inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Low-temperature modification of Ba(BF4)2(H2O)3

crossmark logo

aDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39 1000 Ljubljana, Slovenia, and bFaculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia
*Correspondence e-mail: evgeny.goreshnik@ijs.si

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 May 2023; accepted 5 June 2023; online 9 June 2023)

The crystal structure of the low-temperature modification of Ba(BF4)2(H2O)3, barium bis(tetra­fluorido­borate) trihydrate, was determined at 150 K. In contrast to the room-temperature modification, which crystallizes in the space group C2221 [a = 7.1763 (6), b = 18.052 (2), c = 7.1631 (6) Å, V = 927.93 (15) Å3 at 300 K, Z = 4; Charkin et al. (2023[Charkin, D. O., Volkov, S. N., Manelis, L. S., Gosteva, A. N., Aksenov, S. M. & Dolgikh, V. A. (2023). J. Struct. Chem. 64, 253-261.]). J. Struct. Chem. 64, 253–261], the low-temperature phase is monoclinic, space group P21 [a = 7.0550 (4), b = 7.1706 (3), c = 9.4182 (6) Å, β = 109.295 (7)o, V = 449.68 (5) Å3, Z = 2]. The structure of the low-temperature modification of Ba(BF4)2(H2O)3 features O—H⋯F and O—H⋯O hydrogen bonding between water mol­ecules and BF4 anions. One of the coordinating water mol­ecules in the low-temperature modification is disordered over two sets of sites.

3D view (loading...)
[Scheme 3D1]

Structure description

Recently, the ortho­rhom­bic crystal structure of the compound Ba(BF4)2(H2O)3 was reported on the basis of room-temperature (RT) single-crystal data in space group C2221 (Charkin et al., 2023[Charkin, D. O., Volkov, S. N., Manelis, L. S., Gosteva, A. N., Aksenov, S. M. & Dolgikh, V. A. (2023). J. Struct. Chem. 64, 253-261.]). The authors observed a phase transition at decreasing temperature but were unable to solve the crystal structure of the low-temperature (LT) modification. We have now succeeded in solving the crystal structure of LT-Ba(BF4)2(H2O)3.

The asymmetric unit of LT-Ba(BF4)2(H2O)3 contains one Ba2+ cation, two tetra­hedral BF4 anions and three water mol­ecules, one of which (O3) is disordered over two sets of sites with approximately equal occupancy [ratio 0.56 (2):0.44 (2)]. The Ba2+ cation has a coordination number of 10 and is coordinated by seven F ligands from six BF4 anions and by three water ligands (Fig. 1[link]). In anhydrous Ba(BF4)2 (Bunič et al., 2007[Bunič, T., Tavčar, G., Goreshnik, E. & Žemva, B. (2007). Acta Cryst. C63, i75-i76.]), the Ba2+ cation is surrounded by ten BF4 anions. The B(1)F4 unit in LT-Ba(BF4)2(H2O)3 is bound to four Ba2+ cations, while the B(2)F4 unit is connected in a chelate mode to one Ba2+ cation and to another via a μ2-bridging F ligand. Each [BaF7O3] coordination polyhedron shares two vertices with two other [BaF7O3] polyhedra. The shortest Ba⋯Ba distances amounts to 5.9210 (2) Å. Ba—F bond lengths range from 2.698 (7) to 3.035 (8) Å, and Ba—O bond lengths from 2.777 (9) to 2.821 (8) Å (for ordered water mol­ecules). The spread of Ba—F distances in LT-Ba(BF4)2(H2O)3 is greater than for the RT-modification [2.729 (4) to 2.843 (17) Å; Charkin et al., 2023[Charkin, D. O., Volkov, S. N., Manelis, L. S., Gosteva, A. N., Aksenov, S. M. & Dolgikh, V. A. (2023). J. Struct. Chem. 64, 253-261.]]. The B—F distances in LT-Ba(BF4)2(H2O)3 are in normal ranges, 1.352 (12)–1.406 (16) Å.

