inorganic compounds
Low-temperature modification of Ba(BF4)2(H2O)3
aDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39 1000 Ljubljana, Slovenia, and bFaculty of Mechanical Engineering, University of Ljubljana, Aškerčeva cesta 6, 1000 Ljubljana, Slovenia
*Correspondence e-mail: evgeny.goreshnik@ijs.si
The 4)2(H2O)3, barium bis(tetrafluoridoborate) trihydrate, was determined at 150 K. In contrast to the room-temperature modification, which crystallizes in the C2221 [a = 7.1763 (6), b = 18.052 (2), c = 7.1631 (6) Å, V = 927.93 (15) Å3 at 300 K, Z = 4; Charkin et al. (2023). J. Struct. Chem. 64, 253–261], the low-temperature phase is monoclinic, P21 [a = 7.0550 (4), b = 7.1706 (3), c = 9.4182 (6) Å, β = 109.295 (7)o, V = 449.68 (5) Å3, Z = 2]. The structure of the low-temperature modification of Ba(BF4)2(H2O)3 features O—H⋯F and O—H⋯O hydrogen bonding between water molecules and BF4− anions. One of the coordinating water molecules in the low-temperature modification is disordered over two sets of sites.
of the low-temperature modification of Ba(BFKeywords: low-temperature modification; phase transition; barium tetrafluoridoborate; crystal structure.
CCDC reference: 2267617
Structure description
Recently, the orthorhombic 4)2(H2O)3 was reported on the basis of room-temperature (RT) single-crystal data in C2221 (Charkin et al., 2023). The authors observed a at decreasing temperature but were unable to solve the of the low-temperature (LT) modification. We have now succeeded in solving the of LT-Ba(BF4)2(H2O)3.
of the compound Ba(BFThe 4)2(H2O)3 contains one Ba2+ cation, two tetrahedral BF4− anions and three water molecules, one of which (O3) is disordered over two sets of sites with approximately equal occupancy [ratio 0.56 (2):0.44 (2)]. The Ba2+ cation has a of 10 and is coordinated by seven F ligands from six BF4− anions and by three water ligands (Fig. 1). In anhydrous Ba(BF4)2 (Bunič et al., 2007), the Ba2+ cation is surrounded by ten BF4− anions. The B(1)F4 unit in LT-Ba(BF4)2(H2O)3 is bound to four Ba2+ cations, while the B(2)F4 unit is connected in a chelate mode to one Ba2+ cation and to another via a μ2-bridging F ligand. Each [BaF7O3] shares two vertices with two other [BaF7O3] polyhedra. The shortest Ba⋯Ba distances amounts to 5.9210 (2) Å. Ba—F bond lengths range from 2.698 (7) to 3.035 (8) Å, and Ba—O bond lengths from 2.777 (9) to 2.821 (8) Å (for ordered water molecules). The spread of Ba—F distances in LT-Ba(BF4)2(H2O)3 is greater than for the RT-modification [2.729 (4) to 2.843 (17) Å; Charkin et al., 2023]. The B—F distances in LT-Ba(BF4)2(H2O)3 are in normal ranges, 1.352 (12)–1.406 (16) Å.
of LT-Ba(BFThe packing of LT-Ba(BF4)2(H2O)3 is shown in Fig. 2. The two ordered water molecules form O—H⋯F hydrogen bonds, and the disordered water molecule forms both O—H⋯F and O—H⋯O hydrogen bonds (Fig. 1, Table 1).
The RT C2221 with a = 7.1763 (6) Å, b = 18.052 (2) Å, c = 7.1631 (6) Å (Charkin et al., 2023) is related to the LT mP in P21 by the transformation –a, –c, 1/2a + 1/2b, suggesting a translationengleiche symmetry relationship of index 2 (Müller, 2013). Considering the significant difference in crystal density for both modifications (2.59 g cm-3 for the RT modification at 300 K, 2.63 g cm−3 for the LT modification at 280 K, and 2.59 g cm−3 at 150 K), it can be assumed that the formation of a structure with more effective packing is the driving force of the observed phase transition.
inWe also tried to determine the temperature of the ). At 300 K, an orthorhombic cell was indexed with 100% of all observed reflections and with similar lattice parameters as given by Charkin et al. (2023). Thus, we can conclude that the ordered oC ⇌ mP of Ba(BF4)2(H2O)3 (accompanied by of the monoclinic LT phase) occurs between 280 and 300 K.
