1W—H1WB0.8699
O1—Co1—O2i177.55 (9)C7—C6—H6119.4
O1—Co1—O4iii92.37 (9)C2—C7—H7119.9
O1—Co1—O4ii95.23 (9)C6—C7—C2120.1 (3)
O1—Co1—O5i93.31 (9)C6—C7—H7119.9
O1—Co1—O592.67 (9)C5—C8—H8A108.6
O2i—Co1—O4iii85.22 (9)C5—C8—H8B108.6
O2i—Co1—O4ii87.21 (9)H8A—C8—H8B107.5
O2i—Co1—O586.49 (9)C9—C8—C5114.8 (3)
O2i—Co1—O5i87.29 (9)C9—C8—H8A108.6
O4ii—Co1—O4iii170.65 (6)C9—C8—H8B108.6
O4iii—Co1—O5i93.25 (8)O3—C9—O4123.2 (3)
O4ii—Co1—O5i80.90 (9)O3—C9—C8119.1 (3)
O4ii—Co1—O5104.48 (9)O4—C9—C8117.7 (3)
O5—Co1—O4iii80.55 (9)N1—C10—H10118.5
O5—Co1—O5i171.56 (4)N1—C10—C11122.9 (4)
C1—O1—Co1125.86 (19)C11—C10—H10118.5
C1—O2—Co1v134.8 (2)C10—C11—H11120.1
Co1ii—O4—Co1vi96.93 (8)C12—C11—C10119.8 (4)
C9—O4—Co1ii138.0 (2)C12—C11—H11120.1
C9—O4—Co1vi123.7 (2)C11—C12—C15122.1 (3)
Co1—O5—Co1v94.73 (9)C13—C12—C11117.3 (3)
Co1—O5—H5A127 (3)C13—C12—C15120.6 (3)
Co1v—O5—H5A93 (3)C12—C13—H13120.2
Co1v—O5—H5B120 (3)C12—C13—C14119.7 (4)
Co1—O5—H5B112 (3)C14—C13—H13120.2
H5A—O5—H5B108 (4)N1—C14—C13123.2 (4)
C14—N1—C10117.0 (3)N1—C14—H14118.4
C15—N2—C16111.2 (3)C13—C14—H14118.4
C15—N2—C17110.6 (3)N2—C15—C12112.9 (3)
C17—N2—C16108.7 (3)N2—C15—H15A109.0
O1—C1—C2118.3 (3)N2—C15—H15B109.0
O2—C1—O1125.7 (3)C12—C15—H15A109.0
O2—C1—C2116.0 (3)C12—C15—H15B109.0
C3—C2—C1120.0 (3)H15A—C15—H15B107.8
C3—C2—C7118.7 (3)N2—C16—H16A109.7
C7—C2—C1121.3 (3)N2—C16—H16B109.7
C2—C3—H3119.6N2—C16—C17iv110.0 (3)
C2—C3—C4120.7 (3)H16A—C16—H16B108.2
C4—C3—H3119.6C17iv—C16—H16A109.7
C3—C4—H4119.7C17iv—C16—H16B109.7
C5—C4—C3120.6 (3)N2—C17—C16iv109.8 (3)
C5—C4—H4119.7N2—C17—H17A109.7
C4—C5—C6118.6 (3)N2—C17—H17B109.7
C4—C5—C8122.4 (3)C16iv—C17—H17A109.7
C6—C5—C8119.0 (3)C16iv—C17—H17B109.7
C5—C6—H6119.4H17A—C17—H17B108.2
C7—C6—C5121.3 (3)H1WA—O1W—H1WB104.5
Co1—O1—C1—O22.7 (5)C5—C6—C7—C20.3 (5)
Co1—O1—C1—C2176.9 (2)C5—C8—C9—O376.4 (4)
Co1v—O2—C1—O13.5 (5)C5—C8—C9—O4105.1 (3)
Co1v—O2—C1—C2176.2 (2)C6—C5—C8—C9145.6 (3)
Co1vi—O4—C9—O311.0 (4)C7—C2—C3—C40.6 (5)
Co1ii—O4—C9—O3174.2 (2)C8—C5—C6—C7179.0 (3)
Co1vi—O4—C9—C8170.56 (19)C10—N1—C14—C130.8 (6)
Co1ii—O4—C9—C87.3 (4)C10—C11—C12—C130.3 (6)
O1—C1—C2—C3175.1 (3)C10—C11—C12—C15179.3 (4)
O1—C1—C2—C74.5 (5)C11—C12—C13—C140.5 (6)
O2—C1—C2—C34.6 (5)C11—C12—C15—N218.8 (5)
O2—C1—C2—C7175.8 (3)C12—C13—C14—N10.1 (6)
N1—C10—C11—C120.5 (6)C13—C12—C15—N2161.7 (3)
C1—C2—C3—C4179.0 (3)C14—N1—C10—C111.0 (6)
C1—C2—C7—C6179.6 (3)C15—N2—C16—C17iv178.2 (3)
C2—C3—C4—C51.0 (5)C15—N2—C17—C16iv177.9 (3)
C3—C2—C7—C60.1 (5)C15—C12—C13—C14179.1 (4)
C3—C4—C5—C60.8 (5)C16—N2—C15—C1273.7 (4)
C3—C4—C5—C8178.3 (3)C16—N2—C17—C16iv59.7 (4)
C4—C5—C6—C70.2 (5)C17—N2—C15—C12165.4 (3)
C4—C5—C8—C935.2 (5)C17—N2—C16—C17iv59.8 (4)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+1; (iii) x, y+1, z+1/2; (iv) x+1, y+1, z+2; (v) x+3/2, y+1/2, z+3/2; (vi) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N20.952.532.860 (5)101
O1W—H1WA···N20.872.162.847 (10)136
O5—H5A···O3vii0.85 (2)1.79 (2)2.619 (3)164 (4)
O5—H5B···N10.86 (2)1.82 (2)2.672 (4)175 (5)
Symmetry code: (vii) x+3/2, y+3/2, z+1.
 

Funding information

Funding for this research was provided by: Lyman Briggs College of Science at Michigan State University.

References

First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartin, D. P., Braverman, M. A. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 2609–2619.  Web of Science CSD CrossRef CAS Google Scholar
First citationRobinson, M. E., Mizzi, J. E., Staples, R. J. & LaDuca, R. L. (2015). Cryst. Growth Des. 15, 2260–2271.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146