[Figure 1]
Figure 1
The environment of the Ba2+ cation in the crystal structure of LT-Ba(BF4)2(H2O)3. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) −x + 1, y − [{1\over 2}], −z; (ii) x + 1, y, z; (iii) −x + 1, y + [{1\over 2}], −z; (iv) −x + 2, y + [{1\over 2}], −z + 1; (v) x − 1, y, z; (vi) −x + 2, y − [{1\over 2}], −z + 1.]

The packing of LT-Ba(BF4)2(H2O)3 is shown in Fig. 2[link]. The two ordered water mol­ecules form O—H⋯F hydrogen bonds, and the disordered water mol­ecule forms both O—H⋯F and O—H⋯O hydrogen bonds (Fig. 1[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯F5i 0.829 (10) 2.075 (8) 2.892 (12) 168.8 (7)
O1—H1B⋯F7ii 0.842 (10) 2.016 (7) 2.849 (13) 170.5 (7)
O2—H2A⋯F4 0.974 (9) 2.331 (9) 3.119 (13) 137.4 (5)
O2—H2B⋯F8iii 0.977 (9) 2.053 (11) 3.002 (15) 163.5 (7)
O3A—H3AA⋯O2iii 0.88 (2) 2.191 (11) 2.96 (3) 146.5 (18)
O3A—H3AB⋯F7iv 0.84 (2) 2.386 (8) 3.13 (2) 147.7 (17)
O3B—H3BA⋯F5 0.86 (3) 2.355 (9) 3.15 (3) 153.0 (16)
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iii) [-x+2, y+{\script{1\over 2}}, -z]; (iv) [-x+2, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Crystal structure of LT-Ba(BF4)2(H2O)3 in a view approximately along [100]. Displacement ellipsoids are the same as in Fig. 1[link]. Display of hydrogen-bonding inter­actions was omitted for clarity.

The RT unit cell in space group C2221 with a = 7.1763 (6) Å, b = 18.052 (2) Å, c = 7.1631 (6) Å (Charkin et al., 2023[Charkin, D. O., Volkov, S. N., Manelis, L. S., Gosteva, A. N., Aksenov, S. M. & Dolgikh, V. A. (2023). J. Struct. Chem. 64, 253-261.]) is related to the LT mP unit cell in P21 by the transformation –a, –c, 1/2a + 1/2b, suggesting a translationengleiche symmetry relationship of index 2 (Müller, 2013[Müller, U. (2013). Symmetry Relationships between Crystal Structures - Applications of Crystallographic Group Theory in Crystal Chemistry. Oxford University Press.]). Considering the significant difference in crystal density for both modifications (2.59 g cm-3 for the RT modification at 300 K, 2.63 g cm−3 for the LT modification at 280 K, and 2.59 g cm−3 at 150 K), it can be assumed that the formation of a structure with more effective packing is the driving force of the observed phase transition.

We also tried to determine the temperature of the phase transition. It is noteworthy that at 280 K the LT modification remains unchanged, with significantly enlarged unit-cell parameters (Table 2[link]). At 300 K, an ortho­rhom­bic cell was indexed with 100% of all observed reflections and with similar lattice parameters as given by Charkin et al. (2023[Charkin, D. O., Volkov, S. N., Manelis, L. S., Gosteva, A. N., Aksenov, S. M. & Dolgikh, V. A. (2023). J. Struct. Chem. 64, 253-261.]). Thus, we can conclude that the ordered oC ⇌ mP phase transition of Ba(BF4)2(H2O)3 (accompanied by twinning of the monoclinic LT phase) occurs between 280 and 300 K.

Table 2
Unit-cell parameters (Å, °, Å3) of Ba(BF4)2(H2O)3 at different temperatures (K)

T a b c β V
100 7.0406 (5) 7.1567 (3) 9.3926 (9) 109.292 (7) 446.69 (5)
150 7.0550 (4) 7.1706 (3) 9.4182 (6) 109.295 (7) 449.68 (5)
280 7.1469 (5) 7.1775 (4) 9.5820 (7) 110.254 (6) 461.13 (5)
300 7.1763 (6) 18.052 (2) 7.1631 (6)   927.93 (15)