It is noteworthy that at 280 K the LT modification remains unchanged, with significantly enlarged unit-cell parameters (Table 2
|
Synthesis and crystallization
Single crystals of Ba(BF4)2(H2O)3 were grown from an aqueous solution of Ba(BF4)2. Barium carbonate was added in small portions to 40%wt HBF4. After completion of the gaseous CO2 release, the solution was decanted from residual BaCO3. Evaporation of water at room temperature yielded small crystals of Ba(BF4)2(H2O)3. Note that an excess of HBF4 led to the formation of crystals of anhydrous Ba(BF4)2 in our experiments.
Refinement
Crystal data, data collection and structure . The obtained crystals suffer from racemic and additionally show by pseudo-merohedry at decreasing temperature. To avoid complicated many crystals were tested until a crystal with a (Flack, 1983) close to zero was found. The corresponding to a 180° rotation around the [100] direction was determined, and the reflection array was indexed as a two-component twin with a negligible amount of non-indexed reflections. Because of the relatively small amount (BASF = 0.26) of the second domain, the final was performed with a HKLF5-type file containing reflections from the first domain and overlapping reflections. Because of unstable EADP commands in SHELXL (Sheldrick, 2015) were applied to the pair of disordered O3 atoms and also to the pair of B atoms. Hydrogen atoms were placed on calculated positions and refined with AFIX 7 restrictions. One reflection with an error/e.s.d. ratio of 5.5 was omitted.
details are summarized in Table 3
|
Structural data
CCDC reference: 2267617
https://doi.org/10.1107/S2414314623004881/wm4190sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623004881/wm4190Isup3.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2023); cell
CrysAlis PRO (Rigaku OD, 2023); data reduction: CrysAlis PRO (Rigaku OD, 2023); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: DIAMOND (Putz et al., 2023); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).Ba(BF4)2(H2O)32(BF4)·3(H2O)·Ba | F(000) = 336 |
Mr = 365.01 | Dx = 2.696 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0550 (4) Å | Cell parameters from 5692 reflections |
b = 7.1706 (3) Å | θ = 3.0–28.2° |
c = 9.4182 (6) Å | µ = 4.53 mm−1 |
β = 109.295 (7)° | T = 150 K |
V = 449.68 (5) Å3 | Plate, colourless |
Z = 2 | 0.36 × 0.27 × 0.07 mm |
New Gemini, Dual, Cu at home/near, Atlas diffractometer | 2386 measured reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2386 independent reflections |
Graphite monochromator | 2212 reflections with I > 2σ(I) |
Detector resolution: 10.6426 pixels mm-1 | θmax = 28.6°, θmin = 2.3° |
ω scans | h = −9→9 |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2023) | k = −9→9 |
Tmin = 0.075, Tmax = 0.472 | l = −12→12 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0656P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.089 | (Δ/σ)max = 0.009 |
