organic compounds
4-(3-Chloroanilino)benzoic acid
aSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
*Correspondence e-mail: sihuilong@wit.edu.cn
The title compound, C13H10ClNO2, was synthesized by a Buchwald–Hartwig reaction and its was investigated for the first time. Crystallization in a variety of solvents led to the discovery of one crystal form. High-quality single crystals were obtained by slow evaporation and the was determined by single-crystal X-ray diffraction. The molecules in the crystal structures are highly twisted [the dihedral angle between the aromatic rings is 34.66 (6)°] and pair up to form acid–acid dimers.
CCDC reference: 2280190
Structure description
The title compound (Fig. 1) was first synthesized by Adeniji et al. (2011). It is a potent and selective aldo-keto reductase AKR1C2 and AKR1C3 inhibitor, which is efficacious in a prostate cancer model and is a potential therapeutic agent for the treatment of castration-resistant prostate cancer (CRPC) (Adeniji et al., 2012). There is only one molecule in the of the As a result of the repulsion between the carbon-bonded H atoms ortho to NH on both aromatic rings, the molecule is twisted as evidenced by the dihedral angle between the two aromatic rings [34.66 (6)°]. In the crystal, the molecules form acid–acid dimers via O—H⋯O hydrogen bonds (Table 1, Fig. 2).
Synthesis and crystallization
In this work, the title compound was successfully prepared by a Buchwald–Hartwig reaction (Fig. 3) (Hou et al., 2015) using 4-chlorobenzoic acid and 3-chloroaniline as starting materials. Crystallization was conducted by slow evaporation in avariety of solvents in a clean fume hood. Crystals suitable for single-crystal X-ray diffraction (Fig. 4) were obtained by slow evaporation of an acetonitrile solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2280190
Data collection: CrysAlis PRO 1.171.41.113a (Rigaku OD, 2022); cell
CrysAlis PRO 1.171.41.113a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.41.113a (Rigaku OD, 2022); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).C13H10ClNO2 | F(000) = 512 |
Mr = 247.67 | Dx = 1.444 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 10.8865 (2) Å | Cell parameters from 5783 reflections |
b = 10.31441 (18) Å | θ = 4.3–77.1° |
c = 11.0885 (2) Å | µ = 2.88 mm−1 |
β = 113.817 (3)° | T = 288 K |
V = 1139.08 (5) Å3 | Block, clear light colourless |
Z = 4 | 0.15 × 0.13 × 0.09 mm |
Rigaku Oxford Diffraction, Synergy Custom system, HyPix diffractometer | 2278 independent reflections |
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source | 2045 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.025 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 77.4°, θmin = 4.4° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −12→12 |
Tmin = 0.375, Tmax = 1.000 | l = −13→14 |
7087 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.085P)2 + 0.1891P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2278 reflections | Δρmax = 0.35 e Å−3 |