Synthesis and crystallization

Single crystals of Ba(BF4)2(H2O)3 were grown from an aqueous solution of Ba(BF4)2. Barium carbonate was added in small portions to 40%wt HBF4. After completion of the gaseous CO2 release, the solution was deca­nted from residual BaCO3. Evaporation of water at room temperature yielded small crystals of Ba(BF4)2(H2O)3. Note that an excess of HBF4 led to the formation of crystals of anhydrous Ba(BF4)2 in our experiments.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The obtained crystals suffer from racemic twinning and additionally show twinning by pseudo-merohedry at decreasing temperature. To avoid complicated refinement, many crystals were tested until a crystal with a Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) close to zero was found. The twin law corresponding to a 180° rotation around the [100] direction was determined, and the reflection array was indexed as a two-component twin with a negligible amount of non-indexed reflections. Because of the relatively small amount (BASF = 0.26) of the second domain, the final refinement was performed with a HKLF5-type file containing reflections from the first domain and overlapping reflections. Because of unstable refinement, EADP commands in SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) were applied to the pair of disordered O3 atoms and also to the pair of B atoms. Hydrogen atoms were placed on calculated positions and refined with AFIX 7 restrictions. One reflection with an error/e.s.d. ratio of 5.5 was omitted.

Table 3
Experimental details

Crystal data
Chemical formula Ba(BF4)2(H2O)3
Mr 365.01
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 7.0550 (4), 7.1706 (3), 9.4182 (6)
β (°) 109.295 (7)
V3) 449.68 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.53
Crystal size (mm) 0.36 × 0.27 × 0.07
 
Data collection
Diffractometer New Gemini, Dual, Cu at home/near, Atlas
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2023)
Tmin, Tmax 0.075, 0.472
No. of measured, independent and observed [I > 2σ(I)] reflections 2386, 2386, 2212
(sin θ/λ)max−1) 0.674
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.07
No. of reflections 2386
No. of parameters 120
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.93, −1.05
Absolute structure Classical Flack method preferred over Parsons because s.u. lower
Absolute structure parameter −0.03 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis Pro. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Putz et al., 2023[Putz, H. & Brandenburg, K. (2023). Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2023); cell refinement: CrysAlis PRO (Rigaku OD, 2023); data reduction: CrysAlis PRO (Rigaku OD, 2023); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: DIAMOND (Putz et al., 2023); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Barium bis(tetrafluoridoborate) trihydrate top
Crystal data top
Ba(BF4)2(H2O)32(BF4)·3(H2O)·BaF(000) = 336
Mr = 365.01Dx = 2.696 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.0550 (4) ÅCell parameters from 5692 reflections
b = 7.1706 (3) Åθ = 3.0–28.2°
c = 9.4182 (6) ŵ = 4.53 mm1
β = 109.295 (7)°T = 150 K
V = 449.68 (5) Å3Plate, colourless
Z = 20.36 × 0.27 × 0.07 mm
Data collection top
New Gemini, Dual, Cu at home/near, Atlas
diffractometer
2386 measured reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2386 independent reflections
Graphite monochromator2212 reflections with I > 2σ(I)
Detector resolution: 10.6426 pixels mm-1θmax = 28.6°, θmin = 2.3°
ω scansh = 99
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2023)
k = 99
Tmin = 0.075, Tmax = 0.472l = 1212
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0656P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max = 0.009
S = 1.07Δρmax = 0.93 e Å3
2386 reflectionsΔρmin = 1.05 e Å3
120 parametersAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower
1 restraintAbsolute structure parameter: 0.03 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