S = 1.07 | Δρmax = 0.93 e Å−3 |
2386 reflections | Δρmin = −1.05 e Å−3 |
120 parameters | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower |
1 restraint | Absolute structure parameter: −0.03 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. 1. Twinned data refinement Scales: 0.738 (3) 0.262 (3) 2. Fixed Uiso At 1.5 times of: All O(H,H,H,H,H,H,H,H) groups 3. Uiso/Uaniso restraints and constraints Uanis(O3B) = Uanis(O3A) Uanis(B2) = Uanis(B1) Uanis(F4) = Uanis(F2) 4. Others Sof(O3B)=Sof(H3BA)=Sof(H3BB)=1-FVAR(1) Sof(O3A)=Sof(H3AA)=Sof(H3AB)=FVAR(1) Fixed X: H1A(1.393391) H1B(1.25841) H3AA(0.82474) H3AB(0.919749) H3BA(0.70805) H3BB(0.82046) H2A(1.436299) H2B(1.27384) Fixed Y: H1A(0.843861) H1B(0.70964) H3AA(1.34448) H3AB(1.39917) H3BA(1.19412) H3BB(1.354321) H2A(0.999499) H2B(1.11445) Fixed Z: H1A(0.62203) H1B(0.62415) H3AA(0.77378) H3AB(0.663441) H3BA(0.651361) H3BB(0.66705) H2A(1.1758) H2B(1.21389) |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ba1 | 0.84596 (6) | 0.54566 (15) | 0.18707 (5) | 0.01069 (17) | |
F1 | 0.1744 (12) | 0.6957 (9) | −0.0772 (9) | 0.0392 (19) | |
F2 | 0.4423 (11) | 0.5754 (14) | 0.0977 (9) | 0.0449 (16) | |
F3 | 0.1320 (13) | 0.4559 (13) | 0.0610 (12) | 0.050 (3) | |
F4 | 0.2873 (13) | 0.4098 (13) | −0.1086 (11) | 0.0449 (16) | |
F5 | 1.4219 (11) | 0.4296 (12) | 0.4972 (9) | 0.0361 (18) | |
F6 | 1.2726 (11) | 0.2125 (11) | 0.5958 (8) | 0.0299 (16) | |
F7 | 1.1150 (11) | 0.4849 (9) | 0.5097 (9) | 0.0311 (18) | |
F8 | 1.1510 (13) | 0.2707 (18) | 0.3442 (11) | 0.035 (3) | |
O1 | 0.6644 (13) | 0.2926 (16) | 0.3248 (12) | 0.031 (2) | |
O2 | 0.6901 (12) | 0.565 (2) | −0.1296 (9) | 0.033 (2) | |
B1 | 0.2610 (14) | 0.537 (4) | −0.0048 (10) | 0.0136 (15) | |
B2 | 1.2421 (17) | 0.3491 (17) | 0.4874 (13) | 0.0136 (15) | |
O3A | 1.128 (3) | 0.813 (4) | 0.298 (2) | 0.025 (4) | 0.56 (2) |
O3B | 1.197 (4) | 0.756 (4) | 0.284 (3) | 0.025 (4) | 0.44 (2) |
H1A | 0.606609 | 0.343861 | 0.377970 | 0.038* | |
H1B | 0.741590 | 0.209640 | 0.375850 | 0.038* | |
H3AA | 1.175261 | 0.844480 | 0.226220 | 0.038* | 0.56 (2) |
H3AB | 1.080250 | 0.899170 | 0.336559 | 0.038* | 0.56 (2) |
H3BA | 1.291950 | 0.694120 | 0.348640 | 0.038* | 0.44 (2) |
H3BB | 1.179539 | 0.854321 | 0.332950 | 0.038* | 0.44 (2) |
H2A | 0.563701 | 0.499499 | −0.175799 | 0.038* | |
H2B | 0.726160 | 0.614450 | −0.213891 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0098 (2) | 0.0107 (2) | 0.0114 (3) | −0.0003 (4) | 0.00317 (18) | −0.0011 (4) |
F1 | 0.044 (5) | 0.021 (3) | 0.049 (5) | 0.011 (3) | 0.010 (4) | 0.022 (3) |
F2 | 0.029 (3) | 0.052 (4) | 0.052 (4) | 0.000 (3) | 0.011 (3) | −0.013 (3) |
F3 | 0.043 (5) | 0.048 (5) | 0.082 (7) | 0.010 (4) | 0.051 (5) | 0.030 (5) |
F4 | 0.029 (3) | 0.052 (4) | 0.052 (4) | 0.000 (3) | 0.011 (3) | −0.013 (3) |
F5 | 0.014 (4) | 0.056 (5) | 0.038 (5) | −0.005 (3) | 0.008 (3) | 0.003 (4) |
F6 | 0.037 (4) | 0.031 (4) | 0.022 (4) | 0.005 (3) | 0.010 (3) | 0.016 (3) |