162 parameters | Δρmin = −0.37 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The positions of all H atoms were obtained from the difference Fourier map. H atoms bonded to N1 and O1 were freely refined. Other H atoms were positioned geometrically with C—H = 0.93 Å and constraioned to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.08885 (6) | 0.18033 (6) | 0.52451 (6) | 0.0806 (3) | |
O1 | 0.56772 (18) | 0.39086 (13) | 0.91797 (17) | 0.0746 (4) | |
H1 | 0.553 (4) | 0.394 (4) | 0.992 (4) | 0.150 (15)* | |
O2 | 0.53662 (16) | 0.60395 (13) | 0.90499 (15) | 0.0729 (4) | |
N1 | 0.72634 (17) | 0.52920 (19) | 0.43865 (17) | 0.0663 (4) | |
C1 | 0.69502 (16) | 0.51613 (18) | 0.54768 (17) | 0.0547 (4) | |
C2 | 0.69426 (18) | 0.39841 (17) | 0.60907 (19) | 0.0583 (4) | |
H2 | 0.718984 | 0.322720 | 0.579069 | 0.070* | |
C3 | 0.65700 (18) | 0.39349 (16) | 0.71420 (19) | 0.0566 (4) | |
H3 | 0.658316 | 0.314588 | 0.755293 | 0.068* | |
C4 | 0.61751 (16) | 0.50519 (15) | 0.75936 (17) | 0.0511 (4) | |
C5 | 0.61631 (19) | 0.62229 (17) | 0.69628 (19) | 0.0594 (4) | |
H5 | 0.588815 | 0.697547 | 0.724422 | 0.071* | |
C6 | 0.6552 (2) | 0.62786 (19) | 0.5931 (2) | 0.0634 (5) | |
H6 | 0.655065 | 0.707079 | 0.552966 | 0.076* | |
C7 | 0.57147 (17) | 0.50230 (15) | 0.86682 (18) | 0.0542 (4) | |
C8 | 0.80918 (17) | 0.4555 (2) | 0.39658 (17) | 0.0577 (4) | |
C9 | 0.89546 (17) | 0.3606 (2) | 0.47289 (16) | 0.0573 (4) | |
H9 | 0.897922 | 0.340034 | 0.555486 | 0.069* | |
C10 | 0.97786 (19) | 0.2970 (2) | 0.42486 (18) | 0.0612 (5) | |
C11 | 0.9792 (2) | 0.3250 (2) | 0.3038 (2) | 0.0717 (6) | |
H11 | 1.035995 | 0.281079 | 0.273724 | 0.086* | |
C12 | 0.8938 (2) | 0.4199 (3) | 0.22921 (19) | 0.0781 (6) | |
H12 | 0.893432 | 0.441247 | 0.147575 | 0.094* | |
C13 | 0.8084 (2) | 0.4843 (2) | 0.27326 (19) | 0.0710 (5) | |
H13 | 0.750126 | 0.547161 | 0.220491 | 0.085* | |
H1A | 0.707 (3) | 0.599 (2) | 0.404 (2) | 0.076 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0851 (4) | 0.0895 (4) | 0.0837 (4) | 0.0171 (3) | 0.0512 (3) | 0.0098 (2) |
O1 | 0.1076 (11) | 0.0517 (7) | 0.0901 (10) | −0.0001 (7) | 0.0662 (9) | −0.0001 (6) |
O2 | 0.0978 (10) | 0.0509 (7) | 0.0929 (10) | −0.0024 (6) | 0.0623 (9) | −0.0109 (6) |
N1 | 0.0644 (9) | 0.0749 (11) | 0.0663 (10) | 0.0075 (8) | 0.0333 (8) | 0.0120 (8) |
C1 | 0.0453 (8) | 0.0623 (10) | 0.0569 (9) | −0.0007 (7) | 0.0212 (7) | 0.0001 (7) |
C2 | 0.0618 (10) | 0.0515 (9) | 0.0731 (11) | −0.0036 (7) | 0.0390 (9) | −0.0076 (7) |
C3 | 0.0606 (9) | 0.0455 (8) | 0.0723 (10) | −0.0027 (7) | 0.0358 (8) | −0.0023 (7) |
C4 | 0.0475 (8) | 0.0486 (9) | 0.0595 (9) | −0.0019 (6) | 0.0240 (7) | −0.0047 (6) |
C5 | 0.0633 (10) | 0.0486 (9) | 0.0721 (11) | 0.0066 (7) | 0.0332 (9) | 0.0002 (7) |
C6 | 0.0666 (10) | 0.0548 (10) | 0.0750 (11) | 0.0087 (8) | 0.0351 (9) | 0.0136 (8) |
C7 | 0.0550 (9) | 0.0467 (9) | 0.0659 (10) | −0.0043 (6) | 0.0296 (8) | −0.0070 (7) |
C8 | 0.0507 (8) | 0.0720 (11) | 0.0533 (9) | −0.0104 (8) | 0.0242 (7) | −0.0046 (8) |
C9 | 0.0551 (9) | 0.0723 (11) | 0.0502 (8) | −0.0082 (8) | 0.0273 (7) | −0.0039 (7) |
C10 | 0.0599 (9) | 0.0727 (11) | 0.0584 (10) | −0.0078 (8) | 0.0316 (8) | −0.0064 (8) |
C11 | 0.0725 (12) | 0.0946 (15) | 0.0601 (10) | −0.0076 (10) | 0.0392 (9) | −0.0102 (10) |
C12 | 0.0794 (13) | 0.1123 (18) | 0.0515 (10) | −0.0099 (12) | 0.0357 (9) | −0.0001 (10) |