1. Twinned data refinement Scales: 0.738 (3) 0.262 (3) 2. Fixed Uiso At 1.5 times of: All O(H,H,H,H,H,H,H,H) groups 3. Uiso/Uaniso restraints and constraints Uanis(O3B) = Uanis(O3A) Uanis(B2) = Uanis(B1) Uanis(F4) = Uanis(F2) 4. Others Sof(O3B)=Sof(H3BA)=Sof(H3BB)=1-FVAR(1) Sof(O3A)=Sof(H3AA)=Sof(H3AB)=FVAR(1) Fixed X: H1A(1.393391) H1B(1.25841) H3AA(0.82474) H3AB(0.919749) H3BA(0.70805) H3BB(0.82046) H2A(1.436299) H2B(1.27384) Fixed Y: H1A(0.843861) H1B(0.70964) H3AA(1.34448) H3AB(1.39917) H3BA(1.19412) H3BB(1.354321) H2A(0.999499) H2B(1.11445) Fixed Z: H1A(0.62203) H1B(0.62415) H3AA(0.77378) H3AB(0.663441) H3BA(0.651361) H3BB(0.66705) H2A(1.1758) H2B(1.21389)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.84596 (6)0.54566 (15)0.18707 (5)0.01069 (17)
F10.1744 (12)0.6957 (9)0.0772 (9)0.0392 (19)
F20.4423 (11)0.5754 (14)0.0977 (9)0.0449 (16)
F30.1320 (13)0.4559 (13)0.0610 (12)0.050 (3)
F40.2873 (13)0.4098 (13)0.1086 (11)0.0449 (16)
F51.4219 (11)0.4296 (12)0.4972 (9)0.0361 (18)
F61.2726 (11)0.2125 (11)0.5958 (8)0.0299 (16)
F71.1150 (11)0.4849 (9)0.5097 (9)0.0311 (18)
F81.1510 (13)0.2707 (18)0.3442 (11)0.035 (3)
O10.6644 (13)0.2926 (16)0.3248 (12)0.031 (2)
O20.6901 (12)0.565 (2)0.1296 (9)0.033 (2)
B10.2610 (14)0.537 (4)0.0048 (10)0.0136 (15)
B21.2421 (17)0.3491 (17)0.4874 (13)0.0136 (15)
O3A1.128 (3)0.813 (4)0.298 (2)0.025 (4)0.56 (2)
O3B1.197 (4)0.756 (4)0.284 (3)0.025 (4)0.44 (2)
H1A0.6066090.3438610.3779700.038*
H1B0.7415900.2096400.3758500.038*
H3AA1.1752610.8444800.2262200.038*0.56 (2)
H3AB1.0802500.8991700.3365590.038*0.56 (2)
H3BA1.2919500.6941200.3486400.038*0.44 (2)
H3BB1.1795390.8543210.3329500.038*0.44 (2)
H2A0.5637010.4994990.1757990.038*
H2B0.7261600.6144500.2138910.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0098 (2)0.0107 (2)0.0114 (3)0.0003 (4)0.00317 (18)0.0011 (4)
F10.044 (5)0.021 (3)0.049 (5)0.011 (3)0.010 (4)0.022 (3)
F20.029 (3)0.052 (4)0.052 (4)0.000 (3)0.011 (3)0.013 (3)
F30.043 (5)0.048 (5)0.082 (7)0.010 (4)0.051 (5)0.030 (5)
F40.029 (3)0.052 (4)0.052 (4)0.000 (3)0.011 (3)0.013 (3)
F50.014 (4)0.056 (5)0.038 (5)0.005 (3)0.008 (3)0.003 (4)
F60.037 (4)0.031 (4)0.022 (4)0.005 (3)0.010 (3)0.016 (3)
F70.028 (4)0.024 (4)0.040 (5)0.008 (3)0.009 (3)0.001 (3)
F80.040 (6)0.048 (6)0.011 (4)0.006 (4)0.000 (3)0.002 (5)
O10.029 (5)0.022 (5)0.045 (7)0.002 (3)0.017 (5)0.008 (4)
O20.026 (4)0.055 (7)0.013 (3)0.006 (6)0.000 (3)0.001 (6)