F7 | 0.028 (4) | 0.024 (4) | 0.040 (5) | 0.008 (3) | 0.009 (3) | 0.001 (3) |
F8 | 0.040 (6) | 0.048 (6) | 0.011 (4) | 0.006 (4) | 0.000 (3) | −0.002 (5) |
O1 | 0.029 (5) | 0.022 (5) | 0.045 (7) | 0.002 (3) | 0.017 (5) | 0.008 (4) |
O2 | 0.026 (4) | 0.055 (7) | 0.013 (3) | 0.006 (6) | 0.000 (3) | −0.001 (6) |
B1 | 0.010 (3) | 0.021 (4) | 0.010 (3) | −0.003 (4) | 0.003 (3) | 0.002 (4) |
B2 | 0.010 (3) | 0.021 (4) | 0.010 (3) | −0.003 (4) | 0.003 (3) | 0.002 (4) |
O3A | 0.020 (10) | 0.028 (11) | 0.034 (8) | −0.007 (6) | 0.017 (7) | −0.017 (7) |
O3B | 0.020 (10) | 0.028 (11) | 0.034 (8) | −0.007 (6) | 0.017 (7) | −0.017 (7) |
Ba1—F1i | 2.700 (6) | F4—B1 | 1.39 (2) |
Ba1—F2 | 2.698 (7) | F5—B2 | 1.369 (13) |
Ba1—F3ii | 2.735 (7) | F6—B2 | 1.379 (14) |
Ba1—F4iii | 2.791 (9) | F7—B2 | 1.385 (14) |
Ba1—F6iv | 2.728 (7) | F8—B2 | 1.406 (16) |
Ba1—F7 | 3.035 (8) | O1—H1A | 0.83 |
Ba1—F8 | 2.933 (10) | O1—H1B | 0.84 |
Ba1—O1 | 2.777 (9) | O2—H2A | 0.97 |
Ba1—O2 | 2.821 (8) | O2—H2B | 0.98 |
Ba1—O3A | 2.71 (2) | O3A—H3AA | 0.88 |
Ba1—O3B | 2.78 (2) | O3A—H3AB | 0.84 |
F1—B1 | 1.36 (2) | O3B—H3BA | 0.86 |
F2—B1 | 1.352 (12) | O3B—H3BB | 0.88 |
F3—B1 | 1.387 (15) | ||
F1i—Ba1—F3ii | 64.4 (3) | O2—Ba1—F7 | 164.1 (2) |
F1i—Ba1—F4iii | 142.9 (3) | O2—Ba1—F8 | 122.1 (3) |
F1i—Ba1—F6iv | 134.8 (2) | O3A—Ba1—F3ii | 77.3 (5) |
F1i—Ba1—F7 | 100.8 (2) | O3A—Ba1—F4iii | 65.1 (6) |
F1i—Ba1—F8 | 60.4 (3) | O3A—Ba1—F6iv | 76.6 (4) |
F1i—Ba1—O1 | 66.3 (3) | O3A—Ba1—F7 | 65.2 (6) |
F1i—Ba1—O2 | 71.8 (3) | O3A—Ba1—F8 | 87.7 (5) |
F1i—Ba1—O3A | 138.1 (5) | O3A—Ba1—O1 | 132.5 (5) |
F1i—Ba1—O3B | 123.8 (6) | O3A—Ba1—O2 | 110.6 (6) |
F2—Ba1—F1i | 92.1 (3) | O3B—Ba1—F7 | 63.6 (6) |
F2—Ba1—F3ii | 137.5 (3) | O3B—Ba1—F8 | 76.9 (6) |
F2—Ba1—F4iii | 67.4 (3) | O3B—Ba1—O2 | 108.2 (6) |
F2—Ba1—F6iv | 69.2 (2) | B1—F1—Ba1iii | 157.8 (7) |
F2—Ba1—F7 | 124.8 (2) | B1—F2—Ba1 | 149.2 (8) |
F2—Ba1—F8 | 137.2 (3) | B1—F3—Ba1v | 141.5 (12) |
F2—Ba1—O1 | 66.1 (3) | B1—F4—Ba1i | 133.4 (10) |
F2—Ba1—O2 | 70.4 (2) | B2—F6—Ba1vi | 148.7 (7) |
F2—Ba1—O3A | 128.9 (6) | B2—F7—Ba1 | 99.9 (6) |
F2—Ba1—O3B | 142.5 (6) | B2—F8—Ba1 | 104.0 (8) |
F3ii—Ba1—F4iii | 109.7 (3) | Ba1—O1—H1A | 113.0 |
F3ii—Ba1—F7 | 95.4 (3) | Ba1—O1—H1B | 115.0 |
F3ii—Ba1—F8 | 62.4 (3) | H1A—O1—H1B | 109.0 |
F3ii—Ba1—O1 | 124.7 (3) | Ba1—O2—H2A | 115.0 |
F3ii—Ba1—O2 | 68.8 (3) | F1—B1—F3 | 108.8 (10) |
F3ii—Ba1—O3B | 64.1 (6) | F1—B1—F4 | 109.7 (8) |
F4iii—Ba1—F7 | 116.4 (2) | F2—B1—F1 | 110.5 (17) |
F4iii—Ba1—F8 | 152.8 (3) | F2—B1—F3 | 111.8 (9) |
F4iii—Ba1—O2 | 72.2 (4) | F2—B1—F4 | 108.7 (10) |
F6iv—Ba1—F3ii | 151.8 (3) | F3—B1—F4 | 107.3 (17) |
F6iv—Ba1—F4iii | 68.2 (3) | F5—B2—F6 | 109.6 (9) |
F6iv—Ba1—F7 | 63.8 (2) | F5—B2—F7 | 109.0 (10) |
F6iv—Ba1—F8 | 105.8 (3) | F5—B2—F8 | 110.6 (10) |
F6iv—Ba1—O1 | 68.5 (3) | F6—B2—F7 | 109.8 (9) |
F6iv—Ba1—O2 | 131.5 (3) | F6—B2—F8 | 109.7 (10) |
F6iv—Ba1—O3B | 88.8 (5) | F7—B2—F8 | 108.2 (10) |