C13 | 0.0648 (11) | 0.0932 (15) | 0.0552 (10) | −0.0058 (10) | 0.0244 (8) | 0.0064 (9) |
Cl1—C10 | 1.746 (2) | C4—C7 | 1.468 (2) |
O1—H1 | 0.90 (4) | C5—H5 | 0.9300 |
O1—C7 | 1.290 (2) | C5—C6 | 1.372 (3) |
O2—C7 | 1.246 (2) | C6—H6 | 0.9300 |
N1—C1 | 1.389 (2) | C8—C9 | 1.383 (3) |
N1—C8 | 1.396 (3) | C8—C13 | 1.396 (3) |
N1—H1A | 0.80 (3) | C9—H9 | 0.9300 |
C1—C2 | 1.394 (3) | C9—C10 | 1.380 (3) |
C1—C6 | 1.395 (3) | C10—C11 | 1.379 (3) |
C2—H2 | 0.9300 | C11—H11 | 0.9300 |
C2—C3 | 1.381 (3) | C11—C12 | 1.374 (3) |
C3—H3 | 0.9300 | C12—H12 | 0.9300 |
C3—C4 | 1.392 (2) | C12—C13 | 1.383 (3) |
C4—C5 | 1.393 (2) | C13—H13 | 0.9300 |
C7—O1—H1 | 115 (3) | O1—C7—C4 | 117.19 (15) |
C1—N1—C8 | 131.05 (18) | O2—C7—O1 | 122.19 (16) |
C1—N1—H1A | 113.1 (18) | O2—C7—C4 | 120.62 (15) |
C8—N1—H1A | 114.2 (19) | C9—C8—N1 | 123.47 (16) |
N1—C1—C2 | 124.18 (17) | C9—C8—C13 | 118.95 (18) |
N1—C1—C6 | 117.08 (17) | C13—C8—N1 | 117.50 (19) |
C2—C1—C6 | 118.66 (16) | C8—C9—H9 | 120.4 |
C1—C2—H2 | 119.8 | C10—C9—C8 | 119.14 (16) |
C3—C2—C1 | 120.39 (16) | C10—C9—H9 | 120.4 |
C3—C2—H2 | 119.8 | C9—C10—Cl1 | 118.36 (14) |
C2—C3—H3 | 119.6 | C11—C10—Cl1 | 118.92 (16) |
C2—C3—C4 | 120.79 (16) | C11—C10—C9 | 122.7 (2) |
C4—C3—H3 | 119.6 | C10—C11—H11 | 121.2 |
C3—C4—C5 | 118.60 (16) | C12—C11—C10 | 117.70 (19) |
C3—C4—C7 | 122.12 (15) | C12—C11—H11 | 121.2 |
C5—C4—C7 | 119.22 (15) | C11—C12—H12 | 119.4 |
C4—C5—H5 | 119.6 | C11—C12—C13 | 121.21 (18) |
C6—C5—C4 | 120.76 (17) | C13—C12—H12 | 119.4 |
C6—C5—H5 | 119.6 | C8—C13—H13 | 119.8 |
C1—C6—H6 | 119.6 | C12—C13—C8 | 120.3 (2) |
C5—C6—C1 | 120.78 (17) | C12—C13—H13 | 119.8 |
C5—C6—H6 | 119.6 | ||
Cl1—C10—C11—C12 | −178.04 (17) | C4—C5—C6—C1 | 0.9 (3) |
N1—C1—C2—C3 | −177.58 (17) | C5—C4—C7—O1 | 176.54 (17) |
N1—C1—C6—C5 | 176.83 (17) | C5—C4—C7—O2 | −2.8 (3) |
N1—C8—C9—C10 | −177.07 (18) | C6—C1—C2—C3 | −1.1 (3) |
N1—C8—C13—C12 | 176.3 (2) | C7—C4—C5—C6 | −178.23 (17) |
C1—N1—C8—C9 | −10.4 (3) | C8—N1—C1—C2 | −28.5 (3) |
C1—N1—C8—C13 | 172.68 (19) | C8—N1—C1—C6 | 155.0 (2) |
C1—C2—C3—C4 | 1.1 (3) | C8—C9—C10—Cl1 | 178.49 (14) |
C2—C1—C6—C5 | 0.1 (3) | C8—C9—C10—C11 | 0.8 (3) |
C2—C3—C4—C5 | 0.0 (3) | C9—C8—C13—C12 | −0.7 (3) |
C2—C3—C4—C7 | 177.14 (16) | C9—C10—C11—C12 | −0.4 (3) |
C3—C4—C5—C6 | −1.0 (3) | C10—C11—C12—C13 | −0.7 (3) |
C3—C4—C7—O1 | −0.6 (3) | C11—C12—C13—C8 | 1.2 (3) |
C3—C4—C7—O2 | −179.92 (17) | C13—C8—C9—C10 | −0.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.90 (4) | 1.78 (4) | 2.6359 (19) | 160 (4) |
Symmetry code: (i) −x+1, −y+1, −z+2. |
References
Adeniji, A. O., Twenter, B. M., Byrns, M. C., Jin, Y., Winkler, J. D. & Penning, T. M. (2011). Bioorg. Med. Chem. Lett. 21, 1464–1468. Web of Science CrossRef CAS PubMed Google Scholar
Adeniji, A. O., Twenter, B. M., Byrns, M. C., Jin, Y., Chen, M., Winkler, J. D. & Penning, T. M. (2012). J. Med. Chem. 55, 2311–2323. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hou, J., Zhao, W., Huang, Z., Yang, S., Wang, L., Jiang, Y., Zhou, Z., Zheng, M., Jiang, J., Li, S. & Li, F. N. (2015). Chem. Biol. Drug Des. 86, 223–231. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.