B10.010 (3)0.021 (4)0.010 (3)0.003 (4)0.003 (3)0.002 (4)
B20.010 (3)0.021 (4)0.010 (3)0.003 (4)0.003 (3)0.002 (4)
O3A0.020 (10)0.028 (11)0.034 (8)0.007 (6)0.017 (7)0.017 (7)
O3B0.020 (10)0.028 (11)0.034 (8)0.007 (6)0.017 (7)0.017 (7)
Geometric parameters (Å, º) top
Ba1—F1i2.700 (6)F4—B11.39 (2)
Ba1—F22.698 (7)F5—B21.369 (13)
Ba1—F3ii2.735 (7)F6—B21.379 (14)
Ba1—F4iii2.791 (9)F7—B21.385 (14)
Ba1—F6iv2.728 (7)F8—B21.406 (16)
Ba1—F73.035 (8)O1—H1A0.83
Ba1—F82.933 (10)O1—H1B0.84
Ba1—O12.777 (9)O2—H2A0.97
Ba1—O22.821 (8)O2—H2B0.98
Ba1—O3A2.71 (2)O3A—H3AA0.88
Ba1—O3B2.78 (2)O3A—H3AB0.84
F1—B11.36 (2)O3B—H3BA0.86
F2—B11.352 (12)O3B—H3BB0.88
F3—B11.387 (15)
F1i—Ba1—F3ii64.4 (3)O2—Ba1—F7164.1 (2)
F1i—Ba1—F4iii142.9 (3)O2—Ba1—F8122.1 (3)
F1i—Ba1—F6iv134.8 (2)O3A—Ba1—F3ii77.3 (5)
F1i—Ba1—F7100.8 (2)O3A—Ba1—F4iii65.1 (6)
F1i—Ba1—F860.4 (3)O3A—Ba1—F6iv76.6 (4)
F1i—Ba1—O166.3 (3)O3A—Ba1—F765.2 (6)
F1i—Ba1—O271.8 (3)O3A—Ba1—F887.7 (5)
F1i—Ba1—O3A138.1 (5)O3A—Ba1—O1132.5 (5)
F1i—Ba1—O3B123.8 (6)O3A—Ba1—O2110.6 (6)
F2—Ba1—F1i92.1 (3)O3B—Ba1—F763.6 (6)
F2—Ba1—F3ii137.5 (3)O3B—Ba1—F876.9 (6)
F2—Ba1—F4iii67.4 (3)O3B—Ba1—O2108.2 (6)
F2—Ba1—F6iv69.2 (2)B1—F1—Ba1iii157.8 (7)
F2—Ba1—F7124.8 (2)B1—F2—Ba1149.2 (8)
F2—Ba1—F8137.2 (3)B1—F3—Ba1v141.5 (12)
F2—Ba1—O166.1 (3)B1—F4—Ba1i133.4 (10)
F2—Ba1—O270.4 (2)B2—F6—Ba1vi148.7 (7)
F2—Ba1—O3A128.9 (6)B2—F7—Ba199.9 (6)
F2—Ba1—O3B142.5 (6)B2—F8—Ba1104.0 (8)
F3ii—Ba1—F4iii109.7 (3)Ba1—O1—H1A113.0
F3ii—Ba1—F795.4 (3)Ba1—O1—H1B115.0
F3ii—Ba1—F862.4 (3)H1A—O1—H1B109.0
F3ii—Ba1—O1124.7 (3)Ba1—O2—H2A115.0
F3ii—Ba1—O268.8 (3)F1—B1—F3108.8 (10)
F3ii—Ba1—O3B64.1 (6)F1—B1—F4109.7 (8)
F4iii—Ba1—F7116.4 (2)F2—B1—F1110.5 (17)
F4iii—Ba1—F8152.8 (3)F2—B1—F3111.8 (9)
F4iii—Ba1—O272.2 (4)F2—B1—F4108.7 (10)
F6iv—Ba1—F3ii151.8 (3)F3—B1—F4107.3 (17)
F6iv—Ba1—F4iii68.2 (3)F5—B2—F6109.6 (9)
F6iv—Ba1—F763.8 (2)F5—B2—F7109.0 (10)
F6iv—Ba1—F8105.8 (3)F5—B2—F8110.6 (10)
F6iv—Ba1—O168.5 (3)F6—B2—F7109.8 (9)
F6iv—Ba1—O2131.5 (3)F6—B2—F8109.7 (10)
F6iv—Ba1—O3B88.8 (5)F7—B2—F8108.2 (10)
F8—Ba1—F744.5 (2)Ba1—O3A—H3AA108.0
O1—Ba1—F4iii124.6 (3)Ba1—O3A—H3AB110.0
O1—Ba1—F770.8 (3)H3AA—O3A—H3AB117.0
O1—Ba1—F872.5 (3)Ba1—O3B—H3BA111.0
O1—Ba1—O2116.6 (3)Ba1—O3B—H3BB110.0
O1—Ba1—O3B134.4 (6)H3BA—O3B—H3BB104.0
Ba1iii—F1—B1—F225 (2)Ba1i—F4—B1—F33.8 (15)
Ba1iii—F1—B1—F3148.0 (14)Ba1vi—F6—B2—F5136.5 (11)
Ba1iii—F1—B1—F495 (2)Ba1vi—F6—B2—F716.9 (19)