F8—Ba1—F7 | 44.5 (2) | Ba1—O3A—H3AA | 108.0 |
O1—Ba1—F4iii | 124.6 (3) | Ba1—O3A—H3AB | 110.0 |
O1—Ba1—F7 | 70.8 (3) | H3AA—O3A—H3AB | 117.0 |
O1—Ba1—F8 | 72.5 (3) | Ba1—O3B—H3BA | 111.0 |
O1—Ba1—O2 | 116.6 (3) | Ba1—O3B—H3BB | 110.0 |
O1—Ba1—O3B | 134.4 (6) | H3BA—O3B—H3BB | 104.0 |
Ba1iii—F1—B1—F2 | 25 (2) | Ba1i—F4—B1—F3 | −3.8 (15) |
Ba1iii—F1—B1—F3 | 148.0 (14) | Ba1vi—F6—B2—F5 | 136.5 (11) |
Ba1iii—F1—B1—F4 | −95 (2) | Ba1vi—F6—B2—F7 | 16.9 (19) |
Ba1—F2—B1—F1 | −111 (2) | Ba1vi—F6—B2—F8 | −101.9 (14) |
Ba1—F2—B1—F3 | 127.5 (12) | Ba1—F7—B2—F5 | 103.0 (8) |
Ba1—F2—B1—F4 | 9 (3) | Ba1—F7—B2—F6 | −137.0 (8) |
Ba1v—F3—B1—F1 | −31.2 (17) | Ba1—F7—B2—F8 | −17.3 (9) |
Ba1v—F3—B1—F2 | 91.1 (18) | Ba1—F8—B2—F5 | −101.1 (9) |
Ba1v—F3—B1—F4 | −149.9 (11) | Ba1—F8—B2—F6 | 138.0 (7) |
Ba1i—F4—B1—F1 | −121.8 (12) | Ba1—F8—B2—F7 | 18.2 (10) |
Ba1i—F4—B1—F2 | 117.3 (11) |
Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x+1, y, z; (iii) −x+1, y+1/2, −z; (iv) −x+2, y+1/2, −z+1; (v) x−1, y, z; (vi) −x+2, y−1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···F5v | 0.829 (10) | 2.075 (8) | 2.892 (12) | 168.8 (7) |
O1—H1B···F7vi | 0.842 (10) | 2.016 (7) | 2.849 (13) | 170.5 (7) |
O2—H2A···F4 | 0.974 (9) | 2.331 (9) | 3.119 (13) | 137.4 (5) |
O2—H2B···F8vii | 0.977 (9) | 2.053 (11) | 3.002 (15) | 163.5 (7) |
O3A—H3AA···O2vii | 0.88 (2) | 2.191 (11) | 2.96 (3) | 146.5 (18) |
O3A—H3AB···F7iv | 0.84 (2) | 2.386 (8) | 3.13 (2) | 147.7 (17) |
O3B—H3BA···F5 | 0.86 (3) | 2.355 (9) | 3.15 (3) | 153.0 (16) |
Symmetry codes: (iv) −x+2, y+1/2, −z+1; (v) x−1, y, z; (vi) −x+2, y−1/2, −z+1; (vii) −x+2, y+1/2, −z. |
T | a | b | c | β | V |
100 | 7.0406 (5) | 7.1567 (3) | 9.3926 (9) | 109.292 (7) | 446.69 (5) |
150 | 7.0550 (4) | 7.1706 (3) | 9.4182 (6) | 109.295 (7) | 449.68 (5) |
280 | 7.1469 (5) | 7.1775 (4) | 9.5820 (7) | 110.254 (6) | 461.13 (5) |
300 | 7.1763 (6) | 18.052 (2) | 7.1631 (6) | 927.93 (15) |
Acknowledgements
The authors acknowledge financial support from the Slovenian Research Agency (research core funding No. P1–0045; Inorganic Chemistry and Technology).
Funding information
Funding for this research was provided by: Javna Agencija za Raziskovalno Dejavnost RS (grant No. P1-0045).
References
Bunič, T., Tavčar, G., Goreshnik, E. & Žemva, B. (2007). Acta Cryst. C63, i75–i76. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Charkin, D. O., Volkov, S. N., Manelis, L. S., Gosteva, A. N., Aksenov, S. M. & Dolgikh, V. A. (2023). J. Struct. Chem. 64, 253–261. Web of Science CrossRef ICSD CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Müller, U. (2013). Symmetry Relationships between Crystal Structures – Applications of Crystallographic Group Theory in Crystal Chemistry. Oxford University Press. Google Scholar
Putz, H. & Brandenburg, K. (2023). Crystal Impact GbR, Bonn, Germany. Google Scholar
Rigaku OD (2023). CrysAlis Pro. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.