Ba1—F2—B1—F1111 (2)Ba1vi—F6—B2—F8101.9 (14)
Ba1—F2—B1—F3127.5 (12)Ba1—F7—B2—F5103.0 (8)
Ba1—F2—B1—F49 (3)Ba1—F7—B2—F6137.0 (8)
Ba1v—F3—B1—F131.2 (17)Ba1—F7—B2—F817.3 (9)
Ba1v—F3—B1—F291.1 (18)Ba1—F8—B2—F5101.1 (9)
Ba1v—F3—B1—F4149.9 (11)Ba1—F8—B2—F6138.0 (7)
Ba1i—F4—B1—F1121.8 (12)Ba1—F8—B2—F718.2 (10)
Ba1i—F4—B1—F2117.3 (11)
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y, z; (iii) x+1, y+1/2, z; (iv) x+2, y+1/2, z+1; (v) x1, y, z; (vi) x+2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···F5v0.829 (10)2.075 (8)2.892 (12)168.8 (7)
O1—H1B···F7vi0.842 (10)2.016 (7)2.849 (13)170.5 (7)
O2—H2A···F40.974 (9)2.331 (9)3.119 (13)137.4 (5)
O2—H2B···F8vii0.977 (9)2.053 (11)3.002 (15)163.5 (7)
O3A—H3AA···O2vii0.88 (2)2.191 (11)2.96 (3)146.5 (18)
O3A—H3AB···F7iv0.84 (2)2.386 (8)3.13 (2)147.7 (17)
O3B—H3BA···F50.86 (3)2.355 (9)3.15 (3)153.0 (16)
Symmetry codes: (iv) x+2, y+1/2, z+1; (v) x1, y, z; (vi) x+2, y1/2, z+1; (vii) x+2, y+1/2, z.
Unit-cell parameters (Å, °, Å3) of Ba(BF4)2(H2O)3 at different temperatures (K) top
TabcβV
1007.0406 (5)7.1567 (3)9.3926 (9)109.292 (7)446.69 (5)
1507.0550 (4)7.1706 (3)9.4182 (6)109.295 (7)449.68 (5)
2807.1469 (5)7.1775 (4)9.5820 (7)110.254 (6)461.13 (5)
3007.1763 (6)18.052 (2)7.1631 (6)927.93 (15)
Transformation matrix oC–mP (HT–LT phase transition of Ba(BF4)2(H3O)3 top
-100
00-1
1/2-1/20

Acknowledgements

The authors acknowledge financial support from the Slovenian Research Agency (research core funding No. P1–0045; Inorganic Chemistry and Technology).

Funding information

Funding for this research was provided by: Javna Agencija za Raziskovalno Dejavnost RS (grant No. P1-0045).

References

First citationBunič, T., Tavčar, G., Goreshnik, E. & Žemva, B. (2007). Acta Cryst. C63, i75–i76.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationCharkin, D. O., Volkov, S. N., Manelis, L. S., Gosteva, A. N., Aksenov, S. M. & Dolgikh, V. A. (2023). J. Struct. Chem. 64, 253–261.  Web of Science CrossRef ICSD CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMüller, U. (2013). Symmetry Relationships between Crystal Structures – Applications of Crystallographic Group Theory in Crystal Chemistry. Oxford University Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2023). Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRigaku OD (2023). CrysAlis Pro